
Lecture Notes on
Message-Passing Concurrency

15-814: Types and Programming Languages
Frank Pfenning

Lecture 20
Tuesday, November 16, 2021

1 Introduction

In this lecture we first write another programming using shared memory
concurrency, namely the commonly used mapreduce, and identify the par-
allelism inherent in it. We observe that this program also has a natural
message-passing interpretation, so we consider an alternative dynamics for
our concurrent language based on sending and receiving messages along
channels instead of writing to and reading from memory cells.

2 Simple Functions1

We want to define a process

curry : ((τ × σ)→ ρ)→ (τ → (σ→ ρ))

Its implementation will immediately write a continuation to memory.

JcurryK d = case dW (〈f, g〉 ⇒)

So the real essence of this function is in the continuation

Kcurry = (〈f, g〉 ⇒ P)

where P reads from f : (τ×σ)→ρ and writes to g : τ→(σ→ρ). The result is
immediately a λ-expression, which means that as a process we write another
continuation to memory.

1This section not covered in lecture

LECTURE NOTES TUESDAY, NOVEMBER 16, 2021

L20.2 Message-Passing Concurrency

Kcurry = (〈f, g〉 ⇒ case gW (〈x, h〉 ⇒))

Here x : τ , the argument to g. Again, we write a function, this time one that
takes y : σ and a destination r : ρ for the final result.

Kcurry = (〈f, g〉 ⇒ case gW (〈x, h〉 ⇒ case hW (〈y, r〉 ⇒)))

At this point we have x and y in hand, so we can pair them up and pass the
pair to f . But, wait! We cannot actually construct a pair and pass it. Instead,
we need to allocate a cell to hold the pair 〈x, y〉 and pass its address p to g.
In addition, we also have to pass an address as the destination of f , but that
is just r. That is:

Kcurry = 〈f, g〉 ⇒ case gW (〈x, h〉 ⇒ case hW (〈y, r〉 ⇒
p← pW .〈x, y〉 ;
fR.〈p, r〉))

Similarly, we start for a function in the other direction:

Kuncurry : (τ → (σ→ ρ))→ ((τ × σ)→ ρ)

Kuncurry = 〈g, f〉 ⇒ case fw (〈p, r〉 ⇒)

Now we have p : τ ×σ and the destination r : ρ. We read out the component
from the cell at address p.

Kuncurry = 〈g, f〉 ⇒ case fw (〈p, r〉 ⇒ case pR (〈x, y〉 ⇒))

Now we need to pass x : τ to g, but we also need a destination. The one we
have (r : ρ) does not work, so we need to allocate a new one, call it h.

Kuncurry = 〈g, f〉 ⇒ case fw (〈p, r〉 ⇒ case pR (〈x, y〉 ⇒
h← gR.〈x, h〉 ;

))

At this point we can just read the function at h : σ→ ρ and pass it y : σ and
the destination r : ρ.

Kuncurry = 〈g, f〉 ⇒ case fw (〈p, r〉 ⇒ case pR (〈x, y〉 ⇒
h← gR.〈x, h〉 ;
hR.〈y, r〉))

Neither of these processes has much intrinsic concurrency, but the argu-
ments, for example, to f and g are addresses, and the value to be stored at
these addresses may not yet have been written. We can see that neither x nor
y are read by these functions, just passed through. As mentioned previously,
this is the characteristic of futures.

LECTURE NOTES TUESDAY, NOVEMBER 16, 2021

Message-Passing Concurrency L20.3

3 Map/Reduce

As an example with significant concurrency we consider the popular mapreduce.
We use a function f to map over a tree, reducing it to a value. In many ap-
plications the tree may not be explicit, but emerge dynamically from the
way the data are distributed. As a consequence we require our function f
to be associative and have a unit z, which may stand in for the absence of
data. See Exercise 3 for a version using shrubs2. We define tree as a family
of types, indexed by the type of element, even though we have not formally
introduced this into our language.

tree α = µt. (node : t× α× t) + (leaf : 1)

We can picture the action of mapreduce as an iteration over this kind of tree.
We supply a function f to “replace” every node and constant z to stand in
for every leaf, as pictured in green in the image below.

We can read off the type

mapreduce : [∀α.∀β.] (β × α× β→ β)× β × tree α→ β

As before, we imagine a cell !cell mapreduce Kmapreduce and define Kmapreduce.
We have put the type quantifiers on α and β in brackets because we haven’t
explicitly considered how to handle these in our concurrent language. In-
stead, we think of mapreduce as a family of functions indexed by α and
β.

Kmapreduce = 〈〈f, z, t〉, y〉 ⇒

Here we have f : β × α × β→ β, z : β, and t : tree α, with the destination
y : β. We have taken a small shortcut here by using pattern matching: in
fully official syntax, the right-hand side would start as

2which we actually covered in lecture

LECTURE NOTES TUESDAY, NOVEMBER 16, 2021

L20.4 Message-Passing Concurrency

Kmapreduce = 〈p, y〉 ⇒ case p (〈f, q〉 ⇒ case q (〈z, t〉 ⇒))

but this is more verbose and more difficult to read. Back to the previous
version. We start with a case analysis over t: is it a leaf or a node? If it is a
leaf, we just copy z to the destination y.

Kmapreduce = 〈〈f, z, t〉, y〉 ⇒
case tR (leaf · 〈 〉 ⇒ yW ← zR

| node · 〈l, x, r〉 ⇒)

Here, l is the address of the left subtree, x is the element at the node, and
r is the address of the right subtree. Now we need to make two recursive
calls, on the left and right subtrees. In order to make these calls we need to
allocate two new cells y1 and y2 to receive the values of these calls and pass
them as destinations.

Kmapreduce = 〈〈f, z, t〉, y〉 ⇒
case tR (leaf · 〈 〉 ⇒ yW ← zR

| node · 〈l, x, r〉 ⇒
y1 ← mapreduceR.〈〈f, z, l〉, y1〉 ;

y2 ← mapreduceR.〈〈f, z, r〉, y2〉 ;

)

Note that these two recursive calls proceed concurrently. Finally, we have to
invoke the function f on the results from these recursive calls and x, and
pass the result to y.

Kmapreduce = 〈〈f, z, t〉, y〉 ⇒
case tR (leaf · 〈 〉 ⇒ yW ← zR

| node · 〈l, x, r〉 ⇒
y1 ← mapreduceR.〈〈f, z, l〉, y1〉 ;

y2 ← mapreduceR.〈〈f, z, r〉, y2〉 ;
fR.〈〈y1, x, y2〉, y〉)

Again, we have used a short-hand here. In official syntax we have to allocate
pairs to hold the first argument to f , so the last line would expand to:

p1 ← pW1 .〈x, y2〉 ;
p2 ← pW2 .〈y1, p1〉 ;
fR.〈p2, y〉

LECTURE NOTES TUESDAY, NOVEMBER 16, 2021

Message-Passing Concurrency L20.5

In any case, we can see that no synchronization on y1 or y2 occurs until the
function f actually needs their values.

How much parallelism do we have here? Certainly, the two recursive
calls to mapreduce can proceed in parallel. With fork/join parallelism we
would then have to synchronize and form the triple from the results before
calling f . With the futures-based parallelism [?] in our language we don’t
have wait to form the pair, which means that the computation of f can
proceed in parallel with the two recursive calls. Depending on the nature of
f , this could mean some asymptotic improvement of the parallel complexity
of an algorithm [?].

4 Recovering Sequentiality3

Originally, we thought of our concurrent process language as the result
of translating our expression language LAMBDA. However, the result of
the translation behaves significantly differently from the source due the
pervasive concurrency.

We could just say that we schedule the different processes for taking
step in a way that exactly mimics left-to-right sequential execution. Or
we can manipulate the translation to enforce sequentiality. Since only cut
(an allocate followed by a spawn) creates a new thread of control, this is
our main lever to work with. For example, we could have a sequential cut
x⇐ P ;Q which runs P to completion before starting Q. Its semantics might
be:

proc d (x⇐ P ;Q) 7→ proc c ([c/x]P), susp c d ([c/x]Q)

with a new semantics object wait with the rule

!cell c W, susp c d Q 7→ proc d Q

where the new semantic object susp c d Q represents a suspected process,
waiting for the cell c to be written to. Since writing to c is the last action of
a process with destination c, this will prevent Q from computing until P
has finished. Moreover, Q will never have to synchronize on c because it is
guaranteed to have already been written to.

It is then easy to prove, by induction on transition sequences, that there
is at most one (unsuspended) process in a configuration if we start with just
one process. Also, the concurrent semantics can simulate the sequential one
by always making particular choices, but not the other way around.

3Bonus material not covered in lecture

LECTURE NOTES TUESDAY, NOVEMBER 16, 2021

L20.6 Message-Passing Concurrency

In a language with both sequential and concurrent cut we can work
mostly sequentially and occasionally spawn a process to run concurrently.
This is the idea behind futures where the expression future e immediately
returns a destination d that the evaluation of e eventually writes to. Attempts
to read the future will block until the value has been written.

5 Message-Passing Concurrency

The map/reduce example, and also the bit-flipping example from Lecture 19
suggest also a message-passing interpretation. For example, in the bit-flipping
example each of the two processes receives a stream of bits and sends a
stream of bits. In the map/reduce example each node in the tree receives
results from the recursive calls, combines them, and passes them up the tree.
That raises the question on how message-passing is distinguished from our
form of write-once shared memory (also called futures).

Recall that in our language (ignoring polymorphism) we have

Small values V ::= 〈 〉 | 〈a1, a2〉 | j · a | fold a

Continuations K ::= (〈 〉 ⇒ P) | (〈x1, x2〉 ⇒ P) | (i · xi ⇒ Pi)i∈I | (fold x⇒ P)

Processes P ::= x← P ; Q | x← y
| xW .V | case xR K (1,×,+, µ)
| xR.V | case xW K (→,N)

Dynamic Objects C ::= !cell a V (1,×,+, µ)
| !cell a K (→,N)
| proc a P
| (·)
| (C1, C2)

We see a clear reflection of the duality between values and continuation
and positive (1,×,+, µ) and negative (→,N) types. Here, it is reasonable to
have continuations in cells the code for the continuation may be represented
by an address in memory to jump to to execute it. Because these defined
functions are shared between the threads in the same address space, this
does not present an issue (even though, ultimately, avoiding substitution in
favor of building environments and closures does).

For message-passing concurrency we would like to never pass a contin-
uation. Because it contains references to other process definitions, and those
again to other definitions, etc. it is well-known problem in the implementa-
tion of languages with message-passing concurrency that we may have to

LECTURE NOTES TUESDAY, NOVEMBER 16, 2021

http://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/19-negatives.pdf

Message-Passing Concurrency L20.7

“send the world”, which is not a reasonable operation. So instead of sending
a function and applying it to arguments where it is received, we keep in
place and send it its arguments. In this manner, we can keep all messages to
be small values V . And at runtime we have communication channels instead of
(abstract) addresses. Under this interpretation, in a first pass, we have the
following set of semantic objects:

proc P — process P (omitting the destination)

msg a V — message V on channel a

srv a K — service K waiting to receive a message on channel a

It turns out some of these should be persistent, but let’s first consider the
fundamental rule of interaction:

msg a V, srv a K 7→ proc (V . K)

where V . K = P passes a value to a continuation and returns a process
(see Lecture 18.9). In addition we can hypothesize the following simple
rules (postponing the case of a process a← c for now):

proc (x← P ; Q) 7→ proc [a/x]P, proc [a/x]Q (a fresh)

proc (a.V) 7→ msg a V
proc (case a K) 7→ srv a K

However, we need to differentiate these further depending on the polarity
of the type. When a process is typed as

x1 : τ1, . . . , xn : τn︸ ︷︷ ︸
client of channels xi

` P :: (y : σ)︸ ︷︷ ︸
providing channel y

we see some asymmetry in the definition. Just like previously an address
may have many readers but only one writer, now a channel has one provider
but potentially many clients. This means a message sent by P along y may
need to be received by multiple clients and therefore must be persistent.
This is the case for positive types σ. Conversely, a message send by P along
some xi has a unique recipient (the provider of xi) and should therefore be
ephemeral and be consumed when it is received. This is the case for negative
types τi. If we annotate channels with ()+ if they are of positive type and

LECTURE NOTES TUESDAY, NOVEMBER 16, 2021

http://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/18-concurrency.pdf

L20.8 Message-Passing Concurrency

()− if they are of negative type, we then obtain the following rules (omitting
the cases for a← c for the moment)

proc (x← P ; Q) 7→ proc [a/x]P, proc [a/x]Q (a fresh)

proc (a+.V) 7→ !msg a+ V
proc (case a+ K) 7→ srv a− K

proc (a−.V) 7→ msg a− V
proc (case a− K) 7→ !srv a− K

!msg a+ V, srv a+ K 7→ proc (V . K)
!srv a− K,msg a− V 7→ proc (V . K)

Under shared memory interpretation, the process of proc a (aW ← cR) just
copies the content of cell c to a. When this contents is a small value V the
corresponding construct is a service to forward a message from channel c to
a. When this contents is a continuation K the corresponding construct is a
message that causes the service on channel a to be replicated on channel c.

proc (a+ ← c+) 7→ srv c+ a+

!msg c+ V, srv c+ a+ 7→ !msg a+ V

proc (a− ← c−) 7→ msg a− c−

!srv a− K,msg a− c− 7→ !srv c− K

For most constructs it is now relatively straightforward to establish a bisim-
ulation relation R. We annotate the channels with read/write mode for
shared memory and their polarity for message-passing.

proc d P R proc P

!cell c V R !msg c+ V
!cell c K R !srv c− K

proc d (cR.V) R msg c− V
proc d (case cR K) R srv c+ K

proc d (dW ← cW) R srv c+ d+

proc d (dW ← cW) R msg d− c−

In the last two cases the translation depends on the polarity of the type for d
and c (which must be the same). This relation induces a clear and simple
correspondence on the configurations.

Then the relation between the steps is very simple: every step on the
shared memory side corresponds to one or two steps on the message passing

LECTURE NOTES TUESDAY, NOVEMBER 16, 2021

Message-Passing Concurrency L20.9

side. The extra step is induced by the read operations, because in messsage-
passing these reads take an extra step to become either a service (positive
types) or a message (negative types). Similarly, an extra step is required for
the copying operations because the copying process must become a message
or a service.

Conversely, some steps on the message-passing side are the identity on
the shared memory side, following the same reasoning as above.

Shared memory configurations are final when they consist only of cells.
Correspondingly, message-passing configurations are final when they con-
sist only of persistent messages and services. On final configuration, our
intuitive notion of observability derived from our functional language also
coincide, namely, we can observe cells with small values on the shared
memory side and (positive and hence persistent) messages on the message-
passing side.

We conclude that the same source language can be given coherent inter-
pretations either using shared memory or message-passing in the semantics.

6 Example: A Nor Gate

Because we did not have to change our source language, just the dynamics,
the same programs we wrote for shared memory will still be type-correct—
they just have different behavior. As a new example we consider a nor gate
and an or gate built from it, but with a slightly different representation of bit
streams from before. We specify:

bit = (b0 : 1) + (b1 : 1)
bits = bit× bits
bits2 = (bit× bit)× bits2

In our functional language, bits and bits2 would be empty types; here in
the concurrent message-passing setting we don’t worry about this. Also,
we interpret the types equirecursively in order to avoid unnecessary fold
messages.

We specify a process client to channels xi : τi and providing y : σ
with x1 : τ1, . . . , xn : τn ` p :: (y : σ). We define it with the notation
y ← p x1 . . . xn = P , recorded in a global signature Σ. We invoke p with the
process expression b← p a1 . . . an with the typing rule

x1 : τ1, . . . , xn : τn ` p :: (y : σ) ∈ Σ ai : τi ∈ Γ (for all 1 ≤ i ≤ n)

Γ ` b← p a1 . . . an :: (b : σ)
call

LECTURE NOTES TUESDAY, NOVEMBER 16, 2021

L20.10 Message-Passing Concurrency

Dynamically, we just substitute the concrete channels for the variables in
the process definition. We abbreviate sequence of channels and variables
with a and x.

proc (b← p a) 7→ proc ([a/x, b/y]P) for y ← p x = P ∈ Σ

A nor of two bits now becomes

bit = (b0 : 1) + (b1 : 1)

x : bit, y : bit ` nor :: (z : bit)
z ← norx y = case x (b0 · x′ ⇒ case y (b0 · y′ ⇒ z′ ← z′.〈 〉 ; z.(b1 · z′)

| b1 · x′ ⇒ z′ ← z′.〈 〉 ; z.(b0 · z′))
| b1 · x′ ⇒ case y (b0 · y′ ⇒ z′ ← z′.〈 〉 ; z.(b0 · z′)

| b1 · x′ ⇒ z′ ← z′.〈 〉 ; z.(b0 · z′)))

Here, the continuation channels x′ and y′ are an artifact of our representation.
They must carry the value 〈 〉 of type 1. We could use either one of them when
we send a message along the output channel z but we chose to generate a
fresh channel z′ in order to maintain symmetry. It will also help is in the
next lecture when we consider (clock-based) timing of communication.

In order to transform a stream of pairs of bits into a stream of outputs
we call the nor gate on each pair of inputs.

bit = (b0 : 1) + (b1 : 1)
x : bit, y : bit ` nor :: (z : bit)

bits = bit× bits
bits2 = (bit× bit)× bits2

in : bits2 ` nors :: (out : bits)
out← nors in =

case in (〈〈x, y〉, in′〉 ⇒ out′ ← nors in′ ;
z′ ← nor x y ;
out.〈z′, out’〉)

We have taken a small liberty where we match directly against the pair 〈x, y〉
instead of using two nested case expressions.

A more complicated example is a latch which can serve as a form of

LECTURE NOTES TUESDAY, NOVEMBER 16, 2021

Message-Passing Concurrency L20.11

storage for a bit. It feeds outputs back into inputs.

We assume (in a way that is certainly not accurate with respect to hardware)
that after inputs are available are one clock cycle we obtain the output (say,
of a nor gate). Therefore, to represent a latch we assume we have some
initial values of the outputs q, q and generate new values for them in one
cycle.

q : bit, q : bit, in : bits2 ` latch :: (out : bits2)
out← latch q q in =

case in (〈〈r, s〉, in’〉 ⇒ q′ ← nor r q ;
q′ ← nor s q ;
out′ ← latch q′ q′ out
out.〈〈q′, q′〉, out’〉)

Now we can simulate the behavior of the latch and make some interesting
observations. Note that q and q are supposed to carry complementary values.
Then if r and s are both b0 then q and q retain their value. If we reset with
a b1 on the R channel and b0 on the S channel, then q becomes b0 and q
becomes b1. Conversely, if we set with b1 on S and b0 on R then q becomes
b1 and q becomes b0. However, there is a delay of one cycle for the set or
reset to take effect. Below is a simulation with each line representing one

LECTURE NOTES TUESDAY, NOVEMBER 16, 2021

L20.12 Message-Passing Concurrency

time step.

t Q Q R S Q′ Q
′ note

0 1 0 0 0 1 0 initial
1 1 0 0 0 1 0 stable
2 1 0 1 0 0 0 reset; intermediate state
3 0 0 1 0 0 1 stabilized
4 0 1 0 0 0 1 stable
5 0 1 0 0 0 1 stable
6 0 1 0 1 0 0 set; intermediate state
7 0 0 0 1 1 0 stabilized
8 0 1 0 0 1 0 stable

Note that a state where both R and S are b1 is disallowed. You might want
to play through what happens in this case. Also note that the set and reset
bits on R and S need to be in effect for at least two cycles and go back to b0
before the next set or reset signal arrives.

For more information, see SR NOR latch, for example, on the Wikipedia
page flip-flop.

Exercises

Exercise 1 Consider the translation

Jfix f. eK d = case dW (〈x, y〉 ⇒ [d/f]JeK y)

in which d is written to but also (potentially) read from in the translation of
[d/f]JeK y. Execution of this process may therefore create circular references
in the configuration.

(i) Give an example where the translation behaves incorrectly with respect
to the dynamics of the expression fix f. e in LAMBDA.

(ii) Give an example where circular references arise but behave correctly
with respect to the dynamics in the source.

(iii) From your examples, conjecture a restriction of the general translation
so the result behaves correctly.

(iv) Devise new typing rules for processes and configurations such that (a)
the translation above is well-typed, as a process, and (b) the typing of
configurations is preserved by transitions, and (c) the progress theorem

LECTURE NOTES TUESDAY, NOVEMBER 16, 2021

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

Message-Passing Concurrency L20.13

continues to be true. You do not need to prove these properties, but it
may be helpful to sketch the proof to yourself to make sure your rules
are correct.

Exercise 2 When translating functional fixed point expression to recursively
defined processes, we need to account for the fact that processes may be
invoked in multiple places with different destinations. We there introduce
the notation x. P for a process with variable destination x and (x. P)(d) for
its instantiation to a particular destination. We then translate:

Jfix f. eK d = (x. rec f. JeKx)(d)
where JfK c = f(c) for every occurrence of f in e.

We also extend the dynamics with the rule

proc d ((x. rec f. P)(d)) 7→ proc d ([(x. rec f. P)/f][d/x]P)

(i) Give typing rules for the new forms of processes.

(ii) Provide an implementation of the flip process using this representation
of recursion.

(iii) Illustrate the key transition steps in the computation of flip, showing
the plausibility of this translation.

Exercise 3 Consider the type of tree where the information is kept only in
the leaves:

shrub α = µt. (branch : t× t) + (bud : α)

(i) Write a version of mapreduce that operates on shrubs and exhibits
analogous concurrent behavior. You may use similar shortcuts to the
ones we used in our implementation.

(ii) Write processes forth and back to translate between trees and shrubs
while preserving the elements. Do they form an isomorphism? If not,
do you see a simple modification to restore an isomorphism?

Exercise 4 The sequential execution in Section 4 is eager in the sense that in
x⇐ P ; Q, P completes by writing to x before Q starts.

A lazy version, x ↼ P ; Q would immediately start Q and suspend
P until Q (or some process spawned by it) would try to read from x. We
would still like it to be sequential in the sense that at most one process can
take a step at any time.

LECTURE NOTES TUESDAY, NOVEMBER 16, 2021

L20.14 Message-Passing Concurrency

Devise a semantics for x ↼ P ; Q that exhibits the desired lazy behavior
while remaining sequential. You may introduce new semantic objects or
apply some transformation to P and/or Q, but you should strive for the
simplest, most elegant solution to keep the dynamics simple.

LECTURE NOTES TUESDAY, NOVEMBER 16, 2021

	Introduction
	Simple Functions
	Map/Reduce
	Recovering Sequentiality
	Message-Passing Concurrency
	Example: A Nor Gate

