
Lecture Notes on
Intermediate Representation

15-411: Compiler Design
Frank Pfenning

Lecture 9
September 24, 2009

1 Introduction

In this lecture we discuss the “middle end” of the compiler. After the source
has been parsed we obtain an abstract syntax tree, on which we carry out
various static analyses to see if the program is well-formed. In the L2 lan-
guage, this consists of checking that every finite control flow path ends in
a return statement, that every variable is initialized before its use along
every control flow path, and that break and continue statements occur
only inside loops. In later languages, type-checking will be an important
additional task.

After we have constructed and checked the abstract syntax tree, we
transform the program through several forms of intermediate representa-
tion on the way to abstract assembly and finally actual x86-64 assembly
form. How many intermediate representations and their precise form de-
pends on the context: the complexity and form of the language, to what
extent the compiler is engineered to be retargetable to different machine
architectures, and what kinds of optimizations are important for the im-
plementation. Some of the most well-understood intermediate forms are
intermediate representation trees (IR trees), static single-assignment form
(SSA), quads and triples. SSA was discussed in the last lecture and is also in
the textbook [App98, Chapter 19]. I am not recommending it for this class,
because its benefits are difficult to realize in the context of our languages.
Quads (that is, three-address instructions) and triples (two-address instruc-
tions) are closer to the back end of the compiler and you will probably want
to use one of them, maybe both. In this lecture we focus on IR trees.

LECTURE NOTES SEPTEMBER 24, 2009

L9.2 Intermediate Representation

2 Abstract Syntax Trees

We describe abstract syntax trees in a BNF form which was originally de-
signed for describing grammars. Here we used to describe the recursive
structure of the trees.

Expressions e ::= n | x | e1 ⊕ e2 | e1 � e2 | e1&&e2 | e1||e2 | f(e1, . . . , en)
Statements s ::= assign(x, e) | if(e, s1, s2)

| while(e, s) | break | continue
| return(e) | nop | seq(s1, s2)

We use n for constants, x for variables, ⊕ for effect-free operators, � for
potentially effectful operators (such as division, which could raise an ex-
ception), && and || for logical and and or, respectively. The latter have the
meaning as in C, always returning either 0 or 1, and short-circuit evaluation
if the left-hand side is false (for &&) or true (for ||).

The break and continue statements must occur inside a while loop and
also have the semantics of C: break jumps to the first statement after the
loop, and continue skips the remaining statements in the body of the loop
and jumps directly to the testing of the exit condition.

3 IR Trees

In the translation to IR trees we want to achieve several goals. One is to
isolate potentially effectful expressions, making their order of execution ex-
plicit. This simplifies instruction selection and also means that the remain-
ing pure expressions can be optimized much more effectively. Another goal
is to make the control flow explicit in the form of conditional or uncondi-
tional branches which is closer to the assembly language target and allows
us to apply standard program analyses based on an explicit control flow
graph. The treatment in the textbook achieves this [KR88, Chapters 7 and
8] but it does so in a rather complicated manner using tree transformations
that would not be motivated for our language.

We describe the IR through pure expressions p and commands c. Programs
are just sequences of commands; typically these would be the bodies of
function definitions. An empty sequence of commands is denoted by “·”,
and we write r1; r2 for the concatenation of two sequences of commands.

LECTURE NOTES SEPTEMBER 24, 2009

Intermediate Representation L9.3

Pure Expressions p ::= n | x | p1 ⊕ p2

Commands c ::= x← p
| x← p1 � p2

| x← f(p1, . . . , pn)
| if (p) goto l
| goto l
| l :
| return(p)

Programs r ::= c1; . . . ; cn

Pure expressions are a subset of all expressions. Potentially effectful op-
erations and function calls can only appear at the top-level of assignments.
The logical operators are no longer present and must be eliminated in the
translation in favor of conditionals.

4 Translating Expressions

The first idea may be to translate abstract syntax expressions to pure ex-
pressions, but this does not quite work because potentially effectful expres-
sions have to be turned into commands, and commands are not permitted
inside pure expressions. Returning just a command, or sequence of com-
mands, is also insufficient because we somehow need to refer to the result
of the translation as a pure expression so we can use it, for example, in a
conditional jump or return command.

A solution is to translate from an expression e to a pair consisting of a
sequence of instructions r and a pure expression p. After executing r, the
value of p will the value of e (assuming the computation does not abort).
We write

tr(e) = 〈ê, ě〉
where ê is a sequence of commands r and ě is a pure expression p. Here are
the first three clauses in the definition of tr(e):

tr(n) = 〈·, n〉
tr(x) = 〈·, x〉
tr(e1 ⊕ e2) = 〈(ê1; ê2), ě1 ⊕ ě2〉

Constants and variables translate to themselves. If we have a pure opera-
tion e1 ⊕ e2 it is possible that the subexpressions have effects, so we con-
catenate the command sequences for these to expressions ê1 and ê2. Now ě1

LECTURE NOTES SEPTEMBER 24, 2009

L9.4 Intermediate Representation

and ě2 are pure expressions referring to the values of e1 and e2, respectively,
so we can combine them with a pure operation to get a pure expression rep-
resenting the result.

We can see that the translation of any pure expression p yields an empty
sequence of commands followed by the same pure expression p, that is,
tr(p) = 〈·, p〉. Effectful operations and function calls require us to intro-
duce some commands and a fresh temporary variable to refer to the value
resulting from the operation or call.

tr(e1 � e2) = 〈(ê1; ê2; t← ě1 � ě2), t〉 (t new)
tr(f(e1, . . . , en)) = 〈(ê1; . . . ; ên; t← f(ě1, . . . , ěn)), t〉 (t new)

In this and other cases of the translation we need to make sure that new la-
bels are created as targets for conditional jumps, just like we need to create
new temporary variables.

Finally, a possible translation of one of the first logical operators; the
second one is left as an exercise. Note that ê2 is executed only if ě1 is true.

tr(e1&&e2) = 〈(ê1;
if (!ě1) goto l1;
ê2;
if (!ě2) goto l1;
t← 1;
goto l2;
l1 : ; t← 0;
l2 :),

t〉 (t, l1, l2 new)

5 Translating Statements

Translating statements is in some ways simpler, because we only need to
return a sequence of instructions. It is slightly more complicated in other
ways, because inside loops we need to track the targets for break and continue
statements. So the translation takes three arguments: the statement to
translate, and two optional labels. We elide these labels for simplicity: they
are absent on the top-level and passed down in recursive calls and change
when entering a while loop. We write tr(s) = ŝ, where ŝ is a sequence of
commands r.

Assigments and conditionals are simple, given the translation of expres-

LECTURE NOTES SEPTEMBER 24, 2009

Intermediate Representation L9.5

sion from the previous section.

tr(assign(x, e)) = ê;
x← ě

tr(if(e, s1, s2)) = ê;
if (ě) goto l1;
ŝ2;
goto l2;
l1 : ; ŝ1;
l2 : (l1, l2 new)

There are several plausible translation for a while loop. Due to the way
many instantiations of the target architecture do branch prediction, it is
efficient for the conditional branch in the loop to go backwards.

tr(while(e, s)) = goto l2;
l1 : ; ŝ;
l2 : ; ê;
if (ě) goto l1;
l3 :

During the recursive translation of s, the break label is set to l3 and the
continue label is set to l2.

The jump into the middle of the loop can interfere with optimizations,
so it is often beneficial to replicate the test before loop entry, especially in
the common case when the code for ê and ě is small.

tr(while(e, s)) = ê;
if (!ě) goto l3;
l1 : ; ŝ;
l2 : ; ê;
if (ě) goto l1;
l3 :

The remaining cases are simple: break and continue statements jump
unconditionally to their corresponding labels; the cases for return, nop and
seq are below.

tr(return(e)) = ê;
return(ě)

tr(nop) = ·

tr(seq(s1, s2)) = ŝ1;
ŝ2

LECTURE NOTES SEPTEMBER 24, 2009

L9.6 Intermediate Representation

6 Ambiguity in Language Specification

The C standard explicity leaves the order of evaluation of expressions un-
specified [KR88, p. 200]:

The precedence and associativity of operators is fully specified, but the
order of evaluation of expressions is, with certain exceptions, unde-
fined, even if the subexpressions involve side effects.

At first, this may seem like a virtue: by leaving evaluation order unspec-
ified, the compiler can freely optimize expressions without running afoul
the specification. The flip side of this coin is that programs are almost by
definition not portable. They may check and execute just fine with a certain
compiler, but subtly or catastrophically break when a compiler is updated,
or the program is compiled with a different compiler.

A possible reply to this argument is that a program whose proper execu-
tion depends on the order of evaluation is simply wrong, and the program-
mer should not be surprised if it breaks. The flaw in this argument is that
dependence on evaluation order may be a very subtle property, and neither
language definition nor compiler give much help in identifying such flaws
in a program. No amount of testing with a single compiler can uncover
such problems, because often the code will execute correctly under the de-
cison made for this compiler. It may even be that all available compilers
at the time the code is written may agree, say, evaluating expressions from
left to right, but the code could break in a future version.

Therefore I strongly believe that language specifications should be en-
tirely unambiguous. In this course, this is also important because we want
to hold all compilers to the same standard of correctness. This is also why
the behavior of division by 0 and division overflow, namely an exception,
is fully specified. It is not acceptable for an expression such as (1/0)*0 to
be “optimized” to 0. Instead, it must raise an exception.

The translation to intermediate code presented here therefore must make
sure that any potentially effectful expressions are indeed evaluated from
left to right. Careful inspection of the translation will reveal this to be the
case. On the resulting pure expressions, many valid optimizations can still
be applied which would otherwise be impossible, such as commutativity,
associativity, or distributivity, all of which hold for modular arithmetic.

LECTURE NOTES SEPTEMBER 24, 2009

Intermediate Representation L9.7

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, Cambridge, England, 1998.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language. Prentice Hall, second edition, 1988.

LECTURE NOTES SEPTEMBER 24, 2009

	Introduction
	Abstract Syntax Trees
	IR Trees
	Translating Expressions
	Translating Statements
	Ambiguity in Language Specification

