15-819K: Logic Programming
Lecture 4

Operational Semantics

Frank Pfenning

September 7, 2006

In this lecture we begin in the quest to formally capture the operational
semantics in order to prove properties of logic programs that depend on the
way proof search proceeds. This will also allow us to relate the logical and
operational meaning of programs to understand deeper properties of logic
programs. It will also form the basis to prove the correctness of various
form of program analysis, such as type checking or termination checking,
to be introduced later in the class.

4.1 Explicating Choices

To span the distance between the logical and the operational semantics we
have to explicate a series of choices that are fixed when proof search pro-
ceeds. We will proceed in this order:

1. Left-to-right subgoal selection. In terms of inference rules, this means
that we first search for a proof of the first premiss, then the second,
etc.

2. First-to-last clause selection and backtracking. In terms of inference
rules this means when more than one rule is applicable, we begin by
trying the one listed first, then the one listed second, etc.

3. Unification. In terms of inference rules this means when we decide
how to instantiate the schematic variables in a rule and the unknowns
in a goal, we use a particular algorithm to find the most general uni-
fier between the conclusion of the rule and the goal.

LECTURE NOTES SEPTEMBER 7, 2006



L4.2 Operational Semantics

4. Cut. This has no reflection at the level of inference rules. We have to
specify how we commit to particular choices made so far when we
encounter a cut or another control constructs such as a conditional.

5. Other built-in predicates. Prolog has other built-in predicates for
arithmetic, input and output, changing the program at run-time, for-
eign function calls, and more which we will not treat formally.

It is useful not to jump directly to the most accurate and low-level se-
mantics, because we often would like to reason about properties of pro-
grams that are independent of such detail. One set of examples we have
already seen: we can reason about the logical semantics to establish prop-
erties such as that the sum of two even numbers is even. In that case we are
only interested in successful computations, and how we searched for them
is not important. Another example is represented by cut: if a program does
not contain any cuts, the complexity of the semantics that captures it is un-
warranted.

4.2 Definitional Intpreters

The general methodology we follow goes back to Reynolds [3], adapted
here to logic programming. We can write an interpreter for a language
in the language itself (or a very similar language), a so-called definitional
interpreter, meta-interpreter, or meta-circular interpreter. This may fail to com-
pletely determine the behavior of the language we are studying (the object
language), because it may depend on the behavior of the language in which
we write the definition (the meta-language), and the two are the same! We
then transform the definitional interpreter, removing some of the advanced
features of the language we are defining, so that now the more advanced
constructs are explained in terms of simpler ones, removing circular as-
pects. We can interate the process until we arrive at the desired level of
specification.

For Prolog (although not pure first-order logic programming), the sim-
plest meta-interpreter, hardly deserving the name, is

solve(A) :— A.

To interpret the argument to solve as a goal, we simply execute it using the
meta-call facility of Prolog.

This does not provide a lot of insight, but it brings up the first issue:
how do we represent logic programs and goals in order to execute them

LECTURE NOTES SEPTEMBER 7, 2006



Operational Semantics L4.3

in our definitional interpreter? In Prolog, the answer is easy: we think of
the comma which separates the subgoal of a clause as a binary function
symbol denoting conjunction, and we think of the constant true which al-
ways succeeds as just a constant. One can think of this as replicating the
language of predicates in the language of function symbols, or not distin-
guishing between the two. The code above, if it were formally justified
using higher-order logic, would take the latter approach: logical connec-
tives are data and can be treated as such. In the next interpreter we take
the first approach: we overload comma to separate subgoals in the meta-
language, but we also use it as a function symbol to describe conjunction
in the object language. Unlike in the code above, we will not mix the two.
The logical constant true is similarly overloaded as a predicate constant of
the same name.

solve(true).
solve((A , B)) :- solve(A), solve(B).
solve(P) :- clause(P, B), solve(B).

In the second clause, the head solve ((A , B)) employs infix notation,
and could be written equivalently as solve(’,’ (A, B)).! The additional
pair of parentheses is necessary since solve(A , B) would be incorrectly
seen as a predicate solve with two arguments.

The predicate clause/2 is a built-in predicate of Prolog.> The subgoal
clause (P, B) will unify P with the head of each program clause and B
with the corresponding body. In other words, if clause (P, B) succeeds,
then P :- B. is an instance of a clause in the current program. Prolog will
try to unify P and B with the clauses of the current program first-to-last,
so that the above meta-interpreter will work correctly with respect to the
intuitive semantics explained earlier.

There is a small amount of standardization in that a clause P. in the
program with an empty body is treated as if it were P :- true.

This first interpreter does not really explicate anything: the order in
which subgoals are solved in the object language is the same as the order
in the meta-language, according to the second clause. The order in which
clauses are tried is the order in which clause/2 delivers them. And unifi-
cation between the goal and the clause head is also inherited by the object

'In Prolog, we can quote an infix operator to use it as an ordinary function or predicate
symbol.

In Prolog, it is customary to write p/n when refering to a predicate p of arity n, since
many predicates have different meanings at different arities.

LECTURE NOTES SEPTEMBER 7, 2006



L4.4 Operational Semantics

language from the meta-language through the unification carried out by
clause(P, B) between its first argument and the clause heads in the pro-
gram.

4.3 Subgoal Order

According to our outline, the first task is to modify our interpreter so that
the order in which subgoals are solved is made explicit. When encounter-
ing a goal (A , B) we push B onto a stack and solve A first. When A as
has been solved we then pop B off the stack and solve it. We could repre-
sent the stack as a list, but we find it somewhat more elegant to represent
the goal stack itself as a conjunction of goals because all the elements of
goal stack have to be solved for the overall goal to succeed.

The solve predicate now takes two arguments, solve(A, S) where A
is the goal, and S is a stack of yet unsolved goals. We start with the empty
stack, represented by true.

solve(true, true).

solve(true, (A , S)) :- solve(A, S).
solve((A , B), S) :- solve(A, (B, S)).
solve(P, S) :- clause(P, B), solve(B, S).

We explain each clause in turn.
If the goal is solved and the goal stack is empty, we just succeed.

solve(true, true).

If the goal is solved and the goal stack is non-empty, we pop the most
recent subgoal A of the stack and solve it.

solve(true, (A , S)) :- solve(A, S).

If the goal is a conjunction, we solve the first conjunct, pushing the sec-
ond one on the goal stack.

solve((A , B), S) :- solve(A, (B, S)).

When the goal is atomic, we match it against the heads of all clauses in
turn, solving the body of the clause as a subgoal.

solve(P, S) :- clause(P, B), solve(B, S).

We do not explicitly check that P is atomic, because clause(P, B) will
fail if it is not.

LECTURE NOTES SEPTEMBER 7, 2006



Operational Semantics L4.5

4.4 Subgoal Order More Abstractly

The interpreter from above works for pure Prolog as intended. Now we
would like to prove properties of it, such as its soundness: if it proves
solve(A, true) then it is indeed the case that A is true. In order to do
that it is advisable to reconstruct the interpreter above in logical form, so
we can use induction on the structure of deductions in a rigorous manner.

The first step is to define our first logical connective: conjunction! We
also need a propositional constant denoting truth. It is remarkable that
for all the development of logic programming so far, not a single logical
connective was needed, just atomic propositions, the truth judgment, and
deductions as evidence for truth.

When defining logical connectives we follow exactly the same ideas as
for defining atomic propositions: we define them via inference rules, spec-
ifying what counts as evidence for their truth.

A true B true A
AN B true T true

I

These rules are called introduction rules because they introduce a logical
connective in the conclusion.

Next we define a new judgment on propositions. Unlike A true this is
a binary judgment on two propositions. We write it A / S and read it as A
under S. We would like it to capture the logical form of solve(A, S). The
tirst three rules are straightforward, and revisit the corresponding rules for
solve/2.

A/ S
T/T T/AAS
A/BAS
AANB/ S

The last “rule” is actually a whole family of rules, one for each rule
about truth of atoms P.

BiAN---ANB,, /S By true... B, true
P/S for each rule P true

We write the premiss as T / S if m = 0, thinking of T as the empty con-
junction.

LECTURE NOTES SEPTEMBER 7, 2006



L4.6 Operational Semantics

It is important that the definitions of truth (A jtrue) and provability
under a stack-based search strategy (A / S) do not mutually depend on
each other so we can relate them cleanly.

Note that each rule of the new judgment A / S has either one or zero
premisses. In other words, if we do proof search via goal-directed search,
the question of subgoal order does not arise. It has explicitly resolved by
the introduction of a subgoal stack. We can now think of these rules as just
defining a transition relation, reading each rule from the conclusion to the
premiss. This transition relation is still non-deterministic, because more
than one rule could match an atomic predicate, but we will resolve this as
well as we make other aspects of the semantics more explicit.

4.5 Soundness

To show the soundness of the new judgment with respect to truth, we
would like to show thatif A / T then A true. This, however, is not general
enough to prove by induction, since if A is a conjunction, the premiss will
have a non-empty stack and the induction hypothesis will not be applica-
ble. Instead we generalize the induction hypothesis. This is usually a very
difficult step; in this case, however, it is not very difficult to see what the
generalization should be.

Theorem 4.1 If A / S then A true and S true.

Proof: By induction on the structure of the deduction D of A / S.

Case: D=— whereA=5=T.
T / T
A true By A= Tand rule TI
S true By S =T and rule T/
D,
Ay /Sy
Case: D=———  whereA=Tand S = A; A Ss.
T / A1 NSy
A true By A= Tand rule TI
Aq true and Sy true By ind.hyp. on D,
A1 NSy true By rule A1
S true Since S = A1 A S5

LECTURE NOTES SEPTEMBER 7, 2006



Operational Semantics L4.7

Dy
Aq / As NS
Case: D=——  where A = A; A As.
Al N As / S
Ay true and Az A S true By ind.hyp. on D,
Ag true and S true By inversion (rule AJ)
A1 N Ag true By rule A1
D/
BiN---ANBy, /S .
Case: D= — / where A — P and ZLtrue - Bm true
pP/S P true
By A -+ A By, true and S true By ind.hyp. on D’
By true, ..., By, true By m — 1 inversion steps if m > 0 (AI)
P true By given inference rule

If m = 0 then the rule for P has no premisses and we can conclude
P true without any inversion steps.

4.6 Completeness

The completeness theorem for the system with a subgoal stack states that
if A true then A / T. It is more difficult to see how to generalize this. The
following seems to work well.

Theorem 4.2 If A trueand T / Sthen A/ S.

Proof: By induction on the structure of the deduction of A true.

Case: D = T where A =T.
T true
T/S Assumption
A/ S Since A=T
Dy (2
Case: D = Autrue Ay frue AJ Where A = A} A\ As.
A1 N Ag true

LECTURE NOTES SEPTEMBER 7, 2006



L4.8 Operational Semantics

T/S Assumption
A /S By ind.hyp. on D,
T/ANS By rule
A1/ A NS By ind.hyp. on D,
AiNAg /S By rule
D1 D,
Case: D = By true ... B true where A = P.
P true

This is similar to the previous case, except we have to repeat the pat-
tern m — 1 times. One could formalize this as an auxiliary induction,
but we will not bother.

T/S Assumption
By /S By ind.hyp. on D,,
T/BnNS By rule
Bp-1/ Bn NS By ind.hyp. on D,,,_;
Bn-1ANBy, /S By rule
T /(Bn-1ANBpn)AS By rule
BiAN...ANBy_1ANBp, /S Repeating previous 3 steps

O

This form of completeness theorem is a non-deterministic completeness
theorem, since the choice which rule to apply in the case of an atomic goal
remains non-deterministic. Furthermore, the instantiation of the schematic
variables in the rules is “by magic”: we just assume for the purpose of
the semantics at this level, that all goals are ground and that the semantics
will pick the right instances. We will specify how these choices are to be
resolved in the next lecture.

4.7 Historical Notes

The idea of defining one language in another, similar one for the purpose
of definition goes back to the early days of functional programming. The
idea to transform such definitional interpreters so that advanced features
are not needed in the meta-language was formulated by Reynolds [3]. After
successive transformation we can arrive at an abstract machine. A very sys-
tematic account for the derivations of abstract machines in the functional

LECTURE NOTES SEPTEMBER 7, 2006



Operational Semantics L4.9

setting has been given by Danvy and several of his students (see, for exam-
ple, [1]). Meta-interpreters are also common in logic programming, mostly
with the goal to extend capabilities of the language. One of the earliest
published account is by Bowen and Kowalski [2].

4.8 Exercises

Exercise 4.1 Extend the meta-interpreter without goal stacks to a bounded inter-
preter which fails if no proof of a given depth can be found. In terms of proof trees,
the depth is length of the longest path from the final conclusion to an axiom.

Exercise 4.2 Extend the meta-interpreter without goal stacks with loop detection,
so that if while solving an atomic goal P the identical goal P arises again, that
branch of the search will be terminated with failure instead of diverging. You may
assume that all goals are ground.

Exercise 4.3 Extend the meta-interpreter with goal stacks so that if an atomic goal
succeeds once, we do not search for a proof of it again but just succeed. You may
assume that all goals are ground and you do not need to preserve the memo table
upon backtracking.

Exercise 4.4 Extend the meta-interpreter with the goal stack to trace the execution
of a program, printing information about the state of search.

4.9 References

[1] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard.
A functional correspondence between evluators and abstract machines.
In Proceedings of the 5th International Conference on Principles and Practice
of Declarative Programming (PPDP’03), pages 8-19, Uppsala, Sweden,
August 2003. ACM Press.

[2] Kenneth A. Bowen and Robert A. Kowalski. Amalgamating language
and metalanguage in logic programming. In K.L. Clark and S.-A.
Téarnlund, editors, Logic Programming, pages 153-172. Academic Press,
London, 1982.

[3] John C. Reynolds. Definitional interpreters for higher-order program-
ming languages. In Proceedings of the ACM Annual Conference, pages
717-740, Boston, Massachusetts, August 1972. ACM Press. Reprinted
in Higher-Order and Symbolic Computation, 11(4), pp.363-397, 1998.

LECTURE NOTES SEPTEMBER 7, 2006



