
Lecture Notes on
Predictive Parsing

15-411: Compiler Design
Frank Pfenning

Lecture 8
September 18, 2009

1 Introduction

In this lecture we discuss two parsing algorithms, both of which traverse
the input string from left to right. The first, LL(1), makes a decision on
which grammar production to use based on the first character of the input
string. If that were ambiguous, the grammar would have to be rewritten
to fall into this class, which is not always possible. The second, LR(1), can
postpone the decision at first by pushing input characters onto a stack and
then deciding on the production later, taking into account both the first in-
put character and the stack. It is variations on the latter which are typically
used in modern parser generation tools.

Alternative presentations of the material in this lecture can be found in
the textbook [App98, Chapter 3] and a paper by Shieber et al. [SSP95].

2 LL(1) Parsing

We have seen in the previous section, that the general idea of recursive de-
scent parsing without restrictions forces us to non-deterministically choose
between several productions which might be applied and potentially back-
track if parsing gets stuck after a choice, or even loop (if the grammar is
left-recursive). Backtracking is not only potentially very inefficient, but
it makes it difficult to produce good error messages in case the string is
not grammatically well-formed. Say we try three different ways to parse a
given term and all fail. How could we say which of these is the source of

LECTURE NOTES SEPTEMBER 18, 2009

L8.2 Predictive Parsing

the error? This is compounded because nested choices multiply the num-
ber of possibilities. We therefore have to look for ways to disambiguate the
choices.

One way is to require of the grammar that at each potential choice point
we can look at the next input token and based on that token decide which
production to take. This is called 1 token lookahead, and grammars that sat-
isfy this restriction are called LL(1) grammars. Here, the first L stands for
Left-to-right; the second L stands for Leftmost parse (which a recursive de-
scent parser generates) and 1 stands for 1 token lookahead. Potentially, we
could also define LL(2), LL(3), etc., but these are of limited practical utility.

Since we are restricting ourselves to parsing by a left-to-right traversal
of the input string, we will consider only tails, or postfixes of the input
strings, and also of the strings in the grammar, when we restrict our infer-
ence rules. For short, we will say γ is a postfix substring of the grammar, or
w is a postfix substring of the input string w0. For example, in the grammar

[emp] S −→
[pars] S −→ [S]
[dup] S −→ S S

the only postfix substrings are ε, [S], S],], S, and S S, but not [S.
We begin be defining two kinds of predicates (later we will have occa-

sion to add a third), where β is either a non-terminal or postfix substring of
the grammar.

first(β,a) Token a can be first in string β
null(β) String β can produce the empty string ε

These predicates must be computed entirely statically, by an analysis of
the grammar before any concrete string is ever parsed. This is because we
want to be able to tell if the parser can do its work properly with 1 token
look-ahead regardless of the string it has to parse.

We define the relation first(β,a) by the following rules.

first(aβ,a)
F1

This rule seeds the first predicate. Then is it propagated to other strings
appearing in the grammar by the following three rules.

first(X,a)

first(X β,a)
F2

null(X) first(β,a)

first(X β,a)
F3

[r]X −→ γ
first(γ,a)

first(X,a)
F4(r)

LECTURE NOTES SEPTEMBER 18, 2009

Predictive Parsing L8.3

Even though ε may be technically a postfix substring of every grammar, it
can never arise in the first argument of the first predicate. The auxiliary
predicate null is also easily defined.

null(ε)
N1

null(X) null(γ)

null(X γ)
N2

[r]X −→ γ
null(γ)

null(X)
N3

We can run these rules to saturation because there are only O(|G|) possi-
ble strings in the first argument to both of these predicates, and at most the
number of possible terminal symbols in the grammar, O(|Σ|), in the second
argument. Naive counting the number of prefix firings (see [GM02]) gives
a complexity bound of O(|G| × |Ξ| × |Σ|) where |Ξ| is the number of non-
terminals in the grammar. Since usually the number of symbols is a small
constant, this is roughly equivalent to O(|G|) and so is reasonably efficient.
Moreover, it only happens once, before any parsing takes place.

Next, we modify the rules for recursive descent parsing from the last
lecture to take these restrictions into account. The first two stay the same.

ε : ε
R1

w : γ

aw : a γ
R2

The third,
[r]X −→ β
w : β γ

w : X γ
R3(r)

is split into two, each of which has an additional precondition.

[r]X −→ β
first(β,a)
aw : β γ

aw : X γ
R′

3

[r]X −→ β
null(β)
w : β γ

w : X γ
R′′

3?

We would like to say that a grammer is LL(1) if the additional precondi-
tions in these last two rules make all choices unambiguous when an arbi-
trary non-terminal X is matched against a string starting with an arbitrary
terminal a. Unfortunately, this does not quite work yet in the presence non-
terminals that can rewrite to ε, because the second rule above does not even
look at the input string.

LECTURE NOTES SEPTEMBER 18, 2009

L8.4 Predictive Parsing

To further refine this we need one additional predicate, again on postfix
string in the grammar and non-terminals.

follow(β,a) Token a can follow string β in a valid string

We seed this relation with the rules

X γ postfix
first(γ,a)

follow(X,a)
W1

Here, X γ postfix means that the string X γ appears as a postfix substring
on the right-hand side of a production. We then propagate this information
applying the following rules from premises to conclusion until saturation
is reached.

follow(b γ,a)

follow(γ,a)
W2

follow(X γ,a)

follow(γ,a)
W3

follow(X γ,a)
null(γ)

follow(X,a)
W4

[r]X −→ γ
follow(X,a)

follow(γ,a)
W5

The first argument here should remain a non-empty postfix or a non-terminal.
Now we can refine the proposed R′′

3 rule from above into one which is
much less likely to be ambiguous.

[r]X −→ β
first(β,a)
aw : β γ

aw : X γ
R′

3

[r]X −→ β
null(β)
follow(X,a)
aw : β γ

aw : X γ
R′′

3

We avoid creating an explicit rule to treat the empty input string by
appending a special $ symbol at the end before starting the parsing process.
We repeat the remaining rules for completeness.

ε : ε
R1

w : γ

aw : a γ
R2

These rules are interpreted as a parser by proof search, applying them
from the conclusion to the premise. We say the grammar is LL(1) if for any
goal w : γ at most one rule applies. If X cannot derive ε, this amounts to
checking that there is at most one production X −→ β such that first(β,a).

LECTURE NOTES SEPTEMBER 18, 2009

Predictive Parsing L8.5

For nullable non-terminals the condition is slightly more complicated, but
can still easily be read off from the rules.

We now use a very simple grammar to illustrate these rules. We have
transformed it in the way indicated above, by assuming a special token $
to indicate the end of the input string.

[start] S −→ S′ $
[emp] S′ −→ ε
[pars] S′ −→ [S′]

This generates all string starting with an arbitrary number of opening paren-
theses followed by the same number of closing parentheses and an end-of-
string marker.

We have:
null(ε) N1

null(S′) N3

first([S′],[) F1

first(],]) F1

first(S′],]) F3

first(S′,[) F4 [pars]
first(S′],[) F2

first($,$) F1

first(S′ $,$) F3

first(S′ $,[) F2

first(S,$) F4 [start]
first(S,[) F4 [start]

follow(S′,$) W1

follow(S′,]) W1

follow([S′],$) W5

follow([S′],]) W5

follow(S′],$) W3

follow(S′],]) W3

follow(],$) W4

follow(],]) W4

3 Parser Generation

Parser generation is now a very simple process. Once we have computed
the null, first, and follow predicates by saturation from a given grammar,

LECTURE NOTES SEPTEMBER 18, 2009

L8.6 Predictive Parsing

we specialize the inference rules R′
3(r) and R′′

3(r) by matching the first two
and three premises against grammar productions and saturated database.
In this case, this leads to the following specialized rules (repeating once
again the two initial rules).

ε : ε
R1

w : γ

aw : a γ
R2

[w : S′ $ γ

[w : S γ
R′

3(start)
$w : S′ $ γ

$w : S γ
R′

3(start)

[w : [S′] γ

[w : S′ γ
R′

3(pars)
]w : γ

]w : S′ γ
R′′

3(emp)
$w : γ

$w : S′ γ
R′′

3(emp)

Recall that these rules are applied from the bottom-up, starting with the
goal w0 $: S, where w0 is the input string. It is easy to observe by pattern
matching that each of these rules are mutually exclusive: if one of the ap-
plies, none of the other rules applies. Moreover, each rule except for R1

(which accepts) has exactly one premise, so the input string is traversed
linearly from left-to-right, without backtracking. When none of the rules
applies, then the input string is not in the language defined by the gram-
mar. This proves that our simple language (n)n is LL(1).

Besides efficiency, an effect of this approach to parser generation is that
it supports good error messages in the case of failure. For example, if we
see the parsing goal (w :) γ we can state: Found ’(’ while expecting ’)’., and
similarly for other cases that match none of the conclusions of the rules.

4 LR(1) Parsing

One difficulty with LL(1) parsing is that it is often difficult or impossible to
rewrite a grammar so that 1 token look-ahead during a left-to-right traver-
sal becomes unambiguous. To illustrate this, we return to the earlier exam-
ple of simple arithmetic expressions.

[plus] E −→ E + E
[times] E −→ E * E
[ident] E −→ id
[number] E −→ num
[parens] E −→ (E)

LECTURE NOTES SEPTEMBER 18, 2009

Predictive Parsing L8.7

If we see a simple expression such as 3 + 4 * 5 (which becomes the to-
ken stream num + num * num), we cannot predict when we see the +
symbol which production to use because of the inherent ambiguity of the
grammar.

We can rewrite the grammar, at significant expense of readability, or we
could just specify that multiplication has higher precedence than addition,
+ < *. Obviously, the latter is more convenient, but how can we make it
work?

The idea is to put off the decision on which productions to use and just
shift the input symbols onto a stack until we can make the decision! We
write

γ | w parse input w under stack γ

where, as generally in predictive parsing, the rules are interpreted as tran-
sitions from the conclusion to the premises. The parsing attempt succeeds
if we can consume all of w and and produce the start symbol S on the
left-hand side. That is, the deduction representing a successful parse of
terminal string w0 has the form

S | ε
R1

...
ε | w0

Parsing is defined by the following rules:

S | ε
R1

γ a | w

γ | aw
R2(= shift)

[r]X −→ β
γ X | w

γ β | w
R3(r)(= reduce(r))

We resume the example above, parsing num + num * num . After one step
(reading this bottom-up)

num | + num * num ?
ε | num + num * num shift

LECTURE NOTES SEPTEMBER 18, 2009

L8.8 Predictive Parsing

we already have to make a decision: should we shift + or should we reduce
num using rule [number]. In this case the action to reduce is forced, because
we will never get another chance to see this num as an E.

E | + num * num ?
num | + num * num reduce(number)

ε | num + num * num shift

At this point we need to shift +; no other action is possible. We take a few
steps and arrive at

E + E | * num
E +num | * num reduce(number)

E + | num * num shift
E | + num * num shift

num | + num * num reduce(number)
ε | num + num * num shift

At this point, we have a real conflict. We can either reduce, viewing E + E
as a subexpression, or shift and later consider E * E as a subexpression.
Since the * has higher precedence than +, we need to shift.

E | ε R1

E + E | ε reduce(plus)
E + E * E | ε reduce(times)

E + E * num | ε reduce(number)
E + E * | num shift

E + E | * num shift
E +num | * num reduce(number)

E + | num * num shift
E | + num * num shift

num | + num * num reduce(number)
ε | num + num * num shift

Since E was the start symbol in this example, this concludes the deduction.
If we now read the lines from the top to the bottom, ignoring the separator,
we see that it represents a rightmost derivation of the input string. So we
have parsed analyzing the string from left to right, constructing a rightmost
derivation. This type of parsing algorithms is called LR-parsing, where the
L stands for left-to-right and the R stands for rightmost.

The decisions above are based on the postfix of the stack on the left-
hand side and the first token on the right-hand side. Here, the postfix of

LECTURE NOTES SEPTEMBER 18, 2009

Predictive Parsing L8.9

the stack on the left-hand side must be a prefix substring of a grammar pro-
duction. If not, it would be impossible to complete it in such a way that a
future grammar production can be applied in a reduction step: the parse
attempt is doomed to failure.

5 LR(1) Parsing Tables

We could now define again a slightly different version of follow(γ,a), where
γ is a prefix substring of the grammar or a non-terminal, and then special-
ize the rules. An alternative, often used to describe parser generators, is
to construct a parsing table. For an LR(1) grammar, this table contains an
entry every for every prefix substring of the grammar and token seen on
the input. An entry describes whether to shift, reduce (and by which rule),
or to signal an error. If the action is ambiguous, the given grammar is not
LR(1), and either an error message is issued, or some default rule comes
into effect that choses between the option.

We now construct the parsing table, assuming + < *, that is, multiplica-
tion binds more tightly than addition. Moreover, we specify that both addi-
tion and multiplication are left associative so that, for example, 3 + 4 + 5
should be parsed as (3 + 4) + 5. We have removed id since it behaves
identically to num .

[plus] E −→ E + E
[times] E −→ E * E
[number] E −→ num
[parens] E −→ (E)

As before, we assume that a special end-of-file token $ has been added to
the end of the input string. When the parsing goal has the form γ β | aw
where β is a prefix substring of the grammar, we look up β in the left-most
column and a in the top row to find the action to take. The non-terminal
ε E in the last line is a special case in that E must be the only thing on the
stack. In that case we can accept if the next token is $ because we know
that $ can only be the last token of the input string.

LECTURE NOTES SEPTEMBER 18, 2009

L8.10 Predictive Parsing

+ * num () $

E + E reduce(plus) shift error error reduce(plus) reduce(plus)
(+ left assoc.) (+ < *)

E * E reduce(times) reduce(times) error error reduce(times) reduce(times)
(+ < *) (* left assoc.)

num reduce(number) reduce(number) error error reduce(number) reduce(number)
(E) reduce(parens) reduce(parens) error error reduce(parens) reduce(parens)

E + error error shift shift error error
E * error error shift shift error error
(E shift shift error error shift error
(error error shift shift error error

ε E shift shift error error error accept(E)

We can see that the bare grammar has four shift/reduce conflicts, while
all other actions (including errors) are uniquely determined. These conficts
arise when E + E or E * E is on the stack and either + or * is the first
character in the remaining input string. It is called a shift/reduce conflict,
because either a shift action or a reduce action could lead to a valid parse.
Here, we have decided to resolve the conflicts by giving a precedence to
the operators and declaring both of them to be left-associative.

It is also possible to have reduce/reduce conflicts, if more than one re-
duction could be applied in a given situation, but it does not happen in this
grammar.

Parser generators will generally issue an error or warning when they
detect a shift/reduce or reduce/reduce conflict. For many parser genera-
tors, the default behavior of a shift/reduce conflict is to shift, and for a re-
duce/reduce conflict to apply the textually first production in the grammar.
Particularly the latter is rarely what is desired, so we strongly recommend
rewriting the grammar to eliminate any conflicts in an LR(1) parser.

One interesting special case is the situation in a language where the else-
clause of a conditional is optional. For example, one might write (among
other productions)

S −→ if E then E else E
S −→ if E then E

Now an statement

if (b) then if (c) then x else y

is ambiguous because it would be read as

LECTURE NOTES SEPTEMBER 18, 2009

Predictive Parsing L8.11

if (b) then (if (c) then x) else y

or

if (b) then (if (c) then x else y)

In a shift/reduce parser, typically the default action for a shift/reduce con-
flict is to shift. This means that the above grammar in a tool such as ML-Lex
will parse the ambiguous statement into the second form, that is, the else
is match with the most recent unmatched if. This is consistent with lan-
guage such as C (or the language used in this course), so we can tolerate the
above shift/reduce conflict, if you wish, instead of rewriting the grammar
to make it unambiguous.

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, Cambridge, England, 1998.

[GM02] Harald Ganzinger and David A. McAllester. Logical algorithms.
In P.Stuckey, editor, Proceedings of the 18th International Conference
on Logic Programming, pages 209–223, Copenhagen, Denmark,
July 2002. Springer-Verlag LNCS 2401.

[SSP95] Stuart M. Shieber, Yves Schabes, and Fernando C. N. Pereira. Prin-
ciples and implementation of deductive parsing. Journal of Logic
Programming, 24(1–2):3–36, 1995.

LECTURE NOTES SEPTEMBER 18, 2009

	Introduction
	LL(1) Parsing
	Parser Generation
	LR(1) Parsing
	LR(1) Parsing Tables

