
Assignment 9
Data Abstraction and Programs as Proofs

15-814: Types and Programming Languages
Frank Pfenning & David M Kahn

Due Thursday, November 11, 2021
70 points

This assignment is due by 11:59pm on the above date and it must be submitted electronically
on Gradescope. You should hand in three files:

• hw09.pdf with your written solutions to the questions. You may exclude those questions
whose answer is just code, but please leave a pointer to the code.

• hw09.cbv with the code for Task 1–3, where the solutions to the questions are clearly marked
and auxiliary code (either from lecture or your own) is included so it passes the LAMBDA

implementation.

• hw09.prf with the proofs (written as programs) for Tasks 5–7. It should pass the LAMBDA

implementation. Note you will need version 1.1 (from November 5, 2021) or greater.

This assignment has 10 bonus points in the sense that your total homework score is computed out
of 600 points, but the total value of all assignments after this one is 610 points.

1 Representation Independence

In this problem you are asked to provide two different implementations of integers . . . ,−2,−1, 0, 1, 2, . . ..
In the first one we represent an integer a as a pair 〈x, y〉 of two natural numbers x and y where
a = x− y. In the second, we represent an integer a ≥ 0 as pos · a and an integer a ≤ 0 as neg · −a.
Note that neither of these representations is unique.

Task 1 (5 pts) We say that a pair 〈x, y〉 of natural numbers represents the integer a if a = x− y. We
call this the difference representation and call the representation type diff. For the sake if simplicity,
we choose a unary representation for the natural numbers.

bool = (true : 1) + (false : 1)
nat = µα. (zero : 1) + (succ : α)
diff = nat× nat

Provide implementations of each of the following functions. Your answers to each of the following
should be included in the file hw09.cbv. If you need auxiliary functions on natural numbers, you
should define them.

ASSIGNMENT 9 DUE THURSDAY, NOVEMBER 11, 2021
70 POINTS



Data Abstraction and Programs as Proofs HW9.2

(i) Define a constant d zero : diff representing the integer 0.

(ii) Define the function d inc : diff→ diff representing incrementing integers.

(iii) Define the function d dec : diff→ diff representing decrementing integers.

(iv) Define the function d is0 : diff→ bool that tests whether the state of the counter represents 0.

Task 2 (5 pts) We consider an alternative signed representation of integers where

sign = (pos : nat) + (neg : nat)

where pos · x represents the integer x and neg · x represents the integer −x.
Define the following functions in analogy with the previous set of functions and include them

in the file hw09.cbv.

(i) s zero : sign

(ii) s inc : sign→ sign

(iii) s dec : sign→ sign

(iv) s is0 : sign→ bool

Task 3 (5 pts) With the definitions from previous two tasks you should be able to implement the
following signature for an integer counter:

INTCTR = {
type ictr
init : ictr
inc : ictr→ ictr
dec : ictr→ ictr
is0 : ictr→ bool
}

where init, inc, dec and is0 have their obvious specification with respect to integers (with init
representing a counter with initial value 0), generalizing the natural number counter defined in
lecture. Provide the following definitions in the file hw09.cbv.

(i) The type INTCTR as an existential type.

(ii) DiffCtr : INTCTR, using the difference representation of integers.

(iii) SignCtr : INTCTR, using the signed representation of integers.

Task 4 (25 pts) In this task you are asked to show that the two implementations of integer counters
from the previous subtask are logically equivalent. Make sure your previous implementations are
correct or else this may be difficult!

In the proofs below you may freely use the correctness of functions on unary numbers, specif-
ically zero = 0 and succ n = n+ 1. If you need properties of other functions on (unary) natural
numbers you should carefully state them and assume them as lemmas, but you do not need to
prove them.

ASSIGNMENT 9 DUE THURSDAY, NOVEMBER 11, 2021
70 POINTS



Data Abstraction and Programs as Proofs HW9.3

(i) Define a relation R that allows you to prove DiffCtr ≈ SignCtr ∈ JINTCTRK.

(ii) Prove that d zero ≈ s zero ∈ JRK. If this is not straightforward, you may want to rethink your
definition of R.

(iii) Prove that d inc ≈ s inc ∈ JR→ RK.

(You should also convince yourself that d dec ≈ s dec ∈ JR → RK, but you do not need to
prove it.)

(iv) Prove that d is0 ≈ s is0 ∈ JR→ boolK.

If all of the above holds, then you know that no client of your INTCTR interface can distinguish
the two implementations!

2 Programs as Proofs

In some tasks below you are asked to provide proofs in the form of expressions in LAMBDA.
Proof checking imposes some additional restrictions on the types and expressions in our language,
namely, the absence of recursion and enforcing that all cases are covered in case expressions. Files
with extension .prf (or, equivalently, option --lang=prf) enforce these restrictions. LAMBDA

implements variadic records of type Ni∈I(i : τi), where τ N σ is short-hand for (l : τ) N (r : σ) (or
(’l : tau) & (’r : sigma) in concrete syntax). The syntax of lazy pairs and projection
should therefore use the right-hand sides of the definitions below:

〈|e1, e2|〉 , (| ’l => e1 | ’r => e2 |)
fst e , e.’l
snd e , e.’r

For example, the proof from lecture that (A ∧B)⊃ (B ∧A) (which is (ANB)→ (B NA) under the
propositions-as-types interpretation) becomes the following:

1 decl sym_and : !a. !b. a & b -> b & a
2 defn sym_and = /\a. /\b. \p. (| ’l => p.’r | ’r => p.’l |)

Note that the quantification over propositions, which usually just made in our mathematical
metalanguage (the implication should hold for all propositions A and B), is instead explicit in our proof
language.

Your solutions should be in the file hw09.prf.

Task 5 (L15.1, 10 points) One proposition is more general than another if we can instantiate the
propositional variables in the first to obtain the second. For example, A⊃ (B ⊃A) is more general
than A⊃ (⊥⊃ A) (with [⊥/B]), (C ∧D)⊃ (B ⊃ (C ∧D)) (with [C ∧D/A], but not more general
than C ⊃ (D ⊃ E).

For each of the following proof terms, give the most general proposition proved by it. (We are
justified in saying “THE most general” because the most general proposition is unique up to the
names of the propositional variables.)

(i) λu. λw. λk.w (u k)

ASSIGNMENT 9 DUE THURSDAY, NOVEMBER 11, 2021
70 POINTS



Data Abstraction and Programs as Proofs HW9.4

(ii) λw. 〈|(λu.w (l · u)), (λk.w (r · k))|〉

(iii) λx. (fstx) (sndx) (sndx)

(iv) λx. λy. λz. (x z) (y z)

Check the correctness of the typing in LAMBDA and include four definitions in hw09.prf.
LAMBDA can not guarantee that your proposition is most general, so it only partially verifies your
answer.

Task 6 (10 pts) We only briefly mentioned in lecture that ¬A , A⊃⊥where⊥ represents falsehood.
Falsehood has no introduction rule and one elimination rule ⊥E which is the nullary version ∨E.
You can find these in the notes to Lecture 17. Under the Curry-Howard isomorphism, ⊥ is related
to the empty type 0, so ¬A is interpreted as A→ 0.

While propositional intuitionistic logic does not allow the law of excluded middle A ∨ ¬A
for arbitrary A, it is certainly true for some A (like A = (B ⊃ B) or A = ⊥). So it is not the case
that ¬(A ∨ ¬A). Perhaps surprisingly, we can actually establish this fact in intuitionistic logic by
proving ¬¬(A∨¬A). This is an instance of Glivenko’s theorem which states thatA is true in classical
propositional logic if and only if ¬¬A is true in intuitionistic propositional logic.1

Provide a proof term for ¬¬(A ∨ ¬A), that is, provide an expression of type
((A+ (A→ 0))→ 0)→ 0.

Your proof term should be included in hw09.prf. By the Curry-Howard isomorphism, there
will be a corresponding natural deduction, but you do not have to typeset it. Depending on your
background and experience, you may want to try to prove ¬¬(A ∨ ¬A) first in natural deduction
and then read off the proof term, or just write the program.

Task 7 (L17.3, 10 points) In lecture we mentioned how lazy and eager pairs induce different logical
rules for conjunction (logical “and”). In particular, we found the elimination rule

A∧B true

A true
x
B true

y

...
C true

C true
∧Ex,y

where A∧B corresponds to the eager pairs A×B. This rule is different from the elimination rules
for ∧which correspond to the projections from lazy pairs ANB. In this problem you will prove
that the two forms of conjunction are equivalent, that is, imply each other in intuitionistic logic.

(i) Give the introduction rule for ∧, i.e., the rule that allows you to conclude A∧B true.

(ii) Prove that (A ∧B)⊃ (A∧B) true.

(iii) Prove that (A∧B)⊃ (A ∧B) true.

Give your answers to (ii) and (iii) both in the form of natural deduction and proof terms. The
proof terms should be included in your file hw09.prf.

1“Propositional” here means that there are no quantifiers in A. With quantifiers, matters become more complicated.

ASSIGNMENT 9 DUE THURSDAY, NOVEMBER 11, 2021
70 POINTS

http://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/natded.pdf

	Representation Independence
	Programs as Proofs

