
Lecture Notes on
Representation Theorems

15-814: Types and Programming Languages
Frank Pfenning

Lecture 5
September 14, 2021

The subject reduction theorem from the last lecture established that if
we start computation by reduction with an expression of type τ , then each
expression in the chain of reductions will continue to have the same type.
So if computation terminates in a normal form, we are still at type τ . In
particular, if we start with a closed expression of type bool, then the normal
form will also have type bool = α→ (α→ α). But does this normal form
really then represent either true = λx. λy. x or false = λx. λy. y? Establishing
this is the goal of this lecture.

Since we are in the setting of the typed λ-calculus, we can add another
piece of information: reduction of every expression terminates. So every
closed expression of type bool eventually reduces to either true or false. Fur-
thermore, due to the Church-Rosser theorem (also knows as confluence), it
must reduce to either one or the other, but cannot reduce to both guarantee-
ing the uniqueness of the meaning of the expression.

Unfortunately, when we got to a more complete language where we
can freely use recursion, the termination property will fail so we don’t
investigate it in detail or try to prove it in this first part of the course. Also,
we will contrive to make reduction deterministic so that the confluence
property is rather immediate. So, for the moment, our focus is on the
representation theorem for Booleans, as a stand-in for other representation
theorems we could prove like Church numerals.

Before we proving the representation theorem, we need to make sure
that our judgment e normal is suitably related to reduction.

LECTURE NOTES SEPTEMBER 14, 2021



L5.2 Representation Theorems

1 Normal Forms and Reduction

The characterization of normal forms via inference rules is compact, but is it
really the same as saying that an expression does not reduce? We would like
to work as much as possible with positive characterizations, so we break
this down into the following two properties

1. For all expressions e, either e reduces or e is normal.

2. For all expressions e, it is not that case that e reduces and e is normal.

The second property just states that the “either/or” in part 1 is an exclusive
or. In mathematical language, saying “either/or” doesn’t automatically
imply that the properties are exclusive, so both should be stated. We will
prove the first, and leave the second as Exercise 2.

To make the proof just a bit easier to write, we introduce a new judgment
e −→ expressing that e reduces, but we do not care what to. We obtain it by
erasing the right-hand sides of all the reduction rules. It is then immediate
(although formally done by induction) that e −→ e′ for some e′ iff e −→ .

(λx. e1) e2 −→
rbl/beta

e −→
λx. e −→

rbl/lam
e1 −→
e1 e2 −→

rbl/app1
e2 −→
e1 e2 −→

rbl/app2

Theorem 1 (Reduction and normal forms, Part (i))
For every expression e, either e −→ or e normal.

Proof: We are only given an expression e, so the proof is likely by induction
on the structure of e. Such a proof has the following parts:

(i) We have to establish the property outright for e = x.

(ii) We have to establish the property for e = λx. e1, where the induction
hypothesis is the property for e1.

(iii) We have the establish the property for e = e1 e2 where the induction
hypotheses are the properties for e1 and e2.

LECTURE NOTES SEPTEMBER 14, 2021



Representation Theorems L5.3

If we can cover all three cases we know that the property must hold for all
expressions. Let’s try!

Case: e = x. Then

x neutral By rule neut/var
x normal By rule norm/neut

Case: e = λx. e1. Then

Either e1 −→ or e1 normal By ind.hyp. on e1

e1 −→ First subcase
e = λx. e1 −→ By rule rbl/lam

e1 normal Second subcase
e = λx. e1 normal By rule norm/lam

Case: e = e1 e2. Then

Either e1 −→ or e1 normal By ind.hyp. on e1

e1 −→ First subcase
e1 e2 −→ By rule rbl/app1

e1 normal Second subcase
Either e1 = λx. e′1 and e′1 normal
or e1 neutral By inversion on e1 normal

e1 = λx. e′1 First sub2case
e = e1 e2 = (λx. e′1) e2 −→ By rule rbl/beta

e1 neutral Second sub2case
Either e2 −→ or e2 normal By ind.hyp. on e2

e2 −→ First sub3case
e = e1 e2 −→ By rule rbl/app2

e2 normal Second sub3case
e = e1 e2 neutral By rule neut/app

�

LECTURE NOTES SEPTEMBER 14, 2021



L5.4 Representation Theorems

This step in a proof is called inversion because we infer, at the metalevel
at which we reason about our judgments, that the premise of a rule must
hold if the conclusion does. This is only valid if we consider all the possible
cases, of which there are two in this particular situation. Often, there is only
one, and sometimes there is none (which means that the case were are in is
actually impossible).

Now that we have characterized normal forms, we will be able to prove
a representation theorem for Booleans in the next lecture.

2 A Representation Theorem for Booleans

Theorem 2 (Representation of Booleans) If · ` e : α→(α→α) and e normal
then e = true = λx. λy. x or e = false = λx. λy. y.

We postpone the proof to first show an important lemma about neutral
terms which will be used in the proof.

Lemma 3 (Neutrality) If x1 : α1, . . . , xn : αn ` e : τ and e neutral then e = xi
and τ = αi for some 1 ≤ i ≤ n.

Proof: The intuition behind this theorem is that a neutral term e has the
form ((x e1) . . . ek) but there is no variable x that has a function type so k = 0
and e = x. But the only variables x in the context are xi : αi.

There are essentially three different forms of induction we could apply
here (abbreviating Γ0 = x1 : α1, . . . , xn : αn)

1. Over the structure of the expression e

2. Over the derivation of Γ0 ` e : τ

3. Over the derivation of e neutral

Generally, when we have additional information about an expression such
as e, we rarely perform an induction over the structure of e, but we prefer
to directly exploit the knowledge about e. Secondly (and also a heuristic),
we can easily apply inversion to syntax-directed judgments such as typing,
and less directly so for others. Therefore, we prefer rule induction over
judgments other than typing.

More formally, we proceed by rule induction on e neutral. There are just
two cases.

LECTURE NOTES SEPTEMBER 14, 2021



Representation Theorems L5.5

Case:

x neutral
neut/var

where e = x. Then we reason

x1 : α1, . . . , xn : αn ` x : τ Assumption
x = xi and τ = αi for some 1 ≤ i ≤ n By inversion

“Inversion” here refers to the fact that there is only one typing rule for
variables, tp/var, and this rule requires x to be one of the variables in
the context and τ to be the corresponding type.

Case:

e1 neutral e2 normal

e1 e2 neutral
neut/app

where e = e1 e2. Then we reason

Γ0 ` e1 e2 : τ Assumption
Γ0 ` e1 : τ2→ τ
and Γ0 ` e2 : τ2 for some τ2 By inversion
e1 = xi and τ2→ τ = αi for some 1 ≤ i ≤ n By ind. hyp.
Contradiction Since τ2→ τ = αi is impossible

Therefore, the second case is impossible, as we already noted infor-
mally at the outset. The appeal to the induction hypothesis relies on
the derivations of e1 neutral and Γ0 ` e1 : τ2→ τ and is correct because
e1 neutral is a subderivation (in fact, the immediate premise) of the
given derivation for e = e1 e2.

�

Now we are ready to tackle the proof of the representation theorem for
normal forms.

Proof: (of Theorem 2) Let’s remind ourselves:

If · ` e : α→ (α→ α) and e normal then e = true = λx. λy. x or
e = false = λx. λy. y.

LECTURE NOTES SEPTEMBER 14, 2021



L5.6 Representation Theorems

Again we have a choice: we could try induction over the structure of e
(not a good idea), rule induction over the derivation of · ` e : α→ (α→ α)
(okay), or rule induction over e normal (even better). As it turns out, we can
do a proof by cases, since the induction hypothesis is never needed! This is,
of course, a special case of induction but we would like to be precise if a
simpler proof principle suffices.

Case:

e neutral
e normal

norm/neut

We conclude that this case is impossible as follows:

· ` e : α→ (α→ α) Assumption
e neutral Premise in this case
Contradiction By Lemma 3

Case:

e1 normal

λx. e1 normal
norm/lam

where e = λx. e1. We continue:

· ` λx. e1 : α→ (α→ α) Assumption
x : α ` e1 : α→ α By inversion
Either e1 neutral or e1 = λx. e2 for some e2 and e2 normal

By inversion on e1 normal

Here the appeal to inversion yields two cases, because the conclu-
sion e1 normal could be derived by two different rules (norm/neut or
norm/lam).

Subcase: e1 neutral. Again, this case is impossible by neutrality.

x : α ` e1 : α→ α From above
e1 neutral This case
Contradiction By Lemma 3

Subcase: e1 = λy. e2 for some e2 and e2 normal. Then

LECTURE NOTES SEPTEMBER 14, 2021



Representation Theorems L5.7

x : α ` λy. e2 : α→ α From above with e1 = λy. e2
x : α, y : α ` e2 : α By inversion
e2 normal This subcase
e2 = λz. e3 for some e3 normal
or e2 neutral By inversion on e2 normal

We now distinguish the reasoning in these two subcases.

Sub2case: e2 = λz. e3 for some e3 with e3 normal. Now it is this
case that is impossible:

x : α, y : α ` λz. e3 : α From above with e2 = λx e3
Contradiction By inversion

(no typing rule matches this conclusion)

Sub2case: e2 neutral. Then

x : α, y : α ` e2 : α From above
e2 neutral This case
e2 = x or e2 = y By neutrality (Lemma 3)
e = λx. e1 = λx. λy. e2 = λx. λy. x
or e = λx. e1 = λx. λy. e2 = λx. λy. y

By form of e, e1, and e2 in this case

�

3 Taking Stock

Where do we stand at this point in our quest for a representation theorems
for Booleans? We have the following:

Reduction and Normal Forms

(i) For all e, either e −→ or e normal.

(ii) There is no e such that e −→ and e normal

Representation of Booleans in Normal Form
If · ` e : α → (α → α) and e normal then either e = true = λx. λy. x or
e = false = λx. λy. y.

LECTURE NOTES SEPTEMBER 14, 2021



L5.8 Representation Theorems

Subject Reduction (Theorem L4.3)
If Γ ` e : τ and e −→ e′ we have Γ ` e′ : τ .

We did not prove normalization (also called termination) or confluence
(also called the Church-Rosser property).

Normalization
If Γ ` e : τ then e −→∗ e′ for some e′ with e′ normal.

Confluence
If e −→∗ e1 and e −→∗ e2 then there exists an e′ such that e1 −→∗ e′ and
e2 −→ e′.

We could replay the whole development for the representation of natural
numbers instead of Booleans, with some additional complications, but we
will forego this in favor of tackling more realistic programming languages.

Exercises

Exercise 1 Fill in the blanks in the following typing judgments so the result-
ing judgment holds, or indicate there is no way to do so. You do not need
to justify your answer or supply a typing derivation, and the types do not
need to be “most general” in any sense. Remember that the function type
constructor associates to the right, so that τ → σ→ ρ = τ → (σ→ ρ).

(i) ` y x : α

(ii) ` xx :

(iii) · ` : (α→ α)→ α

(iv) · ` (λz. z) (λx. λy. λp. p x y) :

(v)

· `λf. λg. λx. (f x) (g x)

: (α→ )→ (α→ )→ (α→ )

Since this is the first time we (that is, you) are proving theorems about
judgments defined by rules, we ask you to be very explicit, as we were in
the lectures and lecture notes. In particular:

LECTURE NOTES SEPTEMBER 14, 2021



Representation Theorems L5.9

• Explicitly state the overall structure of your proof: whether it proceeds
by rule induction, and, if so, on the derivation of which judgment, or
by structural induction, or by inversion, or just directly. If you need to
split out a lemma for your proof, state it clearly and prove it separately.
If you need to generalize your induction hypothesis, clearly state the
generalized form.

• Explicitly list all cases in an induction proof. If a case is impossible,
prove that is is impossible. Often, that’s just inversion, but sometimes
it is more subtle.

• Explicitly note any appeals to the induction hypothesis.

• Any appeals to inversion should be noted as such, as well as the rules
that could have inferred the judgment we already know. This could
lead to zero cases (a contradiction—the judgment could not have been
derived), one case (there is exactly one rule whose conclusion matches
our knowledge), or multiple cases, in which case your proof now splits
into multiple cases.

• We recommend that you follow the line-by-line style of presentation
where each line is justified by a short phrase. This will help you to
check your proof and us to read and verify it.

Exercise 2 Prove that there does not exist an expression e such that e −→
and e normal. In other words, the alternatives stated in Theorem 1 are
exclusive.

As a reminder, the way we prove that a propositionA is false is to assume
A is true and derive a contradiction. For those who care about such things,
this is a perfectly valid intuitionistic (constructive) reasoning principle, as
opposed to an indirect proof. The rule of indirect proof (which we should
avoid at all cost, since all proofs in this course should be constructive) says
that we can prove A is true by assuming that A is false and then deriving a
contradiction from that.

LECTURE NOTES SEPTEMBER 14, 2021


	Normal Forms and Reduction
	A Representation Theorem for Booleans
	Taking Stock

