
Lecture Notes on
Temporal Types and Propositions

15-814: Types and Programming Languages
Frank Pfenning

Lecture 21
Thursday, November 18, 2021

1 Introduction

In the last lecture we introduced message-passing concurrency and wrote a
couple of very simple circuits. One can also write other kinds of programs,
for example, a concurrent implementation of queues or other data structures
like trees. For this lecture, we continue to focus on circuits.

The goal is for an extension of the type system to ensure that the circuits
are well-timed. In other words, a timing error should be manifest as a type
error. This is the subject of ongoing research, so what we show in is this
lecture is a simple model of clocked time with a simple model for the timing
of gates (essentially, taking one unit of time).

This time, we start with a discussion of (probably the simplest possible)
temporal logic and derive an extension of our process calculus from it.

2 Simplest Temporal Logic = Modal Logic K

The basic idea is that we have a new proposition©A that expresses that A
will be true at the next (discrete) point in time. Or we could say it should be
true after one tick of the clock. Obviously,©©A then means that A should
be true after two ticks. What laws should ©A satisfy? Certainly, if A is
necessarily true, that is, its truth is independent of time, then©A should be
true. For example, we should have©(A⊃A). This is captured with the rule
of necessitation:

` A
` ©A

Nec

LECTURE NOTES THURSDAY, NOVEMBER 18, 2021

L21.2 Temporal Types and Propositions

The critical aspect of this rule is that there cannot be any hypotheses on the
left of the turnstile (`). We cannot turn this into an implication. For example,
it is not true thatA⊃©A for arbitraryA. That’s becauseAmay be true right
now, but it may longer be true after one tick (for example, if I put down the
whiteboard marker I currently hold). Similarly, it is not true in general that
©A⊃A. Just because I will pick up this marker after one tick that doesn’t
mean I hold it right now.

So it seems like there are not many laws that hold, but the logical con-
nectives interact with©A. One axiom (called K) that should hold is charac-
teristic for many, so-called normal modal logics:

` ©(A⊃B)⊃©A⊃©B

We can read is as follows: if after one tick, both A implies B and A are true,
then B must also be true after one tick. In other words, we can reason in
the world after one tick the same way we can reason in the present: the
logical connectives retain their meaning. Now we can also consider whether
© distributes over conjunction, disjunction, etc. and write corresponding
axioms. The logic with the rule of necessitation and K is called the modal
logic K and just has the inference rule of necessitation and the axiom K.

We can avoid a multitude of axioms if we use a single inference rule in a
sequent calculus where we have antecedents on the left (our assumptions)
and a succedent on the right (our desired conclusion).

A1, . . . , An ` B
Γ,©A1, . . . ,©An ` ©B

©LR

This is a generalized form of necessitation where we allowed to carry for-
ward all the antecedents that will be true after one tick, but not those starting
with any other connective (collected in Γ). Note that with this generalized
form of necessitation we can now prove the axiom K:

...
A⊃B,A ` B

©(A⊃B),©A ` ©B
©LR

©(A⊃B) ` ©A⊃©B
⊃R

· ` ©(A⊃B)⊃©A⊃©B
⊃R

The inference rule©LR is therefore characteristic of the modal logic K and
can be found in other temporal or modal logics as well.

LECTURE NOTES THURSDAY, NOVEMBER 18, 2021

Temporal Types and Propositions L21.3

This logic is very simple in that we can only reason about truth a fixed
number of ticks into the future. For example, we cannot say that a proposi-
tion A will always be true (perhaps �A) or that A will become true at some
unknown point in the future (perhaps ♦A). We can also not look back into
the past (perhaps •A). Each of these addition would change the nature of
the logic in significant ways. Our simple addition is elegant in that we do
not need to change any of the existing rules or add a plethora of axioms, just
one new rule for sequents.

3 Temporal Types

We add a corresponding new type© τ while all other types and rules remain
the same. There is only one construct associated with this time, namely one
that ticks time forward.

Types τ ::= . . . | © τ
Processes P ::= . . . | tick ; P

There is only one new typing rule:

x1 : τ1, . . . , xn : τn ` P :: (y : σ)

Γ, x1 : © τ1, . . . , xn : © τn ` (tick ; P) :: (y : ©σ)
©LR

Where do these ticks come from? There are two sources: one is the cost
model, the other is the programmer. A tick inserted by the cost model is
part of the elaboration of the program. For example, the cost model might
say that time ticks forward whenever a message is received. Expecting the
compiler to insert these ticks then avoids errors in the instrumentation or
mismatches with the expected running times. Furthermore, the program-
mer may need to delay certain operations so that send and receives are
temporally synchronized.

In the dynamics we have to instrument the proc, msg and srv objects
with a time t and enforce that a message is available at exactly the time it
is expected by the receiver. We show the rules from last lecture in their
temporally annotated form. Since time only passes with the tick constructs,
all the rules have so far are parametric in the time t. However, when a
message at time t is received by a service, that service must also be at time t.
For well-typed (therefore well-timed) programs those times should always

LECTURE NOTES THURSDAY, NOVEMBER 18, 2021

L21.4 Temporal Types and Propositions

match up precisely.

proc t (x← P ; Q) 7→ proc t [a/x]P, proct [a/x]Q (a fresh)

proc t (a+.V) 7→ !msg t a+ V
proc t (case a+ K) 7→ srv t a− K

proc t (a−.V) 7→ msg t a− V
proc t (case a− K) 7→ !srv t a− K

!msg t a+ V, srv t a+ K 7→ proc t (V . K)
!srv t a− K,msg t a− V 7→ proc t (V . K)

proc t (a+ ← c+) 7→ srv t c+ a+

!msg t c+ V, srv t c+ a+ 7→ !msg t a+ V

proc t (a− ← c−) 7→ msg t a− c−

!srv t a− K,msg t a− c− 7→ !srv t c− K

Finally, we have a single new rule for advancing time.

proc t (tick ; P) 7→ proc (t+ 1) P

The progress and preservation theorems now ensure temporal correctness
in addition to the correctness of the messages. We won’t state them here
formally, but they are straightforward considering all we have learned this
semester.

4 Example: A Nor Gate

We now revisit the first two examples from the last lecture and express their
timing, followed by some examples with more complex timing.

Here is the code for nor.

bit = (b0 : 1) + (b1 : 1)

x : bit, y : bit ` nor :: (z : bit)
z ← norx y = case x (b0 · x′ ⇒ case y (b0 · y′ ⇒ z′ ← z′.〈 〉 ; z.(b1 · z′)

| b1 · x′ ⇒ z′ ← z′.〈 〉 ; z.(b0 · z′))
| b1 · x′ ⇒ case y (b0 · y′ ⇒ z′ ← z′.〈 〉 ; z.(b0 · z′)

| b1 · x′ ⇒ z′ ← z′.〈 〉 ; z.(b0 · z′)))

We would expect something like the type

bit = (b0 : 1) + (b1 : 1)

x : bit, y : bit ` nor :: (z : © bit)

LECTURE NOTES THURSDAY, NOVEMBER 18, 2021

Temporal Types and Propositions L21.5

which means that the output bit is computed in one clock cycle. The two bits
of input x and y need to be received at the same time, which we model by
allowing inputs on separate channels within the same clock cycle. However,
after the second received we do advance time.

In order to visualize the timing we show the state of the type-checker at
the point after the current line has been checked.

x : bit, y : bit ` nor :: (z : © bit)
z ← norx y =

case x (b0 · x′ ⇒ case y (b0 · y′ ⇒ % x : bit, y : bit, x′ : 1, y′ : 1 ` z : © bit
tick ; % · ` z : bit

We observe here that when tick times forward we clear out the whole context
because nothing is known to be available at the next time. On the right-hand
side we now have the ability to output a bit, but we first need a continuation
z′ : 1.

x : bit, y : bit ` nor :: (z : © bit)
z ← norx y =

case x (b0 · x′ ⇒ case y (b0 · y′ ⇒ % x : bit, y : bit, x′ : 1, y′ : 1 ` z : © bit
tick ; % · ` z : bit
z′ ← z′.〈 〉 ; % z′ : 1 ` z : bit

Now the table is set for send a b1 along z.

x : bit, y : bit ` nor :: (z : © bit)
z ← norx y =

case x (b0 · x′ ⇒ case y (b0 · y′ ⇒ % x : bit, y : bit, x′ : 1, y′ : 1 ` z : © bit
tick ; % · ` z : bit
z′ ← z′.〈 〉 ; % z′ : 1 ` z : bit
z.(b1 · z′)

| b1 · y′ ⇒ . . .)
| b1 · x′ ⇒ . . .)

The other four branches are entirely analogous so we don’t show them. We
do want to observe that we could not have used x′ or y′ in the final send
operation because, temporally speaking, they are no longer available.

5 Example: Operations on Streams of Bits

Next we want to transform a stream of bits with on tick between consecutive
bits into a stream of output bits at the same rate. Because we want to take
the nor of each pair of bits we represent the input as a stream of pairs of bits.

LECTURE NOTES THURSDAY, NOVEMBER 18, 2021

L21.6 Temporal Types and Propositions

bit = (b0 : 1) + (b1 : 1)
bits = © bit×© bits
bits2 = (© bit×© bit)×© bits2

The streaming output of this circuit is delayed by the time it takes to compute
the nor, that is, one tick.

x : bit, y : bit ` nor :: (z : © bit)

in : bits2 ` nors :: (out : © bits)
out← nors in =
case in (〈〈x, y〉, in′〉 ⇒ % in : bits2, x : © bit, y : © bit, in’ : © bits2 ` out : © bits

Here, when we advance time after the input and pattern matching, we
obtain x, y, and in′ at the next time.

x : bit, y : bit ` nor :: (z : © bit)

in : bits2 ` nors :: (out : © bits)
out← nors in =
case in (〈〈x, y〉, in′〉 ⇒ % in : bits2, x : © bit, y : © bit, in′ : © bits2 ` out : © bits2

tick ; % x : bit, y : bit, in′ : bits2 ` out : bits

Now we can compute the output bit z′ from x and y, and the continuation
stream from the recursive call. Both of these will only be available after a
further tick, which is correct for the output along out because its continuation
type is© bit×© bits.

x : bit, y : bit ` nor :: (z : © bit)

in : bits2 ` nors :: (out : © bits)
out← nors in =
case in (〈〈x, y〉, in′〉 ⇒ % in : bits2, x : © bit, y : © bit, in′ : © bits2 ` out : © bits2

tick ; % x : bit, y : bit, in′ : bits2 ` out : bits
out′ ← nors in′ ; % x : bit, y : bit, in′ : bits2, out′ : © bits ` out : bits
z′ ← nor x y ; % x : bit, y : bit, in′ : bits2, out′ : © bits, z′ : © bit ` out : bits
out.〈z′, out’〉)

6 Example: Merging Streams

In the next example we explore merging two streams by reading from them
alternately. It should be quite evident that the input streams have to be twice
as slow as the output stream. Furthermore, one of the two inputs has to be
offset by one from the other. So we define:

LECTURE NOTES THURSDAY, NOVEMBER 18, 2021

Temporal Types and Propositions L21.7

bit = (b0 : 1) + (b1 : 1)

bits1 = © bit×© bits1

bits2 = ©© bit×©© bits2

x : bits2, y : © bits2 ` alternate :: (z : © bits1)

We first write the code without consideration for timing. The key is to make
the recursive call with the arguments reversed.

z ← alternate x y =
case x (〈a, x′〉 ⇒ z′ ← alternate y x′ ;

z.〈a, z′〉)

Next, we see if we can assign proper types.

z ← alternate x y =

case x (〈a, x′〉 ⇒ % a : ©© bit, x′ : ©© bits2, y : © bits2 ` z : © bits1

tick ; % a : © bit, x′ : © bits2, y; bits2 ` z : bits1

z′ ← alternate y x′ ; % a : © bit, x′ : © bits2, y : bits2, z′ : © bits1 ` z : bits1

z.〈a, z′〉)

7 Example: Duplicating Bits in a Stream

In the case where we want to duplicate the bits in a stream, again the input
stream has to arrive at half the rate of the output stream.

bit = (b0 : 1) + (b1 : 1)

bits1 = © bit×© bits1

bits2 = ©© bit×©© bits2

x : bits2 ` dup :: (y : © bits1)

Again, we first program without regard to timing.

x : bits2 ` dup :: (y : © bits1)

y ← dup x =
case x (〈a, x′〉 ⇒ y′′ ← dup x′ ;

y′ ← y′.〈a, y′′〉 ;
y.〈a, y′〉)

Next consider timing.

LECTURE NOTES THURSDAY, NOVEMBER 18, 2021

L21.8 Temporal Types and Propositions

x : bits2 ` dup :: (y : © bits1)

y ← dup x =

case x (〈a, x′〉 ⇒ % x : bits2, a : ©© bit, x′ : ©© bits2 ` y : © bits1

tick ; % a : © bit, x′© bits2 ` y : bits1

y′′ ← dup x′ ;
y′ ← y′.〈a, y′′〉 ;
y.〈a, y′〉)

The next point is interesting: we need to delay for one tick before we can
call dup recursively. We do with with tick ; y′′ ← dup x′. Note that x′ : bits2

because it occurs underneath the tick. On the outside, then y′′ : ©© bits1.

x : bits2 ` dup :: (y : © bits1)

y ← dup x =
case x (〈a, x′〉 ⇒

% x : bits2, a : ©© bit, x′ : ©© bits2 ` y : © bits1

tick ; % a : © bit, x′© bits2 ` y : bits1

y′′ ← (tick ; y′′ ← dup x′) ; % a : © bit, x′ : © bits2, y′′ : ©© bits1 ` y : bits1

y′ ← y′.〈a, y′′〉 ;
y.〈a, y′〉)

The same reasoning now applies to the next line, since we want y′ : © bits1.

x : bits2 ` dup :: (y : © bits1)

y ← dup x =
case x (〈a, x′〉 ⇒

% x : bits2, a : ©© bit, x′ : ©© bits2 ` y : © bits1

tick ; % a : © bit, x′© bits2 ` y : bits1

y′′ ← (tick ; y′′ ← dup x′) ; % a : © bit, x′ : © bits2, y′′ : ©© bits1 ` y : bits1

y′ ← (tick ; y′.〈a, y′′〉) ; !! % a : © bit, x′ : © bits2, y′′ : ©© bits1, y′ : © bits1 ` y : bits1

y.〈a, y′〉)

However, we (or the type-checker) now notices a bug at the line marked
with “!!”. Because a : © bit, after the tick is will have type a : bit so we
cannot send it along y′ : bits1. That’s because bits1 = © bit ×© bits1. So
we have to create a delayed copy of a, carrying it forward by one tick so it
can be the second a that is output along y. For the sake of brevity we omit
channels in the context we no longer need.

x : bits2 ` dup :: (y : © bits1)
x : bit ` delay :: (x′ : © bit)

LECTURE NOTES THURSDAY, NOVEMBER 18, 2021

Temporal Types and Propositions L21.9

y ← dup x =
case x (〈a, x′〉 ⇒

% x : bits2, a : ©© bit, x′ : ©© bits2 ` y : © bits1

tick ; % a : © bit, x′© bits2 ` y : bits1

y′′ ← (tick ; y′′ ← dup x′) ; % a : © bit, y′′ : ©© bits1 ` y : bits1

a′ ← (tick ; a′ ← delay a) ; % a : © bit, a′ : ©© bit, y′′ : ©© bits1 ` y : bits1

y′ ← (tick ; y′.〈a′, y′′〉) ; % a : © bit, y′ : © bits1 ` y : bits1

y.〈a, y′〉)
Now everything checks, assuming we can write the delay process. In hind-
sight we should have anticipated that using the same input twice, at different
times, requires creating some form of a delayed copy. Note that the addi-
tional occurrences of tick we inserted are the programmers responsibility
and not due to the cost model since they do not follow a receive operation.
Fortunately, writing it is straightforward: it receives an input bit (which cost
a tick, according to our cost model) and then sends the same bit.

bit = (b0 : 1) + (b1 : 1)

x : bit ` delay :: (y : © bit)

y ← delay x = case x (b0 · x′ ⇒ % x : bit, x′ : 1 ` y : © bit
tick ; % · ` y : bit
y′ ← y′.〈 〉) ; % y′ : 1 ` y : bit
y.(b0 · y′)

| b1 · x′ ⇒ tick ;
y′ ← y′.〈 〉 ;
y.(b1 · y′))

An alternative solution to the problem would be

x : bits2 ` delays2 :: (y : © bits2)
x : bits2 ` dup :: (y : © bits1)
y ← dup x =
x′ ← delays2 x ;
y ← alternate x x′

We leave it to Exercise 1 to define delays2.

Exercises

Exercise 1 Write x : bits2 ` delays2 :: (y : © bits2) which delays the input
stream by tick, or argue that it cannot be done. If needed, you may use
a : bit ` delay :: (b : bit) defined in Section 7.

LECTURE NOTES THURSDAY, NOVEMBER 18, 2021

L21.10 Temporal Types and Propositions

Exercise 2 Rewrite the flip/flip pipeline so it is well-timed.

Exercise 3 Rewrite the latch so it is well-timed.

References

LECTURE NOTES THURSDAY, NOVEMBER 18, 2021

	Introduction
	Simplest Temporal Logic = Modal Logic K
	Temporal Types
	Example: A Nor Gate
	Example: Operations on Streams of Bits
	Example: Merging Streams
	Example: Duplicating Bits in a Stream

