
Assignment 7
K Machines

15-814: Types and Programming Languages
Frank Pfenning & David M Kahn

Due Thursday, October 28, 2021
70 points

This assignment is due by 11:59pm on the above date and it must be submitted electronically as
a PDF file on Gradescope.

1 Typing the K Machine

The properties of progress and preservation have been major themes throughout the course. This
emphasis is no different in the setting of K machine. However, statements about K machine make
use of slightly different judgments than before, as we saw in lecture. For example, we now use the
symbol ÷ to act similarly to the colon from our previous typing judgments, so that s÷ σ means
that s is a state1 in the K machine returning a final value of type σ.

Task 1 (5 points) Give the typing rules for s÷ σ. You may refer to the judgment K ÷ τ ⇒ σ from
Section L12.6.

Task 2 (5 points) Provide the transition rules and new form(s) of continuations for the unit type 1.

Task 3 (10 points) In analogy to the typing rules for functions in the K machine we gave in lecture,
provide typing rules for continuations supporting the following types:

(i) Variadic sums
∑

i∈I(i : τi)

(ii) Products τ1 × τ2

(iii) Unit 1

The composition rules of the K machine are those with the property that if k ./ e 7→ k′ ./ e′ then
k(e) = k′(e′). Here ./ is a generic notation for either . or /. The critical rules of the K machine are
those that are not composition rules.

Task 4 (25 points)

(i) Write out the statement of preservation for the K machine.

1Recall that a state in a K machine is of the form k C e or k B e.

ASSIGNMENT 7 DUE THURSDAY, OCTOBER 28, 2021
70 POINTS



K Machines HW7.2

(ii) State the form of its proof (that is, by induction or cases, and on which judgment).

(iii) Give one case in the proof of preservation for a composition rule.

(iv) Give one case in the proof of preservation for a critical rule.

Task 5 (10 points)

(i) Give the statement of progress for the K machine.

(ii) State the form of its proof (that is, by induction or cases, and on which judgment). You do not
need to show any cases.

2 Modifying the K Machine

Our current K machine evaluation strategy is call-by-value because it eagerly evaluates the argument
to a function. However, there is an alternative strategy, call-by-name, that is preferred in some
settings. This strategy does not try to evaluate function arguments prior to application, but
substitutes the unevaluated expression into the body of a function. On the pure λ-calculus, call-by-
name corresponds to a leftmost/outermost strategy.

There are tradeoffs between call-by-value and call-by-name. If an argument is never used in the
function body, then call by value “wastes time” by evaluating the argument (which, the extreme
case, may not terminate). However, if an argument is used multiple times, call by name “wastes
time” by evaluating it separately each time it arises in the function body. And there are further
variants beyond these, like call-by-need which is like call-by-name, but avoids reevaluating arguments,
memoizing their value instead.

Task 6 (5 points) Modify the K machine evaluation rules for functions to be call-by-name. Feel free
to add or remove rules as needed, or to add new K machine constructs so long as they are properly
defined. Just make sure all your changes are clear, and that your resulting machine satisfies the
usual properties (progress, preservation, and determinacy).

In lecture, we introduced the ability to raise exceptions, with raise E for some exception E.
Most languages, however, do not just raise exceptions — they also allow you to catch them!

For this task, we introduce the try-catch block to our langauge. The idea is that try e1 catch e2
attempts to evaluate and return e1, but if it hits an exception, it will instead evaluate and return e2.
We can express this in our language formally with the following step rules:

e1 7→ e′1

try e1 catch e2 7→ try e′1 catch e2
step/try0

v1 value

try v1 catch e2 7→ v1
step/try/success

try (raise E) catch e2 7→ e2
step/try/fail

Task 7 (10 points) Modify the transition rules in the K machine so they incorporate try-catch
blocks.

Feel free to add or remove rules as needed, or to add new K machine constructs as long as they
are properly defined. Just make sure all your changes are clear, and that your resulting machine
satisfies the usual properties (progress, as modified to account for exceptions, preservation, and
determinacy). You do not need to prove any of these properties.

ASSIGNMENT 7 DUE THURSDAY, OCTOBER 28, 2021
70 POINTS


	Typing the K Machine
	Modifying the K Machine

