
Lecture Notes on
Concurrency

15-814: Types and Programming Languages
Frank Pfenning

Lecture 18
Tuesday, November 9, 2021

1 Introduction

The main objective of this lecture is to start making the role of memory
explicit in a description of the dynamics of our programming language.
Towards that goal, we take several steps at the same time:

1. We introduce a translation from our source language of expressions to
an intermediate language of concurrent processes that act on (shared)
memory. The sequential semantics of our original language can be
recovered as a particular scheduling policy for concurrent processes.

2. We introduce a new collection of semantic objects that represent the
state of processes and the shared memory they operate on. The pre-
sentation is as a substructural operational semantics [Pfe04, PS09, CS09]

3. We introduce destination-passing style [CPWW02] as a particular style of
specification for the dynamics of programming languages that seems
to be particularly suitable for an explicit store.

We now start to develop the ideas in a piecemeal fashion. This lecture is
based on very recent work, at present under submission [DPP20, PP20].

2 Representing the Store

Our typing judgment for expressions is

Γ ` e : τ

LECTURE NOTES TUESDAY, NOVEMBER 9, 2021

L18.2 Concurrency

By the time we actually evaluate e, all the variables declared in Γ will have
been replaced by values v (values, because we are in a call-by-value lan-
guage, with variables for fixed point expressions representing an exception
to that rule). Evaluation of closed expressions e proceeds as

e 7→ e1 7→ e2 7→ · · · 7→ v

where v (if the computation is finite) represents the final outcome of the
evaluation. A nice property of this formulation of the dynamics is that it
does not require any semantic artifacts: we stay entirely within the language
of expressions (which include values). The K Machine from Lecture 12
introduced continuations as a first dynamic artifact.

The main dynamic artifact we care about in this lecture is a representation
of the store or memory, terms we use interchangeably. In our formulation,
cells can hold only small values W (yet to be defined) and we write

cell c0 W0, cell c1 W1, . . . , cell cn Wn

where all ci are distinct. We read cell c W as “cell c contains W” or “the
memory at address c holds W”. We will shortly generalize this further.

As an example, before we actually see how these arise, let’s consider the
representation of a list. We define

list α ∼= (nil : 1) + (cons : α× list α)

Then a list with two values v1 : τ and v2 : τ would be written as an expression

fold (cons · 〈v1, fold (cons · 〈v2, fold (nil · 〈 〉)〉)〉) : list τ

Our representation of this in memory at some initial address c0 would be

cell c8 〈 〉
cell c7 (nil · c8),
cell c6 (fold c7),
cell c5 〈a2, c6〉,
cell c4 (cons · c5),
cell c3 (fold c4),
cell c2 〈a1, c3〉,
cell c1 (cons · c2),
cell c0 (fold c1)

Here, we assume a1 is the address of v1 in memory, and a2 the address of
v2. You can see a list of length n requires 3n + 3 cells. In a lower-level
representation this could presumably be optimized by compressing the
information.

LECTURE NOTES TUESDAY, NOVEMBER 9, 2021

Concurrency L18.3

3 From Expressions to Processes

We translate expressions e to processes P . Instead of returning a value v, a
process P executes and writes the result of computation to a destination d
which is the address of a cell in memory. So we write the translation as

JeK d = P

which means that expression e translates to a process P that computes with
destination d. Given an expression

Γ ` e : τ

its translation P = JeK d will be typed as

Γ ` P :: (d : τ)

In this typing judgment we have made the destination d of the computation
explicit. But the reinterpretation does not end there: we also no longer
substitute values for the variables in Γ. Instead, we substitute addresses, so
the process P can read from memory at the addresses in Γ and must write
to the destination d (unless it does not terminate). We will also arrange
that after writing to destination d the process P will immediately terminate.
Explicitly:

c1 : τ1, . . . , cn : τn︸ ︷︷ ︸
read from

` P :: (d : τ)︸ ︷︷ ︸
write to

Because at the moment we are only interested in modeling our pure func-
tional language and not arbitrary mutation of memory, we require that all
the ci and d are distinct.

For each process P that is executing we have a semantic object

proc d P

which means that P is executing with destination d. We do not make the
cells that P may read from explicit because it would introduce unnecessary
clutter.

4 Allocation and Spawn

Given the logic explained in the preceding sections, there is a single construct
in our language of processes that accomplishes two things: (a) it allocates a

LECTURE NOTES TUESDAY, NOVEMBER 9, 2021

L18.4 Concurrency

new cell in memory, and (b) it spawns a process whose job it is to write to
this cell. We may also have a single initial cell c0 to hold the outcome of the
overall computation. We write this as

Process P ::= x← P ; Q | . . .

where the scope of x includes both P and Q. More specifically, a new
destination c is created, P is spawned with destination c, and Q can read
from c (once its value has been written. We formalize this as

C, proc d (x← P ; Q) 7→ C, proc c ([c/x]P), proc d ([c/x]Q) (c fresh)

Here C represents the remaining configuration, which includes the represen-
tation of memory and other processes that may be executing. The freshly
allocated cell at address c is uninitialized to start with. It represents a point
of synchronization between P and Q, because Q can only read from it after
P has written to it. Except for this synchronization point, P and Q can now
evolve independently.

From a typing perspective, we can see that the type of two occurrences
of the cell x must match.

Γ ` P :: (x : τ) Γ, x : τ ` Q :: (d : σ)

Γ ` x← P ; Q :: (d : σ)
cut

This rule is called cut because of this name for the corresponding logical rule
in the sequent calculus

Γ ` A Γ, A ` C
Γ ` C

cut

where A acts as a lemma in the proof of C from Γ.
The configuration is not intrinsically ordered, so the process with des-

tination d can occur anywhere in a configuration. Nevertheless, we follow
a convention writing a configuration (or part of a configuration) so that
a cell c precedes all the processes that may read from c or other cells that
contain c. Because we do not have arbitrary mutation of store there cannot
be any cycles (although we have to carefully reconsider this point when we
consider fixed point expressions).

Since all of our rules only operate locally on a small part of the configu-
ration, we generally omit C to stand for the remainder of the configuration.
But we always have to remember that we remove the part of the configura-
tion matching the left-hand side of a transition rule and then we add in the
right-hand side.

LECTURE NOTES TUESDAY, NOVEMBER 9, 2021

Concurrency L18.5

5 Copying

Before we get into the constructors and destructors for specific types in our
source language of expressions, let’s consider the translation of variables.
We write

JxK d = d← x

The intuitive meaning of the process expression d← x is that it copies the
contents of the cell at address x to address d. Thereby, this process has
written to its destination d and terminates.

cell c W, proc d (d← c) 7→ cell c W, cell d W

In this rule the cell c should have been written to already, and we just copy
its value (which is small) to d.

The typing rule just requires that c and d have the same type (otherwise
copying would violate type preservation).

Γ, c : τ ` (d← c) :: (d : τ)
id

From a logical perspective, it explains that the antecedent A entails the
succedent A in the sequent calculus, usually called the identity rule.

Γ, A ` A
id

6 The Unit Type

Recall the constructor and destructor for the unit type 1.

Expressions e ::= 〈 〉 | case e (〈 〉 ⇒ e′) | . . .

The unit element is already a small value, so it can be written directly to
memory. Our notation for this is d.〈 〉.

J〈 〉K d = d.〈 〉
proc d (d.〈 〉) 7→ cell d 〈 〉

Γ ` d.〈 〉 :: (d : 1)
1R

LECTURE NOTES TUESDAY, NOVEMBER 9, 2021

L18.6 Concurrency

The way we evaluate case e (〈 〉 ⇒ e′) is to first evaluate e and then match
the resulting value against the pattern 〈 〉. Actually, we know by typing this
will be the only possibility.

Jcase e (〈 〉 ⇒ e′)K d = x← JeKx ;
case x (〈 〉 ⇒ Je′K d)

Note here how the process executing JeKx will write to a fresh destination
c (substituted for x) and the case c destructor will read the value of c from
memory when it becomes available. We then continue with the evaluation
of e′ to fill the original destination d.

cell c 〈 〉, proc d (case c (〈 〉 ⇒ P)) 7→ cell c 〈 〉, proc d P

We see here that we need to replicate the cell c that we read on the right-hand
side of the rule because there may be other processes that may want to read
c. Because this is a frequent pattern, we mark cells that have a value as
persistent by writing !cell c W . It means this object, once created, persists
from then on. In particular, if it occurs on the left-hand side of a transition
rule it is not removed from the configuration. We now rewrite our rules with
this notation:

proc d (d.〈 〉) 7→ !cell d 〈 〉
!cell c 〈 〉, proc d (case c (〈 〉 ⇒ P)) 7→ proc d P

The typing rule for this case construct is straightforward.

c : 1 ∈ Γ Γ ` P :: (d : τ)

Γ ` case c (〈 〉 ⇒ P) :: (d : τ)
1L

We name these rules 1R (the type 1 occurring in the succedent) and 1L (the
type 1 occurring among the antecedents) according to the traditions of the
sequent calculus.

7 Eager Pairs

Eager pairs are another positive type and therefore quite analogous to the
unit type. To evaluate an eager pair 〈e1, e2〉 we have to evaluate e1 and e2
and then form the pair of their values. The corresponding process J〈e1, e2〉K d
allocates two new destinations, d1 and d2 and launches two new processes,
one to compute and write the value of e1 to d1 and the other to write the
value of e2 to d2. Without waiting for these two finish, we already can form
the pair 〈d1, d2〉 and write it to the original destination d.

LECTURE NOTES TUESDAY, NOVEMBER 9, 2021

Concurrency L18.7

J〈e1, e2〉K d = x1 ← Je1K d1 ;
x2 ← Je2K d2 ;
d.〈x1, x2〉

There is a lot of parallelism in this translation: not only can the translations
of e1 and e2 can proceed in parallel (without possibility of interference),
but any process waiting for a value in the cell d will be able to proceed
immediately, before either of these two finish. In the previously introduced
parallel pairs1 the synchronization point is earlier, namely when the pair of
the values of e1 and e2 is formed.

Jcase e (〈x1, x2〉 ⇒ e′)K d = x← JeKx ;
case x (〈x1, x2〉 ⇒ Je′K d)

In the rule just above we note that the occurrences of x1 and x2 in e′ will be
translated using the rule for variables.

The new process construct d.〈c1, c2〉 simply writes the pair 〈c1, c2〉 to
destination d and case reads the pair from memory and matches it against
the pattern 〈x1, x2〉.

proc c (c.〈c1, c2〉) 7→ !cell c 〈c1, c2〉
!cell c 〈c1, c2〉, proc d (case c (〈x1, x2〉 ⇒ P)) 7→ proc d ([c1/x1, c2/x2]P)

Typing rules generalize the unit types in interesting ways. We start with
d.〈d1, d2〉. This writes to d, which must therefore have type τ1 × τ2. It must
be able to read destinations d1 and d2 which must have types τ1 and τ2,
respectively.

c1 : τ1 ∈ Γ c2 : τ2 ∈ Γ

Γ ` d.〈c1, c2〉 :: (d : τ1 × τ2)
×R0

We use the superscript 0 because this is a nonstandard rule—the usual rule of
the sequent calculus has 2 premises, while this rule only checks membership
in the typing context. Note that c1 and c2 could be equal if τ1 = τ2.

The rule for the new case construct mirrors the usual rule for expressions,
but using destinations.

c : τ1 × τ2 ∈ Γ Γ, x1 : τ1, x2 : τ2 ` P :: (d : σ)

Γ ` case c (〈x1, x2〉 ⇒ P) :: (d : σ)
×L

1in the midterm exam

LECTURE NOTES TUESDAY, NOVEMBER 9, 2021

L18.8 Concurrency

We close this section with the corresponding logical rules.

Γ ` 1
1R0

1 ∈ Γ Γ ` C
Γ ` C

1L

A,B ∈ Γ

Γ ` A×B
×R0

A×B ∈ Γ Γ, A,B ` C
Γ ` C

×L

All the types considered in this lecture are positive types, so they are “eager”
in the sense that a value only contains other values and that the destructors
are case constructs.

8 Summary

Since we have changed our notation a few times, we summarize the transla-
tion and the transition rules.

JxK d = d← x

J〈 〉K d = d.〈 〉
Jcase e (〈 〉 ⇒ e′)K d = d1 ← JeK d1 ;

case d1 (〈 〉 ⇒ Je′K d)

J〈e1, e2〉K d = d1 ← Je1K d1 ;
d2 ← Je2K d2 ;
d.〈d1, d2〉

Jcase e0 (〈x1, x2〉 ⇒ e′)K d = d0 ← Je0K d0 ;
case d0 (〈x1, x2〉 ⇒ Je′K d)

proc d′ (x← P ; Q) 7→ proc d ([d/x]P), proc d′ ([d/x]Q) (d fresh)
(alloc/spawn)

!cell c W, proc d (d← c), 7→ cell d W (copy)

proc d (d.〈 〉), 7→ !cell d 〈 〉 (1R0)
!cell c 〈 〉, proc d (case c (〈 〉 ⇒ P)) 7→ proc d P (1L)

proc d (d.〈c1, c2〉), 7→ !cell d 〈c1, c2〉 (×R0)
!cell c 〈c1, c2〉, proc d (case c (〈x1, x2〉 ⇒ P)) 7→ proc d ([c1/x1, c2/x2]P) (×L)

LECTURE NOTES TUESDAY, NOVEMBER 9, 2021

Concurrency L18.9

9 Streamlining the Positive Types

In the presentation of this lecture we notice commonality between the cases
and we can refactor it so all positive (eager) types are treated uniformly. We
define (omitting ∃α. τ for simplicity):

Positive types τ ::= 1 | τ1 × τ2 |
∑

i∈I(i : τi) | µα. τ
Small values V ::= 〈 〉 | 〈a1, a2〉 | i · a | fold a
Continuations K ::= (〈 〉 ⇒ P) | (〈x1, x2〉 ⇒ P) | (i · xi ⇒ Pi)i∈I | (fold x⇒ P)
Processes P ::= x← P ; Q (allocate/spawn)

| c← d (copy)
| d.V (write)
| case c K (read/match)

Configurations C ::= proc d P | !cell c V | · | C1, C2

We only have four transition rules for configurations, in addition to explain-
ing how values are matched against continuations.

proc d (x← P ; Q) 7→ proc c ([c/x]P), proc d ([c/x]Q)
!cell c V, proc d (d← c) 7→ !cell d V

proc d (d.V) 7→ !cell d V
!cell c V, proc d (case c K) 7→ proc d (V . K)

〈 〉 . (〈 〉 ⇒ P) = P
〈c1, c2〉 . (〈x1, x2〉 ⇒ P) = [c1/x1, c2/x2]P
k · c . (i · xi ⇒ Pi)i∈I = [c/xk]Pk

fold c . (fold x⇒ P) = [c/x]P

10 Example: Writing a Value

A closed value in the our language of expressions is translated to a program
that will create a representation of this value in memory. As such, memory
and the contents of the its cells is observable since it represents the outcome
of the computation. As an example, consider

bin = µbin. (b0 : bin) + (b1 : bin) + (e : bin)
one = fold b1 · fold e · 〈 〉

We work out the translation of JoneK in stages.

LECTURE NOTES TUESDAY, NOVEMBER 9, 2021

L18.10 Concurrency

JoneK c0 = x1 ← Jb1 · fold e · 〈 〉Kx1 ;
x0.(fold b1)

= x1 ← (x2 ← Jfold e · 〈 〉Kx2 ;
x1.(b1 · x2)) ;

c0.(fold x1)

= x1 ← (x2 ← (x3 ← Je · 〈 〉Kx3 ;
x2.(fold x3)) ;

x1.(b1 · x2)) ;
c0.(fold x1)

= x1 ← (x2 ← (x3 ← (x4 ← J〈 〉Kx4 ;
x3.(e · x4)) ;

x2.(fold x3)) ;
x1.(b1 · x2)) ;

c0.(fold x1)

= x1 ← (x2 ← (x3 ← (x4 ← x4.〈 〉 ;
x3.(e · x4)) ;

x2.(fold x3)) ;
x1.(b1 · x2)) ;

c0.(fold x1)

This program will allocate four fresh cells, say, c1, . . . , c4, for x1, . . . , x4 and
fill them with the indicated small values, in no particular order. The resulting
final configuration will be

proc c0 (JoneK c0)
7→∗ !cell c4 〈 〉, !cell c3 (e · c4), !cell c2 (fold · c3), !cell c1 (b1 · c2), !cell c0 (fold · c1)

The following law of associativity (not justified here, because we do not
have a simple theory of process equivalence) allows us to rewrite this process
into a more readable form. In order to apply the equivalence, some restric-
tions need to be placed on variable occurrences, so we indicate permissible
references to variables for each process in parentheses.

x← (y ← P (y) ; Q(x, y)) ; R(x) ≡ y ← P (y) ; (x← Q(x, y) ; R(x))

Applying this multiple times to re-associate the cuts to the left we get

JoneK c0 = x4 ← x4.〈 〉 ;
x3 ← x3.(e · x4) ;
x2 ← x2.(fold x3) ;
x1 ← x1.(b1 · x2) ;
c0.(fold x1)

LECTURE NOTES TUESDAY, NOVEMBER 9, 2021

Concurrency L18.11

11 Example: Reversing a Pair

Another example that also involves reading from memory is a small program

p : τ × σ ` case p (〈x, y〉 ⇒ 〈y, x〉) : σ × τ

Let’s translate the expression to a process:

Jcase p (〈x, y〉 ⇒ 〈y, x〉)K d0 = d1 ← JpK d1 ;
case d1 (〈x, y〉 ⇒K〈y, x〉K d0)

= d1 ← (d1 ← p) ;
case d1 (〈x, y〉 ⇒ d2 ← JyK d2 ;

d3 ← JxK d3 ;
d0.〈d2, d3〉)

= d1 ← (d1 ← p) ;
case d1 (〈x, y〉 ⇒ d2 ← (d2 ← y) ;

d3 ← (d3 ← x) ;
d0.〈d2, d3〉)

At this point we have completed the translation and we can notice some
redundancy: this code will allocate three new cells (d1, d2, and d3) and copy
the contents of p, y, and x into them. We can consider optimizing the pattern

x← (x← c) ; P [c/x]P

We would then obtain

Jcase p (〈x, y〉 ⇒ 〈y, x〉)K d0 case p (〈x, y〉 ⇒ d0.〈y, x〉)

which is a simple and intuitive translation of the original expression, given
that the destination of it operation is d0: we read the addresses of the
components from the cell p and write them into d0 in the opposite order.

How can we justify this optimization? We can trace the execution of
both sides and compare the results.

proc d (x← (x← c) ; P)
7→ proc a (a← c), proc d [a/x]P

At this point we are a stuck become proc a (a← c) cannot proceed until the
cell c has been written. If it has, we obtain

!cell c W, proc d (x← (x← c) ; P)
7→ !cell c W, proc a (a← c), proc d [a/x]P
7→ !cell c W, !cell a W, proc d [a/x]P

LECTURE NOTES TUESDAY, NOVEMBER 9, 2021

L18.12 Concurrency

versus the right-hand side

!cell c W, proc d [c/x]P

Intuitively, these two should be equivalent: P cannot depend on the actual
address of a or c, only on what the cell contains, which is W in both cases.
This is a simple form of a parametricity result: for any relation R between
the names that respects cell contents in a configuration, processes related
by R will produce related final configurations. For this to apply we would
also have to somehow know that it is okay to assume that the cell c has
already been written to. This looks like a form of bisimulation between
the computation of the two configurations would be required. We do not
develop such a theory here further.

12 Preservation and Progress

We postpone a discussion of preservation and progress until the next lecture,
when we develop a more complete picture of how to type configuration.

References

[CPWW02] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin
Watkins. A concurrent logical framework II: Examples and
applications. Technical Report CMU-CS-02-102, Department of
Computer Science, Carnegie Mellon University, 2002. Revised
May 2003.

[CS09] Iliano Cervesato and Andre Scedrov. Relating state-based and
process-based concurrency through linear logic. Information and
Computation, 207(10):1044–1077, October 2009.

[DPP20] Henry DeYoung, Frank Pfenning, and Klaas Pruiksma. Semi-
axiomatic sequent calculus. In Z. Ariola, editor, 5th International
Conference on Formal Structures for Computation and Deduction
(FSCD 2020), pages 29:1–29:22, Paris, France, June 2020. LIPIcs
167.

[Pfe04] Frank Pfenning. Substructural operational semantics and linear
destination-passing style. In W.-N. Chin, editor, Proceedings of
the 2nd Asian Symposium on Programming Languages and Systems

LECTURE NOTES TUESDAY, NOVEMBER 9, 2021

Concurrency L18.13

(APLAS’04), page 196, Taipei, Taiwan, November 2004. Springer-
Verlag LNCS 3302. Abstract of invited talk.

[PP20] Klaas Pruiksma and Frank Pfenning. Back to futures. CoRR,
abs/2002.04607, February 2020.

[PS09] Frank Pfenning and Robert J. Simmons. Substructural opera-
tional semantics as ordered logic programming. In Proceedings
of the 24th Annual Symposium on Logic in Computer Science (LICS
2009), pages 101–110, Los Angeles, California, August 2009.
IEEE Computer Society Press.

LECTURE NOTES TUESDAY, NOVEMBER 9, 2021

	Introduction
	Representing the Store
	From Expressions to Processes
	Allocation and Spawn
	Copying
	The Unit Type
	Eager Pairs
	Summary
	Streamlining the Positive Types
	Example: Writing a Value
	Example: Reversing a Pair
	Preservation and Progress

