
15-819K: Logic Programming

Lecture 3

Induction

Frank Pfenning

September 5, 2006

One of the reasons we are interested in high-level programming lan-
guages is that, if properly designed, they allow rigorous reasoning about
properties of programs. We can prove that our programs won’t crash, or
that they terminate, or that they satisfy given specifications. Logic pro-
grams are particularly amenable to formal reasoning.

In this lecture we explore induction, with an emphasis on induction on
the structure of deductions sometimes called rule induction in order to prove
properties of logic programs.

3.1 From Logical to Operational Meaning

A logic program has multiple interpretations. One is as a set of inference
rules to deduce logical truths. Under this interpretation, the order in which
the rules are written down, or the order in which the premisses to a rule are
listed, are completely irrelevant: the true propositions and even the struc-
ture of the proofs remain the same. Another interpretation is as a program,
where proof search follows a fixed strategy. As we have seen in prior lec-
tures, both the order of the rules and the order of the premisses of the rules
play a significant role and can make the difference between a terminating
and a non-terminating computation and in the order in which answer sub-
stitutions are returned.

The different interpretations of logic programs are linked. The strength
of that link depends on the presence or absence of purely operational con-
structs such as conditionals or cut, and on the details of the operational
semantics that we have not yet discussed.

The most immediate property is soundness of the operational semantics:
if a query A succeeds with a substitution θ, then the result of applying the

LECTURE NOTES SEPTEMBER 5, 2006

L3.2 Induction

substitution θ to A (written Aθ) is true under the logical semantics. In other
words, Aθ has a proof. This holds for pure logic programs but does not
hold in the presence of logic variables together with negation-as-failure, as
we have seen in the last lecture.

Another property is completeness of the operational semantics: if there is
an instance of the query A that has a proof, then the query should succeed.
This does not hold, since logic programs do not necessarily terminate even
if there is a proof.

But there are some intermediate points. For example, the property of
non-deterministic completeness says that if the interpreter were always al-
lowed to choose which rule to use next rather than having to use the first
applicable one, then the interpreter would be complete. Pure logic pro-
grams are complete in this sense. This is important because it allows us to
interpret finite failure as falsehood: if the interpreter returns with the an-
swer ‘no’ it has explored all possible choices. Since none of them has led
to a proof, and the interpreter is non-deterministically complete, we know
that no proof can exist.

Later in the course we will more formally establish soundness and non-
deterministic completeness for pure logic programs. It is relevant for this
lecture, because when we want to reason about logic programs it is impor-
tant to consider at which level of abstraction this reasoning takes place: Do
we consider the logical meaning? Or the operational meaning including
the backtracking behavior? Or perhaps the non-deterministic operational
meaning? Making a mistake here could lead to a misinterpretation of the
theorem we proved, or to a large amount of unnecessary work. We will
point out such consequences as we go through various forms of reasoning.

3.2 Rule Induction

We begin by reasoning about the logical meaning of programs. As a simple
example, we go back to the unary encoding of natural numbers from the
first lecture. For reference we repeat the predicates for even and plus

even(z)
evz

even(N)

even(s(s(N)))
evs

plus(z, N,N)
pz

plus(M,N,P)

plus(s(M),N, s(P))
ps

Our aim is to prove that the sum of two even numbers is even. It is not

LECTURE NOTES SEPTEMBER 5, 2006

Induction L3.3

immediately obvious how we can express this property on the relational
specification. For example, we might say:

For any m, n, and p, if even(m) and even(n) and plus(m,n, p) then
even(p).

Or we could expressly require the existence of a sum p and the fact that it
is even:

For any m, n, if even(m) and even(n) then there exists a p such that
plus(m,n, p) and even(p).

If we knew that plus is a total function in its first two arguments (that is,
“For any m and n there exists a unique p such that plus(m,n, p).”), then these
two would be equivalent (see Exercise 3.2).

We will prove it in the second form. The first idea for this proof is usu-
ally to examine the definition of plus and see that it is defined structurally
over its first argument m: the rule pz accounts for z and the rule ps reduces
s(m) to m. This suggests an induction over m. However, in the predicate
calculus (and therefore also in our logic programming language), m can be
an arbitrary term and is therefore not a good candidate for induction.

Looking at the statement of the theorem, we see we are given the in-
formation that even(m). This means that we have a deduction of even(m)
using only the two rules evz and evs, since we viewed these two rules as
a complete definition of the predicate even(m). This licenses us to proceed
by induction on the structure of the deduction of even(m). This is some-
times called rule induction. If we want to prove a property for all proofs of a
judgment, we consider each rule in turn. We may assume the property for
all premisses of the rule and have to show that it holds for the conclusion.
If we can show this for all rules, we know the property must hold for all
deductions.

In our proofs, we will need names for deductions. We use script letters
D, E , and so on, to denote deduction and use the two-dimensional notation

D
J

if D is a deduction of J .

Theorem 3.1 For any m, n, if even(m) and even(n) then there exists a p such
that plus(m,n, p) and even(p).

Proof: By induction on the structure of the deduction D of even(m).

LECTURE NOTES SEPTEMBER 5, 2006

L3.4 Induction

Case: D =
even(z)

evz where m = z.

even(n) Assumption
plus(z, n, n) By rule pz

There exists p such that plus(z, n, p) and even(p) Choosing p = n

Case: D =

D′

even(m′)

even(s(s(m′)))
evs where m = s(s(m′)).

even(n) Assumption
plus(m′, n, p′) and even(p′) for some p′ By ind. hyp. on D′

plus(s(m′), n, s(p′)) By rule ps

plus(s(s(m′)), n, s(s(p′))) By rule ps

even(s(s(p′))) By rule evs

There exists p such that plus(s(s(m′)), n, p) and even(p)
Choosing p = s(s(p′)).

2

We have written here the proof in each case line-by-line, with a justi-
fication on the right-hand side. We will generally follow this style in this
course, and you should arrange the answers to exercises in the same way
because it makes proofs relatively easy to check.

3.3 Deductions and Proofs

One question that might come to mind is: Why did we have to carry out an
inductive proof by hand in the first place? Isn’t logic programming proof
search according to a fixed strategy, so can’t we get the operational seman-
tics to do this proof for us?

Unfortunately, logic programming search has some severe restrictions
so that it is usable as a programming language and has properties such as
soundness and non-deterministic completeness. The restrictions are placed
both on the forms of programs and the forms of queries. So far, in the
logic that underlies Prolog, rules establish only atomic predicates. Further-
more, we can only form queries that are conjunctions of atomic proposi-
tions, possibly with some variables. This means that queries are purely ex-
istential: we asked whether there exists some instantiation of the variables

LECTURE NOTES SEPTEMBER 5, 2006

Induction L3.5

so that there exists a proof for the resulting proposition as in the query
?- plus(s(z), s(s(z)), P) where we simultaneously ask for a p and a
proof of plus(s(z), s(s(z)), p).

On the other hand, our theorem above is primarily universal and only
on the inside do we see an existential quantifier: “For every m and n, and for
every deduction D of even(m) and E of even(n) there exists a p and deductions F
of plus(m,n, p) and G of even(p).”

This difference is also reflected in the structure of the proof. In response
to a logic programming query we only use the inference rules defining the
predicates directly. In the proof of the theorem about addition, we instead
use induction in order to show that deductions of plus(m,n, p) and even(p)
exist. If you carefully look at our proof, you will see that it contains a recipe
for constructing these deductions from the given ones, but it does not con-
struct them by backward search as in the operational semantics for logic
programming. As we will see later in the course, it is in fact possible to
represent the induction proof of our first theorem also in logic program-
ming, although it cannot be found only by logic programming search.

We will make a strict separation between proofs using only the infer-
ence rules presented by the logic programmer and proofs about these rules.
We will try to be consistent and write deduction for a proof constructed di-
rectly with the rules and proof for an argument about the logical or opera-
tional meaning of the rules. Similarly, we reserve the terms proposition, goal,
and query for logic programs, and theorem for properties of logic programs.

3.4 Inversion

An important step in many induction proofs is inversion. The simplest form
of inversion arises if have established that a certain proposition is true, and
that the proposition matches the conclusion of only one rule. In that case
we know that this rule must have been used, and that all premisses of the
rule must also be true. More generally, if the proposition matches the con-
clusion of several rules, we can split the proof into cases, considering each
one in turn.

However, great care must be taken with applying inversion. In my ex-
perience, the most frequent errors in proofs, both by students in courses
such as this and in papers submitted to or even published in journals, are
(a) missed cases that should have been considered, and (b) incorrect appli-
cations of inversion. We can apply inversion only if we already know that a
judgment has a deduction, and then we have to take extreme care to make
sure that we are indeed considering all cases.

LECTURE NOTES SEPTEMBER 5, 2006

L3.6 Induction

As an example we prove that the list difference is uniquely determined,
if it exists. As a reminder, the definition of append in rule form. We use the
Prolog notation [] for the empty list, and [x|xs] for the list with head x and
tails xs.

append([], ys, ys)
apnil

append(xs, ys, zs)

append([x|xs], ys, [x|zs])
apcons

We express this in the following theorem.

Theorem 3.2 For all xs and zs and for all ys and ys′, if append(xs, ys, zs) and
append(xs, ys′, zs) then ys = ys′.

Proof: By induction on the deduction D of append(xs, ys, zs). We use E to
denote the given deduction append(xs, ys′, zs).

Case: D =
append([], ys, ys)

where xs = [] and zs = ys.

append([], ys′, ys) Given deduction E
ys′ = ys By inversion on E (rule apnil)

Case: D =

D1

append(xs1, ys, zs1)

append([x|xs1], ys, [x|zs1])
where xs = [xs|xs1], zs = [xs|zs1].

append([x|xs1], ys′, [x|zs1]) Given deduction E
append(xs1, ys′, zs1) By inversion on E (rule apcons)
ys = ys′ By ind. hyp. on D1

2

3.5 Operational Properties

We do not yet have formally described the operational semantics of logic
programs. Therefore, we cannot prove operational properties completely
rigorously, but we can come close by appealing to the intuitive semantics.
Consider the following perhaps somewhat unfortunate specification of the
predicate digit for decimal digits in unary notation, that is, natural numbers
between 0 and 9.

digit(s(s(s(s(s(s(s(s(s(z))))))))))

digit(s(N))

digit(N)

LECTURE NOTES SEPTEMBER 5, 2006

Induction L3.7

For example, we can deduce that z is a digit by using the second rule nine
times (working bottom up) and then closing of the deduction with the first
rule. In Prolog notation:

digit(s(s(s(s(s(s(s(s(s(z)))))))))).

digit(N) :- digit(s(N)).

While logically correct, this does not work correctly as a decision proce-
dure, because it will not terminate for any argument greater than 9.

Theorem 3.3 Any query ?- digit(n) for n > 9 will not terminate.

Proof: By induction on the computation. If n > 9, then the first clause
cannot apply. Therefore, the goal digit(n) must be reduced to the subgoal
digit(s(n)) by the second rule. But s(n) > 9 if n > 9, so by induction
hypothesis the subgoal will not terminate. Therefore the original goal also
does not terminate. 2

3.6 Aside: Forward Reasoning and Saturation

As mentioned in the first lecture, there is a completely different way to
interpret inference rules as logic programs than the reading that underlies
Prolog. This idea is to start with axioms (that is, inference rules with no
premisses) as logical truths and apply all rules in the forward direction,
adding more true propositions. We stop when any rule application that we
could perform does not change the set of true propositions. In that case
we say the database of true propositions is saturated. In order to answer a
query we can now just look it up in the saturated database: if an instance
of the query is in the database, we succeed, otherwise we fail.

In the example from above, we start with a database consisting only of
digit(s(s(s(s(s(s(s(s(s(z)))))))))). We can apply the second rule with this as
a premiss to conclude that digit(s(s(s(s(s(s(s(s(z))))))))). We can repeat this
process a few more times until we finally conclude digit(z). At this point,
any further rule applications would only add facts with already know: the
set is saturated. We see that, consistent with the logical meaning, only the
numbers 0 through 9 are digits, other numbers are not.

In this example, the saturation-based operational semantics via forward
reasoning worked well for the given rules, while backward reasoning did
not. There are classes of algorithms which appear to be easy to describe
via saturation, that appear significantly more difficult with backward rea-
soning and vice versa. We will therefore return to forward reasoning and

LECTURE NOTES SEPTEMBER 5, 2006

L3.8 Induction

saturation later in the class, and also consider how it may be integrated
with backward reasoning in a logical way.

3.7 Historical Notes

The idea to mix reasoning about rules with the usual logic programming
search goes back to work by Eriksson and Hallnäs [2] which led to the
GCLA logic programming language [1]. However, it stops short of sup-
porting full induction. More recently, this line of development been revived
by Tiu, Nadathur, and Miller [9]. Some of these ideas are embodied in the
Bedwyr system currently under development.

Another approach is to keep the layers separate, but provide means
to express proofs of properties of logic programs again as logic programs,
as proposed by Schürmann [8]. These ideas are embodied in the Twelf
system [6].

Saturating forward search has been the mainstay of the theorem prov-
ing community since the pioneering work on resolution by Robinson [7].
In logic programming, it has been called bottom-up evaluation and has his-
torically been applied mostly in the context of databases [5] where satura-
tion can often be guaranteed by language restrictions. Recently, it has been
revisited as a tool for algorithm specification and complexity analysis by
Ganzinger and McAllester [3, 4].

3.8 Exercises

The proofs requested below should be given in the style presented in these
notes, with careful justification for each step of reasoning. If you need a
lemma that has not yet been proven, carefully state and prove the lemma.

Exercise 3.1 Prove that the sum of two even numbers is even in the first form
given in these notes.

Exercise 3.2 Prove that plus(m,n, p) is a total function of its first two arguments
and exploit this property to prove carefully that the two formulations of the prop-
erty that the sum of two even numbers is even, are equivalent.

Exercise 3.3 Prove that times(m,n, p) is a total function of its first two argu-
ments.

Exercise 3.4 Give a relational interpretation of the claim that “addition is com-
mutative” and prove it.

LECTURE NOTES SEPTEMBER 5, 2006

Induction L3.9

Exercise 3.5 Prove that for any list xs, append(xs, [], xs).

Exercise 3.6 Give two alternative relational interpretations of the statement that
“append is associative.” Prove one of them.

Exercise 3.7 Write a logic program to reverse a given list and prove that when
reversing the reversed list, we obtain the original list.

Exercise 3.8 Prove the correctness of quicksort from the previous lecture with re-
spect to the specification from Exercise 2.2: If quicksort(xs, ys) is true then
the second argument is an ordered permutation of the first. Your proof should be
with respect to logic programs to check whether a list is ordered, and whether one
list is a permutation of another.

3.9 References

[1] M. Aronsson, L.-H. Eriksson, A. Gäredal, L. Hallnäs, and P. Olin. The
programming language GCLA—a definitional approach to logic pro-
gramming. New Generation Computing, 7(4):381–404, 1990.

[2] Lars-Henrik Eriksson and Lars Hallnäs. A programming calculus
based on partial inductive definitions. SICS Research Report R88013,
Swedish Institute of Computer Science, 1988.

[3] Harald Ganzinger and David A. McAllester. A new meta-complexity
theorem for bottom-up logic programs. In T.Nipkow R.Goré, A.Leitsch,
editor, Proceedings of the First International Joint Conference on ArAuto-
mated Reasoning (IJCAR’01), pages 514–528, Siena, Italy, June 2001.
Springer-Verlag LNCS 2083.

[4] Harald Ganzinger and David A. McAllester. Logical algorithms. In
P. Stuckey, editor, Proceedings of the 18th International Conference on
Logic Programming, pages 209–223, Copenhagen, Denmark, July 2002.
Springer-Verlag LNCS 2401.

[5] Jeff Naughton and Raghu Ramakrishnan. Bottom-up evaluation of
logic programs. In J.-L. Lassez and G. Plotkin, editors, Computational
Logic. Essays in Honor of Alan Robinson, pages 640–700. MIT Press, Cam-
bridge, Massachusetts, 1991.

[6] Frank Pfenning and Carsten Schürmann. System description: Twelf —
a meta-logical framework for deductive systems. In H. Ganzinger, ed-
itor, Proceedings of the 16th International Conference on Automated Deduc-
tion (CADE-16), pages 202–206, Trento, Italy, July 1999. Springer-Verlag
LNAI 1632.

LECTURE NOTES SEPTEMBER 5, 2006

L3.10 Induction

[7] J. A. Robinson. A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM, 12(1):23–41, January 1965.

[8] Carsten Schürmann. Automating the Meta Theory of Deductive Systems.
PhD thesis, Department of Computer Science, Carnegie Mellon Uni-
versity, August 2000. Available as Technical Report CMU-CS-00-146.

[9] Alwen Tiu, Gopalan Nadathur, and Dale Miller. Mixing finite suc-
cess and finite failure in an automated prover. In C.Benzmüller,
J.Harrison, and C.Schürmann, editors, Proceedings of the Workshop on
Empirically Successful Automated Reasnoing in Higher-Order Logics (ES-
HOL’05), pages 79–98, Montego Bay, Jamaica, December 2005.

LECTURE NOTES SEPTEMBER 5, 2006

