
On the Complexity Analysis of Static AnalysesDavid McAllesterAT&T Labs-Research180 Park AveFlorham Park NJ 07932dmac@research.att.comhttp://www.research.att.com/�dmacAbstract. This paper argues that for many algorithms, and static anal-ysis algorithms in particular, bottom-up logic program presentations areclearer and simpler to analyze, for both correctness and complexity, thanclassical pseudo-code presentations. The main technical contribution con-sists of two meta-complexity theorems which allow, in many cases, theasymptotic running time of a bottom-up logic program to be determinedby inspection. It is well known that a datalog program runs in O(nk)time where k is the largest number of free variables in any single rule.The theorems given here are signi�cantly more re�ned. A variety of al-gorithms are presented and analyzed as examples.1 IntroductionThis paper presents two theorems that place upper bounds on the running timeof bottom-up logic programs. The association of a running time with a logic pro-gram allows the program to be viewed as specifying a particular algorithm. Thispaper also argues that the ability to easily assign running times to bottom-uplogic programs makes logic programs a useful general framework for expressingand analyzing static analysis algorithms. This position is supported through avariety of examples of static analysis algorithms expressed and analyzed as logicprograms.1.1 Logic Programs as AlgorithmsIn many cases bottom-up (or forward chaining) logic programs are clearer thanprograms involving classical iteration and recursion control structures. For exam-ple, consider transitive closure. A bottom-up logic program for transitive closurecan be given with the single rule P (x; y)^P (y; z)! P (x; z). We can view thisrule as a program where the input is a \graph" represented as a set of assertionsof the form P (c; d) and the output is the set of assertions derivable from theinput using the rule, i.e., the transitive closure of the input. The inference ruleis arguably the clearest and most concise possible de�nition of the notion oftransitivity | the program itself is arguably the clearest possible speci�cationof the desired output.



In spite of the clarity of inference rules as speci�cations, it is not obvioushow one should view a set of inference rules as an algorithm. An algorithm hasa well de�ned running time. But what is the running time of a set of inferencerules? This paper presents two meta-theorems which state upper bounds on therunning time of a bottom-up (forward chaining) execution of an arbitrary set ofinference rules. By associating a set of inference rules with a running time, thesetheorems provide a way of viewing a set of inference rules as an algorithm. Thetransitivity rule given above runs in O(n3) time where n is the number of nodesin the input graph. A more e�cient program for sparse inputs consists of the tworules EDGE(x; y)! PATH(x; y) and EDGE(x; y)^PATH(y; z)! PATH(x; z). Notethat the more e�cient program has fewer ways of instantiating the antecedents ofthe transitivity rule. Let e be the number of input edges and n be the number ofnodes. In the more e�cient program there are e instances of the �rst antecedentand, for each such instance, at most n ways of �lling in the �nal variable. Thisgives at most en ways of �lling in the left hand side of the rule. The meta-complexity theorem given in section 2 implies that, for programs with at mosttwo antecedents per rule, the running time is bounded by the size of the �naldata base plus the number of provable instances of the left hand sides of rules.The more e�cient program runs in O(en) time rather than O(n3).As another example consider context free parsing. We can take the input tobe a context free grammar in Chomsky normal form and a string of terminalsymbols. The grammar can be represented by a set of assertions of the formA ) BC and A ) a where A, B, and C are nonterminal symbols and a is aterminal symbol. We can represent the string by a set of assertions of the formsi = a which states that the ith symbol in the string is the terminal symbol a.Now consider the following program for context free parsing.X ) ysi = yX ) si;i X ) Y ZY ) si;jZ ) sj+1;kX ) si;kThis program computes all assertions of the form A ) si;j where the non-terminal X generates the string si : : : sj . As in the case of transitive closure, itcan at least be argued that the rules themselves are the clearest possible formalspeci�cation of the desired output. Note that if jGj is the number of produc-tions in the grammar and n is the length of the input string then there are onlyO(jGjn3) provable instances of the triple of antecedents in the second rule. Themeta-complexity theorem in section 2 states that, in general, the running timeof a bottom-up logic program is bounded by the size of the �nal closure plusthe number of \pre�x �rings" of the rules, i.e., the number of provable instancesof pre�xes of the antecedents of rules. In general there may be more provable



instances of the pair of the �rst two antecedents of a rule than of the triple of the�rst three antecedents. For the above parsing program, however, the pair of the�rst two antecedents of the second rule has at most jGjn2 provable instances andthe total number of pre�x �rings is O(jGjn3) which gives the running time ofthe algorithm.This is a logic program presentation of the Cocke-Kasimi-Younger(CKY) algorithm for context-free parsing.Bottom-up logic programming has been widely studied in the context of de-ductive databases [25, 24, 17]. Bottom-up logic programming has been advocatedas a formalism for expressing a variety of natural language parsing algorithms[23,5]. Bottom-up logic programming has also been advocated for program anal-ysis algorithms used by compilers [24, 21]. The contribution of this paper lies inthe two meta-complexity theorems which provide a simple characterization ofthe running time of logic programs. A characterization of running time seemsessential if one is to view a logic program as an algorithm.1.2 A Framework for Static AnalysisThis paper is as much about static analysis in particular as about logic program-ming in general. Static analysis is used in compilers. For example, an optimizingcompiler can often determine that, at a certain point in the program, the currentvalue of a certain variable will not be used again. If the value of a variable isbeing stored in a register, and that value is no longer needed, then the regis-ter can be overwritten without storing its current value back into memory oronto the program stack. Determining that the value of a variable is no longerneeded is called liveness analysis. Liveness analysis is \static" in the sense thatit is performed at compile time rather than run time | properties of a programare determined by examining the (static) text of the program without relyingon any (dynamic) execution. This paper presents a variety of static analysis al-gorithms as bottom-up logic programs. In most cases the programs (inferencerules) are arguably the clearest possible speci�cation of the computed output.Furthermore, the running time associated with these programs by virtue of thegeneral meta-complexity theorems is either the best known or within a polylogfactor of the best known running time for that analysis.This paper takes the position that the ability to easily associate logic pro-grams with running times makes them a useful general formalism for expressingand analyzing static analysis algorithms. Two other paradigms have achievedwide recognition as useful general frameworks for static analysis | abstractinterpretation [4] and set constraints [2,9, 8]. In all cases the frameworks aresu�ciently 
exible that it is often possible to view a single analysis, such as live-ness analysis, within each of the frameworks, i.e., as a special case of abstractinterpretation, a special case of set constraints, or as an algorithm expressedas a logic program. It does not seem possible to formally prove that one ofthese frameworks is superior to the others. As a Turing complete programminglanguage, logic programs can in principle subsume any other programming for-malism. But as a practical matter it is not immediately obvious what fraction



of useful static analysis algorithms are best viewed as logic programs. This pa-per makes a case for bottom-up logic programs as a useful foundation for staticanalysis by presenting a series of examples.1.3 OverviewSection 2 presents the �rst meta-complexity theorem and some basic examples.Sections 3, 4, and 5 present respectively liveness analysis, data 
ow analysis,and 
ow analysis (both data and control) in the lambda calculus. Section 6presents the second main result of this paper | a meta-complexity theorem foran extended bottom-up programming language incorporating the union-�nd al-gorithm. Sections 7 and 8 present uni�cation and congruence closure algorithmsrespectively. Section 9 presents Henglein's quadratic time algorithm for typa-bility in a version of the Abadi-Cardelli object calculus [12]. This last exampleis interesting for two reasons. First, the algorithm is not obvious | the �rstpublished algorithm for this problem used an O(n3) dynamic transitive closurealgorithm [18]. Second, Henglein's presentation of the quadratic algorithm usesclassical pseudo-code and is fairly complex. Here we show that the algorithmcan be presented naturally as a small set of inference rules whose O(n2) runningtime is easily derived from the union-�nd meta-complexity theorem.2 A First Meta-Complexity TheoremFormally, a bottom-up logic program is simply a set of inference rules where aninference rule is simply a �rst order Horn clause, i.e. a �rst order formula of theformA1^: : :^An ! C where C and each Ai is a �rst order atom, i.e., a predicateapplied to �rst order terms (a �rst order term is either a constant symbol, a �rstorder variable, or a function symbol applied to �rst order terms). We will useassertion to mean a ground atom, i.e., an atom not containing variables, and usethe term database to mean a set of assertions. For any set R of inference rulesand any database D we let R(D) denote the set of assertions that can be provedfrom assertions in D using rules in R. This can be de�ned more formally withsome additional terminology. A ground substitution is a mapping from a �niteset of variables to ground terms. For any ground substitution � de�ned on allthe variables in an atom A, we let �(A) be the result of replacing each variable xin A by �(x). We say that a database E is closed under rule A1^ : : :^An ! C iffor any ground substitution � de�ned on the variables in the rule, if �(A1) 2 E,: : :, �(An) 2 E then �(C) 2 E. The output R(D) can be de�ned as the leastdatabase contianing D and closed under all rules in R. We view the set R as aprogram mapping input D to output R(D).An inference rule can be viewed as nested iterations. Consider the following.P (y) ^Q(y; x) ^R(x)! H(x; y) (1)Consider the case where the input is a database consisting only of assertionsinvolving the predicates P , Q, and R. The output consists of the input plus



all derivable applications of the predicate H. Intuitively, the rule iterates overassertions of the form P (y) and, for each such assertion, iterates over the valuesof x such that Q(y; x) holds and, for each such x, checks that R(x) holds and, ifso, asserts H(x; y).As the nested loop view might suggest, the order of the antecedents is im-portant when viewing inferences rules as algorithms. For example, consider thefollowing rule which is logically equivalent to (1).P (y) ^R(x) ^Q(y; x)! H(x; y) (2)Rule (2) iterates over the assertions of the form P (y) and then, for each suchinstance, iterates over all x such that R(x) holds, and for each such x checksthat Q(y; x) holds. Now suppose there is are n values of y satisfying P (y) andalso n values of x satisfying R(x) but for any y there is at most one x satisfyingQ(y; x). In this case we might expect rule (1) to take O(n) time while thelogically equivalent rule (2) to take O(n2) time. If there was only one x suchthat R(x) but for any y there were n values of x satisfying Q(y; x) (and still nvalues of y satisfying P (y)) then (1) would take O(n2) time while rule (2) wouldtake O(n) time.Note that for (2) the total number of iterations of the second loop equalsthe number of values of x and y such that P (y) and R(x) are given in theinput. In general, any inference rule can be viewed as a set of nested loops wherethe number of iterations of the nth loop corresponds to the number of ways ofinstantiating the variables in the �rst n antecedents. This leads to the followinggeneral de�nition.De�nition 1. We de�ne a pre�x �ring of a rule A1^ : : :^An ! C in databaseE to be a pair h�; ii where 1 � i � n and where � is a ground substitutionde�ned on the variables in A1, : : :, Ai such that �(Aj) 2 E for 1 � j � i. Welet PR(E) be the set of all pre�x �rings in E of rules in R.Rule sets can be recursive | it is possible that a rules derives an assertionthat leads to a new antecedent of that same rule. The algorithms in the intro-duction are all recursive in this sense. While it is natural to view non-recursiverules as nested iterations, it is less obvious that this view is appropriate for re-cursive rules. The �rst meta-complexity theorem can be viewed as stating thatthe nested iteration view applies to recursive rules as well.Theorem 1. For any rule set R there exists an algorithm for mapping D toR(D) which runs in time O(jR(D)j+ jPR(R(D))j).Before proving theorem 1 we show how it can be used to establish the runningtime of some particular logic program algorithms. Consider the transitive closurealgorithmde�ned by the inference rules EDGE(x; y)! PATH(x; y) and EDGE(x; y)^PATH(y; z) ! PATH(x; z). Suppose R consists of these two rules and D consistsof e assertions of the form EDGE(c; d) involving n constants. There are e (pre�x)�rings of the �rst rule. For the second rule there are e pre�x �rings for the �rst



antecedent and for each such �ring there are at most n �rings of the of thenext antecedent. So the total number of pre�x �rings is at most en. The closurecontains at most n2 � en assertions. Theorem 1 now implies that the algorithmruns in time O(en).As another example consider the CKY parsing algorithm. In the followingformulation we assume that the input has been augmented with assertions ofthe form SUCC(i; i+ 1) for each 1 � i � n� 1 where n is the length of the inputstring. Logic programming and the meta-complexity theorem can be extendedto handle arithmetic, although we will not formally consider arithmetic here.X ) ys(i) = yX ) s(i; i) X ) Y ZY ) s(i; j)SUCC(j; j0)Z ) s(j0; k)X ) s(i; k)Let R be the above set of two rules, let G be a grammar in Chomsky Nor-mal form, and let S be an input string of length n. Let D(G;S) consist of theassertions of the form A ) BC and A ) a in G plus the assertions s(i) = aand SUCC(i; i + 1) for 1 � i � n corresponding to the input S. We have thatR(D(G;S)) consists of D(G;S) plus a set of assertions of the form A ) s(i; j)with A a nonterminal in G and i; j 2 [1; n]. Hence we have that jR(D(G;S))j isO(jGjn2). To determine the running time of this algorithm it su�ces to boundthe number of pre�x �rings. Consider the left hand rule. There are at most jGjways of instantiating the �rst antecedent. Each such instantiation �xes the thevalue of y and there are then at most n ways of continuing with an instantiationof i. So there are at most jGjn pre�x �rings of the left hand rule. Now considerthe right hand rule. Again there at most jGj ways of instantiating the �rst an-tecedent. An instantiation of the �rst antecedent �xes the value of X, Y , andZ. Given an instantiation of Y there are at most n2 ways of instantiating i andj. An instantiation of j determines the instantiation of j0. Finally there are atmost n possible instantiations of k and hence the total number of pre�x �ringsis O(jGjn3).The proof of theorem 1 is based on a source to source transformation of thegiven programR. If r is a rule A1^A2^: : :^An ! C then we de�ne binarizationB(r) to be the following set of rules where P1, P2, : : : Pn are fresh predicatesymbols and x1; : : : ; xki are the variables occurring in the �rst i antecedents.



The predicate Pi represents the relation de�ned by the �rst i antecedents.A1 ! P1(x1; : : : ; xk1)P1(x1; : : : ; xk1) ^A2 ! P2(x1; : : : ; xk2)...Pn�1(x1; : : : ; xkn�1) ^An ! Pn(x1; : : : ; xkn)Pn(x1; : : : ; xkn)! CFor a rule set R we de�ne B(R) to be the union of the sets B(r) for r 2 R.We assume that the predicate symbols introduced by transformations form adistinct class of symbols and we let �(E) denote the subset of E not involvingsymbols introduced by transformations. The following lemma states the semanticcorrectness of the binarization transformation.Lemma 1. If �(D) = D, i.e., the input does not use the \fresh" predicates,then R(D) = �(B(R)(D)).The proof can be done by two inductions on proof length | the �rst showingR(D) � �(B(R)(D)) and the second showing �(B(R)(D)) � R(D). The detailsare omitted here.A more interesting property of the binarization transformation is that it pre-serves the number of pre�x �rings up to a multiplicative factor. More speci�cally,we have the following.Lemma 2. If �(D) = D then we have the following.jB(R)(D)j = jR(D)j+ jPR(R(D))jjPB(R)(B(R)(D))j = 2jPR(R(D))jProof:The �rst half of the lemma follows from the observation that B(R)(D)consists of R(D) plus a distinct assertion of the form Pi(x1; : : : ; xki) for eachelement of PR(R(D)). The second half also follows from the observation thatthe assertion of the form Pi(x1; : : : ; xki) are in one to one correspondence withPR(R(D)). For each assertion Pi(x1; : : : ; xki) there are exactly two pre�x �ringsof B(R) | the �ring of all antecedents in the rule that generates Pi(x1; : : : ; xk1)and the pre�x �ring of the �rst antecedent when this assertion is used as anantecedent. All pre�x �rings in B(R) are either generations of, or uses of, someassertion of the formP (x1; : : : ; xki). Hence there are exactly twice as many pre�x�rings of B(R) as there are of R.Lemmas 1 and 2 imply that without loss of generality we can assume thatall rules in R contain at most two antecedents. Now assuming that R is binaryin this sense we de�ne an \indexing transformation" as follows. For any rule rwith two antecedents A1^A2 ! C we de�ne I(r) to be the following set of ruleswhere x1; : : : ; xn are all variables occurring in A1 but not A2, y1; : : : ; ym areall variables that occur in both A1 and A2, and z1; : : : ; zk are all variables that



occur in A2 but not A1. The predicates P1, P2, and Q, and the function symbolsf , g, and h are all fresh.A1 ! P1(f(x1; : : : ; xn); g(y1; : : : ; ym))A2 ! P2(g(y1; : : : ; ym); h(z1; : : : ; zk))P1(x; y) ^ P2(y; z)! Q(x; y; z)Q(f(x1; : : : ; xn); g(y1; : : : ; ym); h(z1; : : : ; zk))! CFor a rule set R in which no rule has more than two antecedents we de�ne I(R)to consist of all single-antecedent rules in R plus the union of all rule sets I(r)where r is a two antecedent rule in R. We �rst have the following correctnesslemma whose proof we omit.Lemma 3. If �(D) = D and all rules in R have at most two antecedents thenR(D) = �(I(R)(D)).More signi�cantly, we also have the following.Lemma 4. If �(D) = D then we have the following.jI(R)(D)j � jR(D)j+ 2jRjjR(D)j+ jPR(R(D))jjPI(R)(I(R)D)j � 3jPR(R(D))j + 2jRjjPR(R(D))jProof: First consider jI(R)(D)j. We have that I(R)(D) contains R(D) plusassertions of the form P1(x; y), P2(y; z) and Q(x; y; z). Each assertion in R(D)can generate at most jRj assertions of the P1(x; y) and at most jRj assertionsof the form P2(y; z). Finally, each assertion of the form Q(x; y; z) correspondsto a �ring of a two antecedent rule R. Hence the total number of assertions inI(R)(D) can be no larger than jR(D)j+2jRjjR(D)j+ jPR(R(D))j. Now considerjPI(R)(I(R)(D))j. Each pre�x �ring of I(R) is either a �ring of single antecedentrule, and hence is also a �ring of a rule in R, or is a �ring of a rule of theform given above in the de�nition of the transformation I. There can be at mostjRjjR(D)j �rings of the rules that generate assertions of the form P1(x; y) andP2(y; z). The rules that generate Q(x; y; z) have two antecedents. A �ring of the�rst antecedent corresponds to a �ring of the �rst antecedent in the original rulein R and a �ring of both antecedents corresponds to a �ring of both antecedentsin the original rule in R. Hence there can be at most jPR(R(D))j pre�x �ringsof the rules that generate the assertions Q(x; y; z). Finally, each �ring of a rulethat uses an assertion of the form Q(x; y; z) as an antecedent corresponds toa �ring of an original rule. Hence the total number of pre�x �rings can not belarger than 3jPR(R(D))j + 2jRjjR(D)j.Lemmas 3 and 4 now allow us to assume without loss of generality that Rconsists of single antecedent rules plus rules of the form P1(x; y)^P2(y; z)! C.Under these assumptions we can use the algorithm shown in �gure 1 to computeR(D).Theorem 1 now follows from the following two lemmas.



Algorithm to Compute R(D):Initialize E to be the empty set. Mark every element of D and initialize the queueQ to contain D.While Q is not empty:1. Remove an element � from Q.2. Add � to E.3. For each single-antecedent rule A ! C in R determine whether there is asubstitution � such that �(A) = �. If so assert �(C) as described below.4. For each two-antecedent rule P1(x; y) ^ P2(y; z)! C do the following:4a. If � has the form P1(t1; t2) then for each t3 such that E contains P2(t2; t3)assert �(C) where � maps x to t1, y to t2, and z to t3.4b. If � has the form P2(t2; t3) then for each t1 such that E contains P1(t1; t2)assert �(C) where � is de�ned as in 4a.Procedure for Asserting 	 :1. If 	 contains a variable then go into an in�nite loop.2. If 	 is already marked do nothing.3. Otherwise, mark 	 and add 	 to Q.Fig. 1. The algorithm underlying theorem 1Lemma 5. If R(D) is �nite then the algorithm terminates with E equal toR(D).Proof: Assume that R(D) is �nite. This implies that the algorithm neverasserts an open atom, i.e., one containing variables, because otherwise any in-stance of that atom would be in R(D) and R(D) would have to be in�nite. So wecan assume that step 1 of the assert procedure is never executed. The algorithmmaintains the invariant that all assertions in E or on Q are in R(D). Since thealgorithm never places the same assertion on Q twice, if R(D) is �nite then thealgorithm must terminate. Furthermore, when the algorithm terminates thenthe �nal value of E must be a subset of R(D). The algorithm also maintains theinvariant that that every atom in D or derivable in one step from E is either inE or on Q. This implies that when Q is empty E contains D plus all derivableassertions. Hence, when the algorithm terminates E contains R(D).Lemma 6. The algorithm can be run to completion in O(jR(D)j+ jPR(R(D))j)time.Proof: Through out the proof we assume that all terms and atoms are in-terned | the same expression is represented by a data structure at the samelocation in memory | and that equality testing can be done in unit time bychecking pointer equality. Interning also supports unit time marking and check-ing for the presence of marks.



The initialization step takes time proportional to jDj. There is one executionof steps 1 and 2 for each element of R(D) and each execution takes unit time.Step 3 involves an iteration over rules in R. For a given rule A! C and a givenground atom 	 one must determine if there exists a � such that � = �(A). Giventhat equality testing can be unit time, this can be done in time proportional tothe size of the atomA. If such a � exists, it can be computed in time proportionalto the size of A. The size of A is a constant determined by the rule set andindependent of jR(D)j or jPR(R(D))j. Assuming that hash table operations takeunit time, computing �(C) takes time proportional to the size of C and henceis also O(1). The time spent in a single call to the assert procedure is also O(1).Hence the time to process a given rule in step 3 is O(1). The time spent iteratingover the rules in step 3 is alsoO(1). So the total time spent in step 3 is O(jR(D)j).By a similar argument, the time in step 4 outside of inner loops in 4a and 4b isalso O(jR(D)j). Finally we must consider the inner loops in steps 4a and 4b. Weassume that for each term t and predicate P used in an antecedent of a binaryrule we maintain a list of all the terms t0 such that E contains P (t; t0). This listmust be extended each time a new assertion of the form P (t; t0) is added to E.The total time spent building these lists is O(jR(D)j). There is an analogous listfor each term t and predicate P of the terms t0 such that E conatins P (t0; t).Given these lists, the inner loops in 4a and 4b can each be executed in timeproportional to the number of iterations. It now su�ces to show that the totalnumber iterations of the inner loops in 4a and 4b is O(jPR(R(D))j). It su�cesto show that each of these loops only considers a given triple ht1; t2; t3i once.When such a triple is consideredin step 4a the assertion P1(t1; t2) must equal�. Hence this triple can not be visited again in a later invocation of step 4a. Asimilar statement applies to 4b.3 Liveness AnalysisWe now turn to applications of meta-complexity theorems in static analysis. Our�rst example is a very simple static analysis | liveness analysis. As mentioned inthe introduction, most compilers rely on the ability to determine that the valuein a given variable is no longer needed so that a register being used to storethe variable can now be used for other purposes. To present a simple exampleof liveness analysis we �rst de�ne a simple programming language. We take aprogram to be a sequence of instructions where each instruction has one of thefollowing forms where x, y, and z are variables, op is an operation, e.g., addition,multiplication, or Boolean comparison, and li and lj are instruction labels | anumber unique to the labeled instruction.li : x = op(y; z);li : if x goto lk;li : goto lkli : haltWe assume a successor relation on labels | each label that labels an instructionother than a halt instruction has a successor label which is the next instruction



to be executed. A program state is a pair hl; �i where l is the instruction labelof the next instruction to be executed and � is a \store" mapping variables tovalues. A single step of computation converts a given program state into the nextprogram state. For example, if l labels the instruction x = +(y; z) then a singleexecution step converts the the state hl; �i to the successor state hl0; �0i where l0is the successor label of l and �0 is identical to � except that �0(x) is �(y)+�(z).We say that an instruction of the form x = op(y; z) writes x and reads y and z.We say that a variable x is live in state hl; �i if the computation starting in thatstate reads x without having written x in an earlier instruction. For example, ifl labels the instruction x = +(x; y) then x is live at hl; �i because it is aboutto be read. If l labels x = +(y; z) and hl; �i has successor state hl0; �0i, and avariable w di�erent from x is live at hl0; �0i then w is live at hl; �i.L1 l : x = op(y; z)live(y; l); live(z; l)L2 l : x = op(y; z)SUCC(l; l0)live(w; l0)DISTINCT(w; x)live(w; l) L3 l : goto l0live(w; l0)live(w; l)L4 l : if x goto l0live(w; l0)live(w; l)L5 l : if x goto l0SUCC(l; l00)live(w; l00)live(w; l)Fig. 2. A Liveness Analysis AlgorithmIt is undecidable to determine whether x is live at hl; �i | in the generalcase this would require determining if a given loop halts which is equivalent todeciding the halting problem. A static analysis generally computes a conservativeapproximation to an undecidable problem. An algorithm for liveness analysis isde�ned by the rules shown in �gure 2. The rules are conservative in the sensethat, for any state hl; �i and variable x, if x is live at hl; �i then the rules derivelive(x; l). This can be proved by induction on the number of steps of computationit takes for the computation starting at hl; �i to read x. This implies that if therules do not derive live(x; �) then x is not live at any state of the form hl; �i.



So if the rules do not derive live(x; l) then the compiler can reuse the registerstoring the value of x when it reaches program label l.The rules assume that for each pair of distinct variables x and y the databasecontains the assertion DISTINCT(x; y). In practice the predicate DISTINCT canbe computed on demand rather than stored in the input database. One can provethat theorem 1 holds with computed predicates in rule antecedents provided thatall antecedents involving a computed predicate P are of the form P (x1; : : : ; xn),where each xi is a variable and either that all xi occur in some earlier antecedent(as is the case in �gure 2) or the bindings for the variables not occurring inearlier antecedents can be computed in time proportional to the number of suchbindings.We now analyze the running time of the algorithm given in �gure 2. LetN be the number of instructions in the program and let V be the number ofvariables. Since all derived assertions are of the form live(x; l) we have thatjR(D)j is O(NV ). Rule L1 is actually an abbreviation for two rules | oneconcluding live(y; l) and one concluding live(z; l). These rules each have Npre�x �rings. Now consider rule L2. The �rst antecedent determines all bindingsother than w. There are N ways of instantiating the �rst antecedent and V waysof instantiating w so we get O(NV ) pre�x �rings. A similar analysis holds forrules L3, L4 and L5. So the algorithms runs in O(NV ) time.Actually a tighter analysis is possible. Let L be the total number of assertionsof the form live(x; l) contained in R(D). Let V be L=N . Intuitively, V is theaverage over all instructions of the number of live variables at that instruction.It is possible to show that the algorithm actually runs in time O(N + NV ). Inpractice V remains bounded even for very large programs and so, in practice, theanalysis runs in time linear in the size of the program. To see that the algorithmruns in time O(N + NV ) note that N + NV equals N + L. To show that thisbound holds it su�ces to divide the pre�x �rings into two sets, one of which hassize O(N ) and one of which has size O(L). There are only O(N ) pre�x �ringsof L1. We divide the pre�x �rings of L2 into those in which w is x and thosein which w and x are distinct. There are O(N ) pre�x �rings of the �rst type.Each pre�x �ring of the second type generates a distinct assertion of the formlive(w; l). Hence there are onlyO(L) pre�x �rings of the second type. For each ofthe rules L3, L4, and L5 we have that each �ring generates a distinct conclusionand hence the number of �rings is O(L).4 Data Flow AnalysisSome programming languages, such as Common Lisp and Scheme, use typetags on data values and generate \graceful" run time errors if a run-time typeviolation occurs, e.g., an attempt is made to extract a slot from a non-structure.Such languages do not use static type checking but are still guaranteed never tosegment fault. In some cases it is possible for the compiler to statically determinethat a particular pointer variable is guaranteed to be a structure of a certaintype. In that case the run time safety check can be omitted from the compiled



code. Data 
ow analysis provides one way of determining that a variable isguaranteed to be a structure of a certain type. More generally, data 
ow analysisintuitively determines what kind of values a given variable can have at a givenprogram point. Data 
ow analysis has a variety of applications in compilers. Asin most static analyses, data 
ow analysis is a conservative approximation to anundecidable problem.Here we formulate data 
ow in a simple but abstract setting. We extractfrom the program the assignment statements of the form x = e. Here we con-sider only assignments of the form x = k, x = hy; zi, x = �1(y), and x = �2(y)where k is an integer constant, hx; yi is the abstract pair of x and y, �1(x)is the �rst component of the pair x and �2(x) is the second component of thepair x. We take a store to be a mapping from a �nite subset of the variables tovalues where a value is either an integer or a pair of values. In many program-ming langauges (e.g., Scheme) it is syntactically impossible to write a programthat uses a variable before assigning it some initial value. In such langauges anassighment x = e is guaranteed not to be executed until all variables in e havevalues. An assignment x = e will be called executable in store � if � assigns avalue to all variables in e and e is not of the form �1(x) or �2(x) where �(x)is not a pair. If x = e is executable in � then e has a well de�ned value in �which we denote as �(e). A set of assignment statements de�ne a nondetermin-istic transition relation on stores. We say that �0 is a possible successor of � ifthere is an executable assignment x = e such that �0 is identical to � exceptthat �0(x) = �(e). We say that �0 is reachable from � if either it is � or there isa possible successor �00 of � such that �0 is reachable from �00. A store is calledreachable if it is reachable from the empty store (the store that does not assignany values to any variables). We are interested in the set of values assigned tox in reachable stores. If the value of x is guaranteed to be a pair, then the runtime safety test can be omitted from the compilation of an instruction of theform y = �1(x).D1 x = kx) INTD2 x = hy; zix) hy; zi D3 y = �j(x)x) hz1; z2iy ) zjD4 u) w; w) vu) vFig. 3. A data 
ow analysis algorithm. The rule involving �j is an abbreviation fortwo rules | one with �1 and one with �2.



Figure 3 gives a simple data 
ow analysis algorithm. The analysis algorithmgenerates assertions of the form x ) e where x is a program variable and e iseither INT (as in rule D1), an expression hy; zi that occurs on the right handside of some assignment statement (as in rule D2) or a program variable (as inrule D3). If there are N input assignment statements then there are only O(N2)possible assertions of the form x) e.The derivable assertions of the form x ) INT and x ) hy; zi should beviewed as de�ning a grammar for generating values. We write x )� v to meaneither that v is an integer and x) INT is generated by the rules, or v is a pairhu;wi where the rules derive x ) hy; zi and we have y )� u and w )� v. Wenow prove that if a store � is reachable (in the sense de�ned above) then forany x assigned a value by � we have that x)� �(x). The proof is by inductionon the number of assignments needed to reach � starting from the empty store.The result is immediate for the empty store. Now assume the result for � andlet �0 be the result of executing x = k. We need to show the result for �0(y)for all y on which �0 is de�ned. If y is x then the result follows by rule D1. If yis not x the result follows by the induction hypothesis. A similar analysis holdswhen �0 is generated by an execution of x = hy; zi where the argument relieson the existence of rule D2. In the case where �0 is generated by y = �i(x) theargument involves a combination of rules D3 and D4. Note that if the rules failto generate x) INT then x must be a pair and run time checks can be omittedfrom the compilation of y = �i(x).By counting pre�x �rings one can show that the running time of the algorithmin �gure 3 is dominated by the number of pre�x �rings of D4 which is O(N3). Itis possible to show that determining whether x) INT is derivable from a givenset of assignments using the rules in �gure 3 is 2NPDA complete [11, 15]. 2NPDAis the class of languages recognizable by a two-way nondeterministic pushdownautomaton. A language L will be called 2NPDA-hard if any problem in 2NPDAcan be reduced to L in n polylog n time. We say that a problem can be solvedin sub-cubic time if it can be solved in O(nk) time for k < 3. If a 2NPDA-hardproblem can be solved in sub-cubic time then all problems in 2NPDA can besolved in sub-cubic time. The data 
ow problem is 2NPDA-complete in the sensethat it is in the class 2NPDA and is 2NPDA-hard. No sub-cubic procedure isknown for any 2NPDA-complete problem and it seems reasonable to conjecturethat no such procedure exists for computing the information speci�ed by �gure 3.Cubic time is impractical for many applications. However, if we only considerprograms in which the assignment statements are well typed using types of abounded size, then a more e�cient algorithm is possible [10]. This more e�cientalgorithm can also be stated and analyzed as a set of inference rules, althoughwe will not do so here.5 Flow Analysis in the Lambda CalculusAs a �nal example of an application of theorem 1 we consider 
ow analysis in thelambda calculus with pairing. The lambda calculus can be viewed as an abstract



functional programming language where a program is a term and executing theprogram corresponds to computing the value of a term. The terms of the purelambda calculus with pairing are de�ned by the following grammar.e ::= x j he1; e2i j �1(e) j �2(e) j (e1; e2) j �x:eWe de�ne the operational semantics of the lambda calculus in �gure 4. Thesemantics is itself written as a bottom-up logic program evaluator. The evalu-ation rules manipulate assertions of the form compute(e; �) and he; �i )� v.Intuitively, the assertion compute(e; �) states that evaluator should computethe value of term e under the variables bindings given by �. The assertionhe; �i )� v states that v is the resulting value. The initial database consistsof a single assertion of the form compute(e; ;) where e is a closed term and ;is the empty binding environment. Rules E4 and E5 derive other assertions ofthe form compute(w; �). Note that the rules maintain the invariant that in allderivable assertions of the form compute(w; �) we have that w is a subterm ofthe original top level term. We can think of the term w as the program counterand the � as the program store.Figure 5 gives an algorithm for both control and data 
ow analysis for the�-calculus with pairing. The rules are numbered so as to suggest alignmentwith the rules in �gure 4. The input to the analysis is a single assertion of theform compute(e) where e is a closed term. Rules F1, F2, F7 and F9 derive allassertions of the form compute(w) where w is a subterm of e. The rules alsoderive assertions of the form e) w and e)� w where e and w are subterms ofthe input. All assertions of the form e)� v have the property that the \value"v is either a lambda expression or a pairing expression.To verify the analysis in �gure 5 is conservative, i.e., to establish its correct-ness, we view each assertions of the form e)� w as a production in a grammarfor generating values. To maintain consistency with �gure 4, we de�ne a value tobe either a pair h�x:e; �i, where � maps the free variables of �x:e to values, ora pair of values. Note that the base case is given by closed lambda expressionsand empty substitutions. The rules in �gure 4 generate assertions of the formcompute(e; �), where e is a subterm of the input term and � maps variablesto values, plus assertions of the form he; �i )� v where v is a value. We nowformally treat the output of �gure 5 as de�ning a grammar. For any subterm eof the input term and value v we de�ne e *� v to mean that either e )� �x:uand v is h�x:u; �i where � is a substitution satisfying y *� �(y) for all y inthe domain of �, or v is a pair hv1; v2i such that e)� hw1; w2i with w1 *� v1and w2 *� v2. The rules in �gure 5 are conservative in the sense that if �gure 4generates he; �i )� v then �gure 5 generates a grammar yielding e *� v. Theproof is by computational induction on the inference rules in �gure 4 and isomitted here. Note, however, that if, for a given subterm e, �gure 5 does notgenerate any assertion of the form e )� �x:e then it follows that all values ofe are pairs and run time checks safety checks in the compilation of �j(e) canbe omitted. By counting pre�x �rings in the rules in �gure 5 we get that the



E1 compute((f w); �)compute(f; �); compute(w; �)E2 compute(�x:e; �)h�x:e; �i )� h�x:e; �iE3 compute(x; �)hx; �i )� �(x)E4 compute((f w); �)hf; �i )� h�x:e; �0ihw; �i )� vh(f w); �i ) he; �0[x := v]iE5 p) qcompute(q)E6 p) qq )� vp)� v

E7 compute(he1; e2i; �)compute(e1; �); compute(e2; �)E8 compute(he1; e2i; �)he1; �i )� v1he2; �i )� v2hhe1; e2i; �i )� hv1; v2iE9 compute(�j(u); �)compute(u; �)E10 compute(�j(u); �)hu; �i )� hv1; v2ih�j(u); �i )� vj
Fig. 4. An algorithm for evaluating lambda terms.



F1 compute((f w))compute(f); compute(w)F2 compute(�x:e)�x:e)� �x:e; compute(e)F4 compute((f w)); f )� �x:ux) w; (f w)) uF6 u) w; w)� vu)� v
F7 compute(he1; e2i)compute(e1); compute(e2);he1; e2i )� he1; e2iF9 compute(�j(u))compute(u)F10 compute(�j(u))u)� he1; e2i�j(u)) ejFig. 5. Flow analysis for the �-Calculus with pairing.running time of this analysis is O(N3) where N is the number of subterms ofthe input term.The analysis de�ned in �gure 5 can be viewed as a form of set based anal-ysis [2, 7]. The rules can also be used to determine if the given term is typableby recursive types with function, pairing, and union types [14] using argumentssimilar to those relating control 
ow analysis to partial types [13,19]. It is pos-sible to give a sub-transitive 
ow algorithm which runs in linear time under theassumption that the input expression is well typed and that every type expres-sion has bounded size [10]. The sub-transitive analysis algorithm can also bepresented as a bottom-up logic program whose running time can be analyzedusing theorem 1.6 A Union-Find Meta-Complexity TheoremA variety of program analysis algorithms exploit equality. Perhaps the mostfundamental use of equality in program analysis is the use of uni�cation in typeinference for simple types. Other examples include the nearly linear time 
owanalysis algorithm of Bondorf and Jorgensen [3], the quadratic type inferencealgorithm for an Abadi-Cardelli object calculus given by Henglein [12], and thedramatic improvement in empirical performance due to equality reported byFahndrich et al. in [6]. Here we formulate a general approach to the incorporationof union-�nd methods into algorithms de�ned by bottom-up inference rules. In



this section we give a general meta-complexity theorem for such union �nd rulesets.We let UNION, FIND, and MERGE be three distinguished binary predicate sym-bols. The predicate UNION can appear in rule conclusions but not in rule an-tecedents. The predicates FIND and MERGE can appear in rule antecedents butnot in rule conclusions. A bottom-up bound rule set satisfying these conven-tions will be called a union-�nd rule set. Intuitively, an assertion of the formUNION(u; w) in the conclusion of a rule means that u and w should be madeequivalent. An assertion of the form MERGE(u; w) means that at some point aunion operation was applied to u and w and, at the time of that union operation,u and w were not equivalent. An assertion FIND(u; f) means that at some pointthe �nd of u was the value f .For any given database we de�ne the merge graph to be the undirected graphcontaining an edge between s and w if either MERGE(s; w) or MERGE(w; s) is inthe database. If there is a path from s to w in the merge graph then we saythat s and w are equivalent. We say that a database is union-�nd consistent iffor every term s whose equivalence class contains at least two members thereexists a unique term f such that for every term w in the equivalence class of s thedatabase contains FIND(w; f). This unique term is called the �nd of s. Note thata database not containing any MERGE or FIND assertions is union-�nd consistent.We now de�ne the result of performing a union operation on the terms s and t ina union-�nd consistent database. If s and t are already equivalent then the unionoperation has no e�ect. If s and t are not equivalent then the union operationadds the assertion MERGE(s; t) plus all assertions of the form FIND(w; f) wherew is equivalent to either s or t and f is the �nd of the larger equivalence classif either equivalence class contains more than one member | otherwise f is theterm t. The fact that the �nd value is the second argument if both equivalenceclasses are singleton is signi�cant for the complexity analysis of the uni�cationand congruence-closure algorithms. Note that if either class contains more thanone member, and w is in the larger class, then the assertion FIND(w; f) does notneed to be added. With appropriate indexing the union operation can be run intime proportional to number of new assertions added, i.e., the size of the smallerequivalence class. Also note that whenever the �nd value of term changes thesize of the equivalence class of that term at least doubles. This implies that for agiven term s the number of terms f such that E contains FIND(s; f) is at mostlog (base 2) of the size of the equivalence class of s.Of course in practice one should erase obsolete FIND assertions so that for anyterm s there is at most one assertion of the form FIND(s; f). However, becauseFIND assertions can generate conclusions before they are erased, the erasureprocess does not improve the bound given in theorem 2 below. In fact, sucherasure makes the theoremmore di�cult to state. In order to allow for a relativelysimply meta-complexity theorem we do not erase obsolete FIND assertions.We de�ne an clean database to be one not containing MERGE or FIND as-sertions. Given a union-�nd rule set R and a clean database D we say that adatabase E is an R-closure of D if E can be derived from D by repeatedly ap-



plying rules in R | including rules that result in union operations | and nofurther application of a rules in R changes E. Unlike the case of traditional in-ference rules, a union-�nd rule set can have many possible closures | the set ofderived assertions depends on the order in which the rules are used. For exampleif we derive the three union operations UNION(u;w), UNION(s; w), and UNION(u; s)then the merge graph will contain only two arcs and the graph depends on theorder in which the union operations are done. If rules are used to derived otherassertions from the MERGE assertions then arbitrary relations can depend on theorder of inference. For most algorithms, however, the correctness analysis andrunning time analysis can be done independently of the order in which the rulesare run. We now present a general meta-complexity theorem for union-�nd rulesets.Theorem 2. For any union-�nd rule set R there exists an algorithm mapping Dto an R-closure of D, denoted as R(D), that runs in time O(jDj+ jPR(R(D))j+jF (R(D))j) where F (R(D)) is the set of FIND assertions in R(D).The proof is essentially identical to the proof of theorem 1. The same source-to-source transformation is applied to R to show that without loss of gen-erality we need only consider single antecedent rules plus rules of the formP (x; y) ^ Q(y; z) ! R(x; y; z) where x, y, and z are variables and P , Q, andR are predicates other than UNION, FIND, or MERGE. For all the rules that do nothave a UNION assertion in their conclusion the argument is the same as before.Rules with union operations in the conclusion are handled using the union op-eration which has unit cost for each pre�x �ring leading to a redundant unionoperation and where the cost of a non-redundant operation is proportional tothe number of new FIND assertions added.7 Uni�cationGiven two �rst order terms t1 and t2, uni�cation is the problem of determining ifthere exists a substitution � such that �(t1) = �(t2). If such a substitution exists,then one is interested in �nding the most general substitution, the substitution
 such that if � satis�es �(t1) = �(t2) then we have that there exists a �0 suchthat � = �0 � 
, i.e., �(u) = �0(
(u)) for all terms u. Uni�cation is used in logicprogramming when one allows the database to contain assertions with variables.To give a uni�cation algorithm as a set of inference rules we assume thatthe input to the algorithm contains the single assertion UNIFY!(t01; t02) where t01and t2 prime are ground terms (data structures) representing the input termst1 and t2. It is possible to represent �rst order terms using constants and asingle pairing function. So we can assume without loss of generality that theinput terms are constructed from constants and a single pairing function whenwe write the pair of e1 and e2 as he1; e2i. An elegant but ine�cient uni�cationalgorithm is de�ned by the following rule plus the re
exivity, symmetry rules forthe predicate =.



U1 UNIFY!(t1; t2)t1 = t2 U2 ht1; t2i = hu1; u2it1 = u1; t2 = u2Before presenting a more e�cient union-�nd based algorithm we considerthe correctness of the above rules as an implementation of uni�cation. The rulesde�ne an equivalence relation on the subterms of the input terms. The constantsymbols in the input terms are divided into two types | those representingconstants and functions of the original terms and those representing variablesof the original terms. If two di�erent non-variable constants become equated,or if a non-variable constant is equated with a pair then we say that a \clash"has occurred. In this case the input terms are not uni�able. We can also de�nea \subterm" relation that takes into account the equivalence relation. Morespeci�cally, we say that e is a virtual subterm of w if either e is a subterm ofw or w is equivalent to a term w0 such that e is a virtual subterm of w0. Ifthe virtual subterm relation contains a cycle then we say that the uni�cationresults in an occurs-check violation (some term occurs inside itself). If thereis no clash and no occurs-check violation then a most general uni�er can beconstructed as follows. First one selects an element of each equivalence classwhere we give preference to non-variable elements | if the class contains a non-variable then the canonical element must be a non-variable. Then we de�ne �eto be the canonical representative of the equivalence class of e if that canonicalrepresentative is not a pair, and to be h�u; �wi if the canonical representativeis the pair hu; vi. If the virtual subterm relation is acyclic then �e is a �niteterm. The most general uni�er is the substitution mapping x to �x. The detailsof the correctness proof for this uni�cation algorithm are beyond the scope ofthis paper. Here we focus on �nding a simple presentation of a more e�cientalgorithm for constructing the equivalence relation de�ned by rules U1 and U2.The algorithm de�ned by rules U1 and U2 uses explicit rules for equality(which are omitted above) rather a union-�nd data structure. The running timeof U1 and U2 can be analyzed using theorem 1. Let N be the number of subtermsof the input term. The size of R(D) is O(N2) and the number of pre�x �ringsis dominated by the number of pre�x �rings of the transitivity rule for equalityand is O(N3). A more e�cient algorithm for computing the same equivalencerelation is de�ned by the following two rules.U3 UNIFY!(x; y)UNION(x; y) U4 FIND(hx; yi; f)UNION(�1(f); x); UNION(�2(f); y)



We �rst note that U3 and U4 e�ectively implement U1 and U2. In particular,if hu1; u2i is in the same equivalence class as hw1; w2i then they must both havethe same �nd value f and both u1 and w1 must be equivalent to�i(f) and henceequivalent to each other.To analyze the running time of the rules U3 and U4 we �rst note that therules maintain the invariant that all �nd values are terms appearing in the inputproblem (the union operation breaks ties be using the second argument as thesource of the �nd value). This implies that every union operation is either of theform UNION(s; w) or UNION(�i(w); s) where s and w appear in input problem.Let N be the number of distinct terms appearing in the input. We now havethat there are only O(N ) terms involved in the equivalence relation de�nedby the merge graph. For a given term s the number of assertions of the formFIND(s; f) is at most the log (base 2) of the size of the equivalence class of s. Sowe now have that there are only O(N logN ) FIND assertions in the closure. Thisimplies that there are onlyO(N logN ) pre�x �rings. Theorem 2 now implies thatthe closure can be computed in O(N logN ) time. The best known uni�cationalgorithm runs in O(N ) time [20] and the best on-line uni�cation algorithmruns in O(N�(N )) time where � is the inverse of Ackermann's function. Theapplication of theorem 2 to rules U3 and U4 yields a slightly worse running timefor what is, perhaps, a simpler presentation.8 Congruence ClosureThe congruence closure problem is to determine whether an equation s = t be-tween ground terms is provable form a given set of equations between groundterms using the re
exivity, symmetry, transitivity and congruence rules for equal-ity. As with uni�cation, we will assume that expressions are represented usingconstants and a single pairing function. The congruence property of equalitystates that if u1 = w1 and u2 = w2 then hu1; u2i = hw1; w2i. The congruencerule can not be used directly in a bottom-up logic program because it generatesan in�nite number of conclusions and hence a bottom-up procedure using thisrule directly would fail to terminate.Figure 6 gives a cubic time algorithm for congruence closure. We take theinput to consists of the set of given equations represented by assertions of theform EQUAL!(u; v) and the \goal equation" stated as EQUAL?(s; t). Figure 6assumes the re
exivity, symmetry and transitivity rules for equality.Rules C1, C2, and C3 generate assertions of the form INPUT(e) for all termse appearing in the input problem. Rule C4 is a variant of the congruence rulerestricted so that it can only generate assertions involving input terms. Thisalgorithm terminates in O(N3) time (dominated by the transitivity rule forequality) where N is the number of input terms. It is possible to prove thatrunning the congruence rule on only the input terms su�ces [22].Now we consider the congruence closure algorithm given in �gure 7. Theserules compute the same equivalence relation on the terms in the input as do therules in �gure 6. In particular, if hu1; u2i and hw1; w2i are both input terms



C1 EQUAL?(x; y)INPUT(x); INPUT(y)C2 EQUAL!(x; y)INPUT(x); INPUT(y); x = y C3 INPUT(hx; yi)INPUT(x); INPUT(y)C4 INPUT(hx1; x2i); INPUT(hy1; y2i)x1 = y1; x2 = y2hx1; x2i = hy1; y2iFig. 6. A cubic congruence closure algorithm.C1 EQUAL?(x; y)INPUT(x); INPUT(y)C2' EQUAL!(x; y)INPUT(x); INPUT(y); UNION(x; y)C3 INPUT(hx; yi)INPUT(x); INPUT(y)
C5 INPUT(x)ID-OR-FIND(x; x)C6 FIND(x; y)ID-OR-FIND(x; y)C7 INPUT(hx; yi)ID-OR-FIND(x; x0)ID-OR-FIND(y; y0)UNION(hx0; y0i; hx; yi)Fig. 7. An O(N log3N) algorithm for congruence closure.



where u1 and w1 are have been made equivalent, and u2 and w2 have been madeequivalent, then u1 and w1 must have the same �nd f1 and w1 and w2 musthave the same �nd f2 and both hu1; u2i and hw1; w2i are made equivalent tohf1; f2i. To analyze the complexity of the rules in �gure 7 we �rst note that,since the union operation breaks ties by selecting the �nd value from the secondargument, the rules maintain the invariant that every �nd value is an inputterm. Given this, one can see that all terms involved in the equivalence relationare either input terms or pairs of input terms. This implies that there are atmost O(N2) terms involved in the equivalence relation where N is the numberof distinct terms in the input. So we have that for any given term s the numberof assertions of the form FIND(s; f) is O(logn). So the number of �rings ofthe congruence rule is O(n log2N ). But this implies that the number of termsinvolved in the equivalence relation is actually only O(n log2N ). Since each suchterm can appear in the left hand side of at most O(logN ) FIND assertions, therecan be at most O(N log3N ) FIND assertions. Theorem 2 now implies that theclosure can be computed in O(N log3N ) time. It is possible to show that byerasing obsolete FIND assertions the algorithm can be made to run in O(n logn)time | the best known running time for congruence closure.9 Henglein's Quadratic AlgorithmType inference is the problem of taking a program without type declarations andinferring types for program variables. For many languages and type systems itis possible to determine, for a given program without type declarations, whetheror not there exist type declarations under which the program is well typed. Inthis case we say that the type inference problem is decidable. Perhaps the mostfundamental type inference algorithm is for the Hindley-Milner type system usedin the programming language ML [16]. Here we consider Henglein's quadratictime algorithm for determining typability in a variant of the Abadi-Cardelliobject calculus [12,1]. This algorithm is interesting because the �rst algorithmpublished for the problem was a classical dynamic transitive closure algorithmrequiring O(N3) time [18] and because Henglein's presentation of the quadraticalgorithm is given in classical pseudo-code and is fairly complex.The type inference problem solved by Henglein's algorithm is for object-oriented programs under a certain type system for objects. An object can beviewed as a record with �elds or slots. An object type speci�es types for �elds.For example, the type [`1 = INT; `2 = INT] denotes set of all objects in whichthe �elds `1 and `2 are both integers. Note that the type [`1 = INT; `2 = INT] isa subtype (a subset) of the type [`1 = INT] | anything in which both �elds `1and `2 are integers is something where the �eld `1 is an integer. In the \pure"object calculus of Abadi and Cardelli there are only objects | there are nointegers, procedures or other data types. The pure calculus is of theoreticalinterest because it isolates and simpli�es the nature of the objects and objecttypes. In the pure object calculus type expressions are de�ned by the following



grammar where � represents type variables.� ::= � j [`1 = �1; : : : ; `n = �n] j ��:�This grammar allows for the universal type [] that places no constraints onan object and hence represents the set of all objects. In the Abadi-Cardellilanguage objects compute the values for slots on demand (rather than storingthe value in the slot). On-demand computation of slot values allows objects tobe \in�nitely deep". In particular, recursive types such as ��[`1 = �; `2 = �]are meaningful and denote the set of objects � where slot `1 has type � and inwhich `2 (recursively) has type �. A type expression is closed if all type variablesin that expression are bound in � expressions, e.g., the expression ��[`1 = �] isclosed.A presentation the Abadi-Cardelli programming language is beyond the scopeof this paper. Here we simply note that the problem of determining the existenceof acceptable type declarations can be converted to problem of determiningwhether there exists type expressions satisfying a certain set of constraints. Morespeci�cally, we can take the input to be a set of inequalities of the form �1 � �2where �1 and �2 are �nite type expression as de�ned by the above grammar.The problem is to �nd closed type expressions for the type variables such thatthe constraints are satis�ed. To de�ne this problem precisely one must de�nethe inequality relation �1 � �2 for closed type expressions �1 and �2. Here weare interested in an \invariant" interpretation of type inequality | a closed type[`1 = �1; : : : ; `n = �n] is a subtype of a closed type [m1 = �1; : : : ;mk = �k] ifeach mi is equal to some `j where �j equals �i. Equality on (recursive) typesis de�ned to mean that the (possibly in�nite) type expressions that result fromunrolling all recursive de�nitions are equal.Although super�cially the type inference problem may seem quite complex,there is a very simple cubic time decision procedure. We assume that the in-put has been preprocessed so that for each type expression [`1 = �1; : : : ; `n =�n] appearing in the input (either at the top level or as a subexpression ofa top level type expression) the database also includes all assertions of theform ACCEPTS([`1 = �1; : : : ; `n = �n]; `i) and [`1 = �1; : : : ; `n = �n]:`i = �iwith 1 � i � n. Note that this preprocessing can be done in linear time.The cubic algorithm can be given as a bottom-up logic program consisting ofthe following rules plus the re
exivity, symmetry, and transitivity rules for =.� = �� � �� � �; � � 
� � 
 ACCEPTS(�; `)ACCEPTS(�; `)� � ��:` = �:`



We say that the input is rejected by the rules if the rules derive an assertionof the form � � � where � accepts a �eld not accepted by �. One can showthat the rules are \sound" in the sense that if the rules reject the input (derivea contradiction) then the constraints are unsatis�able. Conversely, if the rulesdo not reject the input then it is possible to show that one can construct asolution to the constraints although the proof is beyond the scope of this paper.By counting pre�x �rings we get that this algorithm runs in O(N3) time.� � �� ) �MERGE(�; �)� ) �; � ) �� ) �� )� �� ) �; � )� 
� )� 

� = �UNION(�; �)ACCEPTS(�; `)ACCEPTS(�; `)� )� �UNION(�:`; �:`)

Fig. 8. Henglein's type inference algorithm.Figure 8 gives a quadratic union-�nd algorithm which computes the sameclosure as the cubic time rules. The equality relation is stored in the union-�nd data structure. The inequality relation is stored in the relation ) andits transitive closure )�. Recall that a merge assertion is generated for eachnon-redundant union operation. There can be at most O(N ) merge assertions.Hence the base ordering) as only O(N ) edges. The version of transitive closureimplemented in these rules is O(en) for an input graph of e edges and n nodes| we get only O(N2) pre�x �rings in the transitive closure rules. The numberof pre�x �rings in the remaining rules is also O(N2) and the number of �ndassertions is O(N logN ) so the total running time O(N2).
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