
Assignment 6
Language Extensions

15-814: Types and Programming Languages
Frank Pfenning & David M Kahn

Due Thursday, October 21, 2021
75 points

This assignment is due on the above date at 11:59 pm and it must be submitted electronically
on Gradescope. You should hand in one file

• hw06.pdf with your written solutions to the questions

1 Bidirectional Typechecking

Task 1 (L11.8, 35 points) Often we define two (or more) judgments simultaneously in a mutually-
recursive fashion, like neutral and normal from lambda calculus, or the verification judgment⇐ and
synthesizing judgment⇒ from bidirectional typechecking. When judgments are defined this way,
we often need to prove properties about them by simultaneous induction. In simultaneous induction
you have multiple induction hypotheses that mutually help to prove one another.

In this task, we will explore the relation between our usual typing judgment and our new ones
for bidrectional typechecking, and may make use of simultaneous induction along the way. Put
your answers in hw06.pdf.

We refer to an expression in the purely functional fragment e ::= x | λx. e | e1 e2 | λx:τ.e as
annotation-free if it does not contain an abstraction with an explicit type.

1. In each case below, give an example of an annotation-free expression e and type τ satisfying
the stated property and · ` e : τ , or indicate none exist. You do not need to justify your
answer further (no need for typing derivations or proofs).

(i) · ` e⇐ τ and also · ` e⇒ τ

(ii) · ` e⇐ τ but not · ` e⇒ τ

(iii) · ` e⇒ τ but not · ` e⇐ τ

(iv) Neither · ` e⇐ τ nor · ` e⇒ τ

2. Prove that the bidirectional rules are complete for normal forms in the simply-typed lambda
calculus that is, we can verify or infer any correct type (for annotation-free normal or neutral
expressions). Make a note stating whether you can prove each statement individually, or if
you must prove them both at once with simultaneous induction. Clearly state what you are
inducting over.

ASSIGNMENT 6 DUE THURSDAY, OCTOBER 21, 2021
75 POINTS

Language Extensions HW6.2

(i) If Γ ` e : τ and e normal then Γ ` e⇐ τ .

(ii) If Γ ` e : τ and e neutral then Γ ` e⇒ τ .

2 Internalizing Definitions

Task 2 (L11.5, 20 points) We can internalize definitions as part of the core language. Specifically,
we add

Expressions e ::= exp f : τ = e in e′

| val x = e in e′

| · · ·

where exp f : τ = e in e′ internalizes the definition of an expression variable f with scope e′, and
val x = e in e′ internalizes evaluation of e and binding x to the resulting value with scope e′.

1. Extend the rules for evaluation of expressions to account for the two new constructs.

2. Extend the rules for the typing judgment.

3. Extend the rules for the checking and synthesis judgments.

Our key language properties, namely preservation, progress, finality of values, and determinacy
should continue to hold, but you do not need to prove them.

3 Corecursive Types

Task 3 (20 points) In the midterm exam, we introduced corecursive types, the lazy version of
recursive types, using the rules below:

roll e value
val/roll

unroll (roll e) 7→ e
step/unroll/roll

e 7→ e′

unroll e 7→ unroll e′
step/unroll1

Γ ` e : [να. τ/α]τ

Γ ` roll e : να. τ
tp/roll

Γ ` e : να. τ

Γ ` unroll e : [να. τ/α]τ
tp/unroll

In particular, we defined streams of naturals with stream = να. nat× α. We will now explore how
these streams stack up against other types we are more familiar with.

For each of the following types, either provide functions forth and back witnessing an isomor-
phism between that type and the type of streams, or conjecture that they are not isomorphic and
explain why. You do not need to prove that the functions witness an isomorphism or none exists.
Please provide your answers in the written hw06.pdf.

1. The recursive cousin of these streams, µα.nat× α.

2. The function type nat→ nat.

ASSIGNMENT 6 DUE THURSDAY, OCTOBER 21, 2021
75 POINTS

	Bidirectional Typechecking
	Internalizing Definitions
	Corecursive Types

