
Lecture Notes on
Elaboration

15-814: Types and Programming Languages
Frank Pfenning

Lecture 11
Tuesday, October 5, 2021

1 Introduction

We have spent a lot of time analyzing and designing the essence of a pro-
gramming language, starting from first principles. The focus has been on
the statics (the type system), the dynamics (the rules for how to evaluate
programs), and understanding the relationship between them in a mathe-
matically rigorous way.

There is, of course, a lot more to a real programming language. At
the “front end” there is the concrete syntax according to which the program
text is parsed. The result of parsing is either some abstract syntax or an
error message if the program is not well-formed according to the grammar
defining its syntax. At the “back end” there are concerns about how a
language might be executed efficiently, or compiled to machine language so it
can run even faster. In this course we will say little about issues of grammar,
concrete syntax, parsers or parser generators, because we want to focus on
the deeper semantic issues where we have accumulated a lot of knowledge
about language design.

In today’s lecture we will look at elaboration, which is a translation medi-
ating between specific forms of concrete syntax and internal representation
in abstract syntax. Elaborating the program allows us to provide some
conveniences that make it easy to write and read concise programs without
giving up the sound underlying principles we have learned about in this
course so far.

We will also look at how declarations and definitions that exist at the top
level of the LAMBDA implementation and how they are elaborated.

LECTURE NOTES TUESDAY, OCTOBER 5, 2021



L11.2 Elaboration

2 Variadic Sums

Once we know that sums are associative and commutative with unit 0 we
can introduce a more general notation that is useful for practical purposes:
rather than just using labels l and r for a binary sum, we can allow a finite
set I of tags or label (think of them as strings) and write

(i1 : τ1) + · · ·+ (in : τn)

where each summand is marked with a distinct label i. We also write this in
abstract syntax as ∑

i∈I
(i : τi)

The empty type 0 arises from I = { } and we might define

bool = (true : 1) + (false : 1)
option τ = (none : 1) + (some : τ)
order = (less : 1) + (equal : 1) + (greater : 1)
nat ∼= (zero : 1) + (succ : nat)

= µα. (zero : 1) + (succ : α)

list τ ∼= (nil : 1) + (cons : τ × list τ)
= µα. (nil : 1) + (cons : τ × α)

bin ∼= (b0 : bin) + (b1 : bin) + (e : 1)
= µα. (b0 : α) + (b1 : α) + (e : 1)

This generalized form of sum also comes with a generalized constructor
(allowing any label of a sum) and case expression (requiring a branch for
each label of a sum). For example, we might have the following definitions.

bin = µα. (b0 : α) + (b1 : α) + (e : 1)

b0 : bin→ bin
b1 : bin→ bin
e : bin

b0 = λx. fold (b0 · x)
b1 = λx. fold (b1 · ·x)
e = fold (e · 〈 〉)

inc : bin→ bin
inc = fix inc. λx. case (unfold x)

(b0 · y ⇒ b1 y
| b1 · y ⇒ b0 (inc y)
| e · _⇒ b1 e)

LECTURE NOTES TUESDAY, OCTOBER 5, 2021



Elaboration L11.3

We now proceed to complete the language with the more general form of
sum. At first it might seem this is merely a programming convenience,
even if an important one. But then we note, for example, that every value
v : (succ : nat) (a unary sum) also has type v : (zero : 1) + (succ : nat) and
realize that variadic sums allow us to exploit the inherent ambiguity in the
type of expression to a greater degree than binary sums. We allow a finite
set of labels I and write

∑
i∈I(i : τi). The case construct for the sums then

has a branch for each i ∈ I . Our previous constructs represent a special case,
with τ1 + τ2 ,

∑
i∈{l,r}(i : τi) = (l : τ1) + (r : τ2) and 0 ,

∑
i∈∅(i : τi).

Types τ ::= α | τ1→ τ2 | τ1 × τ2 | 1 |
∑

i∈I(i : τi) | µα. τ

Expressions e ::= x (variables)
| λx. e | e1 e2 (→)
| 〈e1, e2〉 | case e (〈x1, x2〉 ⇒ e′) (×)
| 〈 〉 | case e (〈 〉 ⇒ e′) (1)
| i · e | case e (i · x⇒ e′)i∈I (

∑
)

| fold e | unfold e (µ)
| f | fix f. e (recursion)

For sums, we have the following generalized statics and dynamics. Key is
that we have to check all branches of a case expressions, and all of them
have the same type τ ′.

(k ∈ I) Γ ` e : τk

Γ ` k · e :
∑

i∈I(i : τi)
tp/sum

Γ ` e :
∑

i∈I(i : τi) Γ, xi : τi ` e′i : τ ′ (for all i ∈ I)

Γ ` case e (i · xi ⇒ e′i)i∈I : τ ′
tp/cases

e value
i · e value

val/sum
e 7→ e′

i · e 7→ i · e′
step/inject

e0 7→ e′0

case e0 (i · xi ⇒ e′i)i∈I 7→ case e′0 (i · xi ⇒ e′i)i∈I
step/cases0

k ∈ I v value

case (k · v) (i · xi ⇒ e′i)i∈I 7→ [v/xk]e′k
step/cases/inject

LECTURE NOTES TUESDAY, OCTOBER 5, 2021



L11.4 Elaboration

3 “Syntactic Sugar”

Except for functions and recursive types, the destructors are of the form
case e (. . .). We will now unify these constructs even more, replacing the
primitive unfold e by a new one, case e (fold x ⇒ e′). We can then define
Unfold as a function

Unfold : (µα. τ)→ [µα. τ/α]τ

Unfold , λx. case x (fold x⇒ x)

See Exercise 3 for more on this restructuring of the language. One issue
we see is that we cannot give a uniform type to Unfold if considered as
a function in our language. That’s because we cannot express [µα. τ/α]τ .
For this, we would need first-class functions from types to types which are
available in a language such as Fω but not here so far.

So instead we would like to continue to use unfold but elaborate it to the
appropriate case expression. This is an example of so-called “syntactic sugar”
which extends the surface syntax without impacting the underlying theory
in an essential way.

Another example of syntactic sugar would be the following definitions:

bool , (true : 1) + (false : 1)

true , true · 〈 〉
false , false · 〈 〉
if e1 then e2 else e3 , case e1 (true · _⇒ e2 | false · _⇒ e3)

Here, we used another common convention, name we use an underscore (_)
in place of a variable name if that variable does not occur in its scope (here,
this scope would be e2 for the first underscore and e3 for the second. Such a
syntactic transformation could take place before or after type checking.

4 Elaborating Definitions

In the LAMBDA implementation, the programmer can make top level decla-
rations and definitions. For example:

1 type bool = (’true : 1) + (’false : 1)
2

3 decl true : bool
4 decl false : bool
5

6 defn true = ’true ()

LECTURE NOTES TUESDAY, OCTOBER 5, 2021



Elaboration L11.5

7 defn false = ’false ()
8

9 decl and : bool -> bool -> bool
10 defn and = \b. \c. case b of (’true u => c | ’false u => false)
11

12 eval example1 = and true false

The tick marks preceding a identifiers mark them as tags in variadic sums.
In the abstract form we have shown them in bold instead.

So far we have only formalized types and expressions and the relations
between them, but not definitions of types (type), declarations of types for
names to be defined (decl), and definitions of expression names (defn).
Our goal now is to formalize these and at the same time define how they
should behave. First, a program P is a sequence of definitions D. For those,
we have three possibilities.

Programs P ::= · | D ; P
Definitions D ::= type t = τ

| defn f : τ = e
| eval x = e

Here we have used t for a defined type name, in contrast with α, β, . . .which
generally stand for bound type variables. The language of types then as to
be generalized to include such type names. Similarly, we have used f to
stand for a defined expression name. Because it may stand for an expression
(rather than a value), we wrote f instead of x, since variables defined as
fixed points also stand for general expressions. Even though the notation
suggests that f should be a function (and this is often the case) there is no
such formal requirement.

With respect to the concrete syntax, we have also combined declarations
and definitions so simplify our presentation. It would be straightforward
but tedious to separate them.

Elaboration results in a signature Σ with definitions for types, expressions,
and values.

Signature Σ ::= · | Σ, t = τ | Σ, f : τ = e | Σ, x : τ = v

We process a program from left to right, building up the signature Σ. Later
declarations and definitions are processed with respect to the signature Σ
accumulated up to that point. At the end of elaboration we return the final
accumulated signature ΣF . So our judgment is

Σ ` P  ΣF

LECTURE NOTES TUESDAY, OCTOBER 5, 2021



L11.6 Elaboration

The first rule just says that when P is empty, we just return the accumulated
signature.

Σ ` (·) Σ
prog/empty

When we see a type definition, we need to make sure the type is a valid
type, the name hasn’t already been used (since we disallow shadowing),
and then add the definition to the accumulated signature.

t 6∈ dom(Σ) · `Σ τ type Σ, t = τ ` P  ΣF

Σ ` type t = τ ; P  ΣF

prog/tpdef

Here we realize that we need to pass in the accumulated signature Σ into
the type-checker because τ may contain type names previously defined. An
often-used convention is to subscript the turnstile. We then need a further
rule for checking validity of types:

t = τ ∈ Σ

Γ `Σ t type
tp/name

Furthermore, we would have to change all the other rules to add the sub-
script Σ to all turnstiles. Since Σ never changes and only used in one rule,
this step is often elided.

Next, when we see a definition defn f : τ = e we need to check that f
isn’t used yet, τ is a valid type, and e is a valid expression of type τ .

f 6∈ dom(Σ) · `Σ τ type · `Σ e : τ Σ, f : τ = e ` P  ΣF

Σ ` defn f : τ = e ; P  ΣF

prog/expdef

As in the previous rule, we need to generalize the typing judgment to carry
a signature (which is often omitted).

In the last kind of definition we need to evaluate an expression. Here,
we have purposely omitted a type for x, anticipating that we may be able
to synthesize it from the expression. In any case, e must have some type,
which then becomes the type of x in the accumulated signature.

x 6∈ dom(Σ) · `Σ e : τ e 7→∗ v v value Σ, x : τ = v ` P  ΣF

Σ ` eval x = e ; P  ΣF

prog/valdef

Note that if e does not type-check, or if e has no value, then this rule is
not applicable and elaboration cannot produce a final signature. In the

LECTURE NOTES TUESDAY, OCTOBER 5, 2021



Elaboration L11.7

implementation, the failure to type-check produces an error, and the failure
to evaluate causes the implementation to hang.

Now we can investigate when a signature itself is valid (that is, well-
formed) with a judgment such as Σ valid. We would then want to prove
that if Σ valid and Σ ` P  ΣF then ΣF valid. You can pursue this idea in
Exercise 4.

5 Algorithmic Interpretations of Rules

One of the standard techniques for describing algorithms in the theory of
programming languages is to interpret inference rules themselves algorith-
mically. The idea is that we are given a (potentially incomplete) judgment
to derive. We nondeterministically construct a derivation bottom-up, using
the inference rules to reduce the goal to subgoals. If no rule is applicable we
fail; if the derivation is complete we succeed.

For this method to be effective we interpret the constituents of the judg-
ments as either inputs (denoted by +) or outputs (denoted by −). For elabo-
ration, for example, we write

Σ+ ` P+  Σ−F

that is, we assume the signature Σ and the program P to be given, and
elaboration should construct ΣF . These modes are then reflected in the
correctness theorem for elaboration, stating that if Σ is valid and elaboration
succeeds, then ΣF is valid (see Exercise 4).

When assigning modes to a judgment in the expectation of providing an
algorithmic interpretation of its rules, we have to be careful. In particular,
we have to verify that the judgment is well-moded in the following sense:

1. Given the inputs for a conclusion, we have enough information to
know the inputs for the premises.

2. Given the inputs for a conclusion and the outputs of the premises, we
have enough information to construct the output of the conclusion.

Let’s consider some simple examples.
We declare Γ+ `Σ+ τ+ type, that is, we simply check that a given type τ is

well-typed in a given context Γ and signature Σ. The outcome of the attempt
to construct a derivation of such a judgment is either success or failure and it
acts as a decision procedure. We show an example how we check that the

LECTURE NOTES TUESDAY, OCTOBER 5, 2021



L11.8 Elaboration

rules are well-moded.

Γ `Σ τ1 type Γ `Σ τ2 type

Γ `Σ τ1→ τ2 type
tp/arrow

According to the mode, the whole conclusion is given to us, so we know Γ,
Σ, and τ1→ τ2. That’s enough information to know Γ, Σ and τ1 for the first
premise, and Γ, Σ and τ2 for the second premise.

If we try to give the typing judgment the mode Γ+ `Σ+ e+ : τ+ (we
just check that the expression e has type τ ), then the following rule is not
well-moded:

Γ `Σ e1 : τ2→ τ1 Γ `Σ e2 : τ2

Γ `Σ e1 e2 : τ1

tp/app

Since all components are inputs, we know Γ, Σ, e1, e2, and τ1 from the
conclusion, but we do not know τ2 which is necessary for both premises. So
our algorithm for constructing a derivation would get stuck here.

Let’s analyze our rules for elaborating a signature from this perspective.
Recall that we would like to have the mode Σ+ ` P+  Σ−F .

Σ ` (·) Σ
prog/empty

Since Σ on the left is given as input, we can construct Σ on the right as
output, so this rule is well-moded. On to the next rule.

t 6∈ dom(Σ) · `Σ τ type Σ, t = τ ` P  ΣF

Σ ` type t = τ ; P  ΣF

prog/tpdef

From the conclusion we know Σ, t, τ , and P . That’s sufficient to check
t 6∈ dom(Σ) and · `Σ τ type since all inputs to this judgment are known.
Finally, we can recurse into the last premise because Σ, t, τ and P are known.
We obtain the output ΣF which we have to return as output in the conclusion.
So this rule is also well-moded.

Next, definition of an expression name.

f 6∈ dom(Σ) · `Σ τ type · `Σ e : τ Σ, f : τ = e ` P  ΣF

Σ ` defn f : τ = e ; P  ΣF

prog/expdef

1. From the conclusion we know Σ, f , τ , e and P .

2. With that information, we can check the first premise f 6∈ dom(Σ)

LECTURE NOTES TUESDAY, OCTOBER 5, 2021



Elaboration L11.9

3. We can also check the second premise · `Σ τ type

4. We get stuck with the third premise, · `Σ e : τ because we have already
seen by example above that Γ+ `Σ+ e+ : τ+ is not well-moded!

5. But assuming we could somehow get this to work, we could recurse
on the fourth premise (Σ, f , τ , e, and P are all known) and we would
obtain ΣF

6. That’s sufficient to construct the output ΣF in the conclusion.

So the prog/expdef rule is not well-moded!
So what we would need here would be a judgment

Γ+ `Σ+ e+ ⇐ τ+

that checks e against a given type τ . We’ll design such a judgment in the next
section.

But let’s complete our task. It remains to check the rule

x 6∈ dom(Σ) · `Σ e : τ e 7→∗ v v value Σ, x : τ = v ` P  ΣF

Σ ` eval x = e ; P  ΣF

prog/valdef

We reason systematically as before.

1. From the conclusion we know Σ, x, e, and P .

2. This let’s us check the first premise, x 6∈ dom(Σ)

3. We get stuck in the second premise, because Γ+ `Σ+ e+ : τ− is also not
a valid mode for the typing judgment. For example, · `(·) λx. x : ?τ
would have to yield infinitely many ?τ because λx. x has infinitely
many types. Looking at the rules, we see that tp/lam would not be
well-moded.

4. Assuming we could fix this somehow, the next premise e+ 7→∗ v− is
well-moded (see Exercise 7). This would give use v− as an output.

5. Then, the next premise (which has mode v+ value) would be well-
moded since we now know v.

6. With all this information, the last premise is well-moded and gives us
ΣF as output.

7. Therefore, the output ΣF in the conclusion is known.

LECTURE NOTES TUESDAY, OCTOBER 5, 2021



L11.10 Elaboration

So, again, this rule is not well moded. What we would need is a judgment
Γ+ `Σ+ e+ ⇒ τ− that synthesizes a τ , given Γ, Σ, and e.

This rule is also illustrate that we need to construct the derivation of
e+ 7→∗ v− before testing v+ value. A general convention is that we try to
construct derivations for the premises from left to right.

Summary: if we had judgments Γ+ `Σ+ e+ ⇐ τ+ and Γ+ `Σ+ e+ ⇒ τ−

then elaboration using the following rules would be well-moded and could
be interpreted algorithmically.

Σ ` (·) Σ
prog/empty

t 6∈ dom(Σ) · `Σ τ type Σ, t = τ ` P  ΣF

Σ ` type t = τ ; P  ΣF

prog/tpdef

f 6∈ dom(Σ) · `Σ τ type · `Σ e⇐ τ Σ, f : τ = e ` P  ΣF

Σ ` defn f : τ = e ; P  ΣF

prog/expdef

x 6∈ dom(Σ) · `Σ e⇒ τ e 7→∗ v v value Σ, x : τ = v ` P  ΣF

Σ ` eval x = e ; P  ΣF

prog/valdef

The last rule illustrates something else. Besides the modes, there are certain
presuppositions we would like to be satisfied. For example, we never
evaluate an expression e unless it is closed and well-typed. We only know
this if we derive · `Σ e ⇒ τ before we try to derive e 7→∗ v, even though
we know the necessary input (e). We have to be careful about such hidden
dependencies when writing and interpreting the rules, so understanding
presuppositions is also important in our interpretation of the judgments. In
fact, presuppositions and modes go hand in hand.

6 Bidirectional Type-Checking

In the previous section we saw that for elaboration to work as intended, we
need to define two new judgments, Γ+ `Σ+ e+ ⇒ τ− and Γ+ `Σ+ e+ ⇐
τ+. We refer to them as type synthesis and type checking, respectively. The
requirements here should be clear:

1. Both judgments are well-moded and therefore describe an algorithm.

2. Both judgments entail that Γ `Σ e : τ . We call this the soundness of
bidirectional type-checking.

LECTURE NOTES TUESDAY, OCTOBER 5, 2021



Elaboration L11.11

3. We may also wish that if Γ `Σ e : τ then one of the two judgments
holds. As we will see, this is not quite possible and we need to make
some modifications to obtain a related property we call completeness.

Bidirectional type-checking [DK19] is quite robust in the sense that it applies
to many languages and constructs where other approaches (such as type
inference) no longer work.

For the sake of conciseness, we restrict ourselves to the fragment relevant
to function types, τ1→ τ2. Reasoning through the rules (which we did in
lecture) we can categorize each of the typing rules to synthesize or check.
We obtain (omitting Σ for brevity)

x : τ ∈ Γ

Γ ` x⇒ τ
syn/var

Γ, x : τ1 ` e⇐ τ2

Γ ` λx. e⇐ τ1→ τ2

chk/lam

Γ ` e1 ⇒ τ2→ τ1 Γ ` e2 ⇐ τ2

Γ ` e1 e2 ⇒ τ1

syn/app

The last rule syn/app is the most interesting one since it requires both judg-
ments. It is important that the first premise be derived first, because this
gives us τ2 which is a necessary input to the second premise. It also give use
τ1 which is necessary for the output in the conclusion.

These rules are almost trivially sound because we obtain the ordinary
typing rules if we replace ‘⇒’ and ‘⇐’ with ‘:’. However the rules are
incomplete in a somewhat surprising manner. For example, we will fail to
prove that · ` (λx. x)⇐ 1→ 1:

??
x : 1 ` x⇐ 1

· ` (λx. x)⇐ 1→ 1
chk/lam

We see there is no rule with a conclusion matching the premise, so the
algorithmic interpretation would fail and say that the judgment does not
hold.

What we need, of course, is one more rule that connects the checking and
synthesis judgment. We can check an expression e against τ if e synthesized
τ ′ and τ ′ = τ .

Γ ` e⇒ τ ′ (τ ′ = τ)

Γ ` e⇐ τ
chk/syn

Is this well-moded? Let’s reason it out

LECTURE NOTES TUESDAY, OCTOBER 5, 2021



L11.12 Elaboration

1. We know Γ, e, and τ from the conclusion (since Γ+ ` e+ ⇐ τ+)

2. That’s sufficient for the premise, since we know Γ and e. This will
return an output τ ′ (since Γ+ ` e+ ⇒ τ−).

3. Now we have both τ and τ ′ and we can compare them for equality.

With this additional rule we can complete the typing for the identity
function.

x : 1 ` x⇒ 1
syn/var

(1 = 1)

x : 1 ` x⇐ 1
chk/syn

· ` (λx. x)⇐ 1→ 1
chk/lam

Having become suspicious by now regarding completeness, we try to type
(λx. x) 〈 〉. Since it is an application, we try to synthesize a type:

??
· ` λx. x⇒ ?τ2→ ?τ

??
· ` 〈 〉 ⇐ ?τ2

· ` (λx. x) 〈 〉 ⇒ ?τ
syn/app

Here we get stuck in first premise, because there is no rule whose conclusion
matches this judgment: λ-abstraction are only checked. Therefore we do
not know ?τ2 and cannot even start deriving the second premise. So the
algorithmic interpretation of our rules would once again indicate failure.

For λ-abstractions we can adopt a somewhat ad hoc solution: we allow
annotation of variables with their intended types! The we would have one
additional rule

Γ, x : τ ` e⇒ σ

Γ ` (λx:τ. e)⇒ τ → σ
syn/lam

There is a more general solution (see Exercise 9), but for the functional
fragment the above is sufficient to obtain completeness. The property then
says that if Γ ` e : τ then there is an annotated version e′ of e such that
Γ ` e′ ⇒ τ (and therefore also Γ ` e′ ⇐ τ by rule chk/syn).

We can ask when annotations are needed and it turns out that it is exactly
the normal forms that require no annotations. This is explored in Exercise 8.

LECTURE NOTES TUESDAY, OCTOBER 5, 2021



Elaboration L11.13

Here is the summary of the rules.

x : τ ∈ Γ

Γ ` x⇒ τ
syn/var

Γ, x : τ1 ` e⇐ τ2

Γ ` λx. e⇐ τ1→ τ2

chk/lam

Γ ` e1 ⇒ τ2→ τ1 Γ ` e2 ⇐ τ2

Γ ` e1 e2 ⇒ τ1

syn/app
Γ ` e⇒ τ ′ (τ ′ = τ)

Γ ` e⇐ τ
chk/syn

Γ, x : τ ` e⇒ σ

Γ ` (λx:τ. e)⇒ τ → σ
syn/lam

Exercises

Exercise 1 It is often intuitive to define types in a mutually recursive way.
As a simple example, consider how to define binary numbers in standard
form, that is, not allowing leading zeros. We define binary numbers in stan-
dard form (std) mutually recursively with strictly positive binary numbers
(pos).

std ∼= (e : 1) + (b0 : pos) + (b1 : std)
pos ∼= (b0 : pos) + (b1 : std)

(i) Using only std, pos, and function types formed from them, give all
types of e, b0, and b1 defined as follows:

b0 = λx. fold (b0 · x)

b1 = λx. fold (b1 · x)

e = fold (e · 〈 〉)

(ii) Define the types std and pos explicitly in our language using the µ type
former so that the isomorphisms stated above hold.

(iii) Does the function inc from Section 2 have type std→ pos? You may use
all the types for b0, b1 and e you derived in part (i). Then either explain
where the typing fails or indicate that it has that type. You do not need
to write out a typing derivation.

(iv) Write a function pred : pos→std that returns the predecessor of a strictly
positive binary number. You must make sure your function is correctly
typed, where again you may use all the types from part (i).

LECTURE NOTES TUESDAY, OCTOBER 5, 2021



L11.14 Elaboration

Exercise 2 It is often convenient to define functions by mutual recursion.
As a simple example, consider the following two functions on bit strings
determining if it has even or odd parity.

bin ∼= (e : 1) + (b0 : bin) + (b1 : bin)

even : bin→ bool
odd : bin→ bool

even e = true
even (b0 x) = even x
even (b1 x) = odd x

odd e = false
odd (b0 x) = odd x
odd (b1 x) = even x

(i) Write a function parity with a single fixed point constructor and use
it to define even and odd. Also, state the type of your parity function
explicitly.

(ii) More generally, our simple recipe for implementing a recursively spec-
ified function using the fixed point constructor in our call-by-value
language goes from the specification

f : τ1→ τ2

f x = h f x

to the implementation

f = fix g. λx. h g x

It is easy to misread these, so remember that by our syntactic conven-
tion, h f x stands for (h f)x and similarly for h g x. Give the type of
h and show by calculation that f satisfies the given specification by
considering f v for an arbitrary value v of type τ1.

(iii) A more general, mutually recursive specification would be

f : τ1→ τ2

g : σ1→ σ2

f x = h1 f g x
g y = h2 f g y

Give the types of h1 and h2.

LECTURE NOTES TUESDAY, OCTOBER 5, 2021



Elaboration L11.15

(iv) Show how to explicitly define f and g in our language from h1 and
h2 using the fixed point constructor and verify its correctness by cal-
culation as in part (ii). You may use any other types in the language
introduced so far (pairs, unit, sums, polymorphic, and recursive types).

Exercise 3 In the language where the primitive unfold has been replaced by
pattern matching, we can define the following two functions:

Unfold : µα. τ → [µα. τ/α]τ
Unfold = λx. case x (fold x⇒ x)

Fold : [µα. τ/α]τ → µα. τ
Fold = λx. fold x

Prove that Fold and Unfold are witnessing a type isomorphism.

Exercise 4 (Validity of Elaboration) Based on the rules for elaboration in
Section 4, define a judgment Σ valid. Then prove the following theorem:

Theorem 1 If Σ valid and Σ ` P  ΣF then ΣF valid.

Exercise 5 (Internalizing Definitions) We can internalize definitions as part
of the core language. Specifically, we add

Expressions e ::= exp f : τ = e in e′

| val x = e in e′

| · · ·

where exp f : τ = e in e′ internalizes the definition of an expression variable
f with scope e′, and val x = e in e′ internalizes evaluation of e and binding
x to the resulting value with scope e′.

Extend the rules for typing and evaluation of expressions to account for
the two new constructs. Our key language properties, namely preservation,
progress, finality of values, and determinacy should hold, but you do not
need to prove them.

Exercise 6 (Mutually Dependent Definitions) In this exercise we explore
mutually dependent definitions and the phase distinction. This avoids some
of the code duplication and complexities from Exercise 2.

We would like all definitions (types, expressions, and values) in a sig-
nature to be able to refer to each other without requiring any particular
ordering. We could then write, for example

LECTURE NOTES TUESDAY, OCTOBER 5, 2021



L11.16 Elaboration

type nat = (zero : 1) + (succ : nat)
type even = (zero : 1) + (succ : odd)
type odd = () + (succ : even)

defn halfe = λn. case n ( zero · _⇒ zero · 〈 〉
| succ · n′ ⇒ succ · (halfo n′) )

defn halfo = λn. case n ( succ · n′ ⇒ halfe n′ )

eval one = halfo (succ · succ · succ · zero · 〈 〉)

decl halfe : even→ nat
decl halfo : odd→ nat

This would require either the elaboration to insert explicit fixed point ex-
pressions and types, or the expressions and types can reference each other
directly. For this exercise we assume the latter.

(i) Write a three-phase elaboration algorithm that proceeds as follows:

(1) In the first phase, we check all type definitions and type declara-
tions for validity.

(2) In the second phase, we check all the expressions to be well-typed.

(3) In the third phase we evaluate expressions as part of the eval defi-
nitions.

(ii) Define the validity condition for the signature that is the ultimate out-
come of the third phase (assuming elaboration succeeds). This should
come in the form of inference rules that are as simple as possible.

(iii) State the theorems that characterize the assumptions and outcome of
each pass so that the next pass can proceed safely. If needed, define
auxiliary judgments. The ultimate outcome should be a signature as
before, except that the signature entries now can mutually refer to each
other.

Exercise 7 (Modes for the Stepping Judgment) Verify the following mode
assignments. You only need to show the cases for function τ1→ τ2 and pairs
τ1 × τ2.

(i) e+ 7→ e′−.

(ii) e+ 7→∗ e′−.

LECTURE NOTES TUESDAY, OCTOBER 5, 2021



Elaboration L11.17

(iii) e+ value

Exercise 8 (Annotation-Free Expressions) Prove the following theorems
for annotation-free expressions e.

(i) If Γ ` e : τ and e normal, then Γ ` e⇐ τ

(ii) If Γ ` e : τ and e neutral, then Γ ` e⇒ τ

Furthermore, if e is annotation-free then

(iii) If Γ ` e⇐ τ then e normal (and Γ ` e : τ )

(iv) If Γ ` e⇒ τ then e neutral (and Γ ` e : τ )

Exercise 9 A general solution to the fact that only normal forms can be
typed without annotations is to introduce a new general piece of syntax,
(e : τ) instead of one tailored to functions only. Nevertheless, you may
restrict yourself to constructs related to function types in the answers below.

(i) Add zero, one, or more rules for checking and synthesis for the new
form of expression (e : τ)

(ii) Prove that your new version is sound with respect to typing.

(iii) Prove that if Γ ` e : τ then there is an annotated version e′ of e such
that Γ ` e′ ⇐ τ . This is a form of the completeness for bidirectional
typing.

References

[DK19] Jana Dunfield and Neel Krishnaswami. Bidirectional typing. CoRR,
abs/1908.05839, 2019.

LECTURE NOTES TUESDAY, OCTOBER 5, 2021


	Introduction
	Variadic Sums
	``Syntactic Sugar''
	Elaborating Definitions
	Algorithmic Interpretations of Rules
	Bidirectional Type-Checking

