
Lecture Notes on
Register Allocation

15-411: Compiler Design
Frank Pfenning

Lecture 3
September 1, 2009

1 Introduction

In this lecture we discuss register allocation, which is one of the last steps
in a compiler before code emission. Its task is to map the potentially un-
bounded numbers of variables or “temps” in pseudo-assembly to the actu-
ally available registers on the target machine. If not enough registers are
available, some values must be saved to and restored from the stack, which
is much less efficient than operating directly on registers. Register alloca-
tion is therefore of crucial importance in a compiler and has been the sub-
ject of much research. Register allocation is also covered thorougly in the
textbook [App98, Chapter 11], but the algorithms described there are com-
plicated and difficult to implement. We present here a simpler algorithm
for register allocation based on chordal graph coloring due to Hack [Hac07]
and Pereira and Palsberg [PP05]. Pereira and Palsberg have demonstrated
that this algorithm performs well on typical programs even when the in-
terference graph is not chordal. The fact that we target the x86-64 family
of processors also helps, because it has 16 general registers so register al-
location is less important than for the x86 with only 8 registers (ignoring
floating-point and other special purpose registers).

Most of material below is based on Pereira and Palsberg [PP05]1, where
further background, references, details, empirical evaluation, and exam-
ples can be found.

1Available at http://www.cs.ucla.edu/∼palsberg/paper/aplas05.pdf

LECTURE NOTES SEPTEMBER 1, 2009

http://www.cs.ucla.edu/~palsberg/paper/aplas05.pdf

L3.2 Register Allocation

2 Building the Interference Graph

Two variables need to be assigned to two different registers if they need to
hold two different values at some point in the program. This question is
undecidable in general for programs with loops, so in the context of com-
pilers we reduce this to liveness. A variable is said to be live at a given
program point if it will used in the remainder of the computation. Again,
we will not be able to able to accurately predict at compile time whether
this will be the case, but we can approximate liveness through a particu-
lar form of dataflow analysis discussed in the next lecture. In our simple
straight-line expression language, this is particularly easy. We traverse the
program backwards, starting at the last line. We note that the return regis-
ter, %eax, is live after the last instruction. If a variable is live on one line, it
is live on the preceding line unless it is assigned to. And a variable that is
used on the right-hand side of an instruction is live for that instruction.

As an example, we consider the simple straight-line computation of the
fifth Fibonacci number, in our pseudo-assembly language. We list with
each instruction the variables that are live before the line is executed. These
are called the variables live-in to the instruction.

f1 ← 1 ·
f2 ← 1 f1

f3 ← f2 + f1 f2, f1

f4 ← f3 + f2 f3, f2

f5 ← f4 + f3 f4, f3

%eax ← f5 f5

%eax

The nodes of the interference graph are the variables and registers of the
program. There is an undirected edge between two nodes if the corre-
sponding variables interfere and should be assigned to different registers.
There are never edges from a node to itself. We distinguish the two forms
of instructions.

• For an instruction t ← s1 ⊕ s2 we create an edge between t and any
different variable ti live after this line. t and ti should be assigned to
different registers, because otherwise the assignment to t could de-
stroy the proper contents of ti.

• For a move instruction t ← s we create an edge between t and any
variable ti live after this line different from t and s. We omit the po-
tential edge between t and s because if they happen to be assigned

LECTURE NOTES SEPTEMBER 1, 2009

Register Allocation L3.3

to the same register, they still hold the same value after this (now re-
dundant) move. Of course, there may be other occurrences of t and s
which force them to be assigned to different registers.

For the above example, we obtain the following interference graph.

f1 f2 f3 f4 f5 %eax

Here, the register %eax is special, because, as a register, it is already pre-
defined and cannot be arbitrarily assigned to another register. Special care
must be taken with predefined registers during register allocation; some
additional remarks in Section 9.

3 Register Allocation via Graph Coloring

Once we have constructed the interference graph, we can pose the register
allocation problem as follows: construct an assignment of K colors (rep-
resenting K registers) to the nodes of the graph (representing variables)
such that no two connected nodes are of the same color. If no such color-
ing exists, then we have to save some variables on the stack which is called
spilling.

Unfortunately, the problem whether an arbitrary graph is K-colorable is
NP-complete for K ≥ 3. Chaitin [Cha82] has proved that register allocation
is also NP-complete by showing that for any graph G there exists some
program which has G as its interference graph. In other words, one cannot
hope for a theoretically optimal and efficient register allocation algorithm
that works on all machine programs.

Fortunately, in practice the situation is not so dire. One particularly
important intermediate form is static single assignment (SSA). Hack [Hac07]
observed that for programs in SSA form, the interference graph always has
a specific form called chordal. Coloring for chordal graphs can be accom-
plished in time O(|V | + |E|) and is quite efficient in practice. Better yet,
Pereira and Palsberg [PP05] noted that as much as 95% of the programs
occuring in practice have chordal interference graph. Moreover, using the
algorithms designed for chordal graphs behaves well in practice even if
the graph is not quite chordal. Finally, the algorithms needed for coloring
chordal graphs are quite easy to implement compared, for example, to the
complex algorithm in the textbook. You are, of course, free to choose any
algorithm for register allocation you like, but we would suggest one based
on chordal graphs explained in the remainder of this lecture.

LECTURE NOTES SEPTEMBER 1, 2009

L3.4 Register Allocation

4 Chordal Graphs

An undirected graph is chordal if every cycle with 4 or more nodes has a
chord, that is, an edge not part of the cycle connecting two nodes on the
cycle. Consider the following three examples:

a b

d c

a b

d

����������������
c

a

>>
>>

>>
> b

��
��

��
�

e

d

�������
c

>>>>>>>

not chordal chordal not chordal

Only the second one is chordal. In the other two, the cycle abcd does not
have a chord.

On chordal graphs, optimal coloring can be done in two phases, where
optimal means using the minimum number of colors. In the first phase
we determine a particular ordering of the nodes called simplicial elimination
ordering, in the second phase we apply greedy coloring based on this order.
These are explained in the next two sections.

5 Simplicial Elimination Ordering

A node v in a graph is simplicial if its neighborhood forms a clique, that
is, all neighbors of v are connected to each other. An ordering v1, . . . , vn

of the nodes in a graph is called a simplicial elimination ordering if every
node vi is simplicial in the subgraph v1, . . . , vi. Interestingly, a graph has
a simplicial elimination ordering if and only if it is chordal. We can find
a simplicial elimination ordering using maximum cardinality search, which
can be implemented to run in O(|V | + |E|) time. The algorithm associates
a weight wt(v) with each vertex which is initialized to 0 updated by the
algorithm. We write N(v) for the neighborhood of v, that is, the set of all
adjacent nodes.

If the graph is not chordal, the algorithm will still return some ordering
although it will not be simplicial. Such an ordering can still be used in the
coloring phase, but does not guarantee that only the minimal numbers of
colors will be used.

LECTURE NOTES SEPTEMBER 1, 2009

Register Allocation L3.5

Algorithm: Maximum cardinality search
Input: G = (V,E) with |V | = n
Output: A simplicial elimination ordering v1, . . . , vn

For all v ∈ V set wt(v)← 0
Let W ← V
For i← 1 to n do

Let v be a node of maximal weight in W
Set vi ← v
For all u ∈W ∩N(v) set wt(u)← wt(u) + 1
Set W ←W − {v}

In our example,

f1 f2 f3 f4 f5 %eax

if we pick f1 first, the weight of f2 will become 1 and has to be picked sec-
ond, followed by f3 and f4. Only f5 is left and will come last, ignoring here
%eax which is already colored. It is easy to see that this is indeed a simpli-
cial elimination ordering. f2, f4, f3, . . . is not, because the neighborhood of
f3 in the subgraph f2, f4, f3 does not form a clique.

6 Greedy Coloring

Given an ordering, we can apply greedy coloring by simply assigning col-
ors to the vertices in order, always using the lowest available color. Initially,
no colors are assigned to nodes in V . We write ∆(G) to the maximum out-
degree of a node in G.

Algorithm: Greedy coloring
Input: G = (V,E) and sequence v1, . . . , vn.
Output: Assignment col(v) = c, 0 ≤ c ≤ ∆(G), v ∈ V .
For i← 1 to n do

Let c be the lowest color not used in N(vi)
Set col(vi)← c

The algorithm will always assign at most ∆(G)+1 colors. If the ordering
is a simplicial elimination ordering, the result is furthermore guaranteed to
use the fewest possible colors.

LECTURE NOTES SEPTEMBER 1, 2009

L3.6 Register Allocation

In our example, we would just alternate color assigments:

/.-,()*+0 /.-,()*+1 /.-,()*+0 /.-,()*+1 /.-,()*+0
f1 f2 f3 f4 f5 %eax

Of course, %eax is represented by one of the colors. Assuming this color is
0 and %edx is the name of register 1, we obtain the following program:

%eax ← 1
%edx ← 1
%eax ← %edx + %eax
%edx ← %eax + %edx
%eax ← %edx + %eax
%eax ← %eax

It should be apparent that some optimizations are possible. Some are
immediate, such as the redundant move of a register to itself. We discuss
on other one called register coalescing in Section 8.

7 Register Spilling

So consider that we have applied the above coloring algorithm and it turns
out that there are more colors needed than registers available. In that case
we need to save some temporary values. In our runtime architecture, the
stack is the obvious place. One convenient way to achieve this is to simply
assign stack slots instead of registers to some of the colors. The choice of
which colors to spill can have a drastic impact on the running time. Pereira
and Palsberg suggest two heuristics: (i) spill the least-used color, and (ii)
spill the highest color assigned by the greedy algorithm. For programs with
loops and nested loops, it may also be significant where in the programs the
variables or certain colors are used: keeping variables used frequently in
inner loops may be crucial for certain programs.

Once we have assigned stack slots to colors, it is easy to rewrite the code
using temps that are spilled if we reserve a register in advance for moves
to and from the stack when necessary. For example, if %r11 on the x86-64
is reserved to implement save and restore when necessary, then

t ← t + s

where t is assigned to stack offset 8 and s to %eax can be rewritten to

LECTURE NOTES SEPTEMBER 1, 2009

Register Allocation L3.7

%r11 ← 8(%rsp)
%r11 ← %r11 + %eax
8(%rsp) ← %r11

Sometimes, this is unnecessary because some operations can be carried
out directly with memory references. So the assembly code for the above
could be shorter

ADDL %eax, 8(%rsp)

although it is not clear whether and how much more efficient this might be
than a 3-instruction sequence

MOVL 8(%rsp), %r11
ADDL %eax, %r11
MOVL %r11, 8(%rsp)

We recommend generating the simplest uniform instruction sequences for
spill code.

8 Register Coalescing

After register allocation, a common further optimization is used to elim-
inate register-to-register moves called register coalescing. Algorithms for
register coalescing are usually tightly integrated with register allocation. In
contrast, Pereira and Palsberg describe a relatively straightforward method
that is performed entirely after graph coloring called greedy coalescing.

The algorithm considers each move between variables t ← s occurring
in the program in turn. If t and s they are the same color, the move can be
eliminated without further action. If there is an edge between them, that
is, they interfere, they cannot be coalesced. Otherwise, if there is a color c
which is not used in the neighborhoods of t and s, N(t)∪N(s), and which is
smaller than the number of available registers, then the variables t and s are
coalesced into a single new variable u with color c. We create edges from u
to any vertex in N(t) ∪ N(s) and remove t and s from the graph. Because
of the tested condition, the resulting graph is still K-colored, where K is
the number of available registers. Of course, we also need to eventually
rewrite the program appropriately to maintain a correspondence with the
graph.

LECTURE NOTES SEPTEMBER 1, 2009

L3.8 Register Allocation

9 Precolored Nodes

Some instructions on the x86-64, such as IDIV, require their arguments to
be passed in specific registers and return their results also in specific reg-
isters. There are also call and ret instructions that use specific registers
and must respect caller-save and callee-save register conventions. We will
return to the issue of calling conventions later in the course. When gener-
ating code for a straight-line program as in the first lab, some care must be
taken to save and restore callee-save registers in case they are needed.

First, for code generation, the live range of the fixed registers should be
limited to avoid possible correctness issues and simplify register allocation.

Second, for register allocation, we can construct an elimination order-
ing as if all precolored nodes were listed first. This amounts to the ini-
tial weights of the ordinary vertices being set to the number of neighbors
that are precolored before the maximum cardinality search algorithm starts.
The resulting list may or may not be a simplicial elimination ordering, but
we can nevertheless proceed with greedy coloring as before.

10 Summary

Register allocation is an important phase in a compiler. It uses liveness
information on variables to map unboundedly many variables to a finite
number of registers, spilling temporaries onto stack slots if necessary. The
algorithm described here is due to Hack [Hac07] and Pereira and Pals-
berg [PP05]. It is simpler than the one in the textbook and appears to per-
form comparably. It proceeds through the following passes:

1. Build the interference graph from the liveness information.

2. Order the nodes using maximum cardinality search.

3. Color the graph greedily according to the elimination ordering.

4. Spill if more colors are needed than registers available.

5. Coalesce non-interfering move-related nodes greedily.

The last step, coalescing, is an optimization which is not required to gen-
erate correct code. Variants such as a separate spilling pass before coloring
are described in the references above can further improve the efficiency of
the generated code.

LECTURE NOTES SEPTEMBER 1, 2009

Register Allocation L3.9

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, Cambridge, England, 1998.

[Cha82] Gregory J. Chaitin. Register allocation and spilling via graph col-
oring. In Proceedings of the Symposium on Compiler Construction,
pages 98–105, Boston, Massachusetts, June 1982. ACM Press.

[Hac07] Sebastian Hack. Register Allocation for Programs in SSA Form. PhD
thesis, Universität Karlsruhe, October 2007.

[PP05] Fernando Magno Quintão Pereira and Jens Palsberg. Register al-
location via coloring of chordal graphs. In K.Yi, editor, Proceed-
ings of the Third Asian Symposium on Programming Languages and
Systems (APLAS’05), pages 315–329, Tsukuba, Japan, November
2005. Spinger LNCS 3780.

LECTURE NOTES SEPTEMBER 1, 2009

	Introduction
	Building the Interference Graph
	Register Allocation via Graph Coloring
	Chordal Graphs
	Simplicial Elimination Ordering
	Greedy Coloring
	Register Spilling
	Register Coalescing
	Precolored Nodes
	Summary

