15-819K: Logic Programming
Lecture 5

Backtracking

Frank Pfenning

September 12, 2006

In this lecture we refine the operational semantics further to explicit rep-
resent backtracking. We prove this formulation to be sound. From earlier
examples it should be clear that it can no longer be complete.

5.1 Disjunction and Falsehood

When our aim was to explicitly represent left-to-right subgoal selection,
we introduced conjunction and truth as our first logical connectives. This
allowed us to make the order explicit in the propositions we were interpret-
ing.

In this lecture we would like to make the choice of rule explicit. For this
purpose, it is convenient to introduce two new logical connectives: disjunc-
tion AV B and falsehood L. They are easily defined by their introduction
rules as usual.

A true VI B true
AV B true ! AV B true 2 No LT rule

We can think of falsehood as a disjunction between zero alternatives; there-
fore, there are zero introduction rules.

5.2 Normal Forms for Programs

Sometimes it is expedient to give the semantics of programs assuming a
kind of normal form. The presentation from the previous lecture would
have been slightly simpler if we had presupposed an explicit conjunction
form for programs where each inference rule has exactly one premiss. The

LECTURE NOTES SEPTEMBER 12, 2006

L5.2 Backtracking

transformation to achieve this normal form in the presence of conjunction
and truth is simple: if the rule has multiple premisses, we just conjoin them
to form one premiss. If a rule has no premisses, we insert T as a premiss.
It is easy to prove that this transformation preserves meaning (see Exer-
cise 5.1).

In the semantics presented as the judgment A / S, every step of search
is deterministic, except for selection of the rule to apply, and how to in-
stantiate schematic rules. We will not address the latter choice in today’s
lecture: assume that all goals are ground, and consider for the moment only
programs so that ground goals have only ground subgoals.

A simple condition on the rules that avoids any choice when encounter-
ing atomic predicates is that every ground goal matches the head of exactly
one rule. Then, when we have a goal P the rule to apply is uniquely de-
termined. In order to achieve this, we have to transform our program into
explicit disjunction form. In a later lecture we will see a systematic way to
create this form as part of logic program compilation. For now we are con-
tent to leave this informal and just present programs in this form.

As an example, consider the usual member predicate.

member(X,Ys)
member (X, [X|Y s]) member (X, [Y|Ys])

There are two reasons that this predicate is not in explicit disjunction form.
The first is that there is no clause for member(t, []), violating the require-
ment that there be exactly one clause for each ground goal. The second
is that for goals member(t, [t|ys]), both clauses apply, again violating our
requirement.

We rewrite this in several steps. First, we eliminate the double occur-
rence of X in the first clause in favor of an explicit equality test, X =Y.

XYV member(X,Y's)
member (X, [Y]Ys]) member (X, [Y|Ys])

Now that the two rules have the same conclusion, we can combine them
into one, using disjunction.

X =Y Vmember(X,Ys)
member (X, [Y|Y s])

Finally, we add a clause for the missing case, with a premiss of falsehood.
n X =Y Vmember(X,Ys)
member (X, []) member (X, [Y|Ys])

LECTURE NOTES SEPTEMBER 12, 2006

Backtracking L5.3

This program is now in explicit disjunction form, under the presupposition
that the second argument to member is a list.

In Prolog, the notation for AV Bis A ; B and the notation for L is
fail, so the program above becomes

member (X, []) :- fail.
member (X, [Y | Ys]) :- X = Y ; member(X, Ys).

The Prolog convention is to always put whitespace around the disjunction
to distinguish it more clearly from conjunction.

5.3 Equality

Transforming a program into explicit disjunction form requires equality, as
we have seen in the member example. We write s = ¢ for the proposition
that s and ¢ are equal, with the following introduction rule.

t =1 true

We will also use s # t to denote that two terms are different as a kind of
judgment.

5.4 Explicit Backtracking

Assuming the program is in explicit disjunction form, the main choice con-
cerns how to prove A V B as a goal. The operational semantics of Prolog
prescribes that we try to solve A first and only if that fails do we try B.
This suggest that in addition to the goal stack S, we add another argument
F to our search judgment which records further (untried) possibilities. We
refer to F' as the failure continuation because it records what to do when the
current goal A fails. We write the new judgmentas A /S / F and read this
as: Either A under S or F. More formally, we will establish soundness in the
form thatif A / S/ F then (AAS)V F true. This statement can also be our
guide in designing the rules for the judgment.

First, the rules for conjunction and truth. They do not change much,
just carry along the failure continuation.

A/BAS/F B/S/F
ANB/S/F T/(BAS)/F T/T/F

LECTURE NOTES SEPTEMBER 12, 2006

L5.4 Backtracking

The rules for atomic predicates P are also simple, because we assume the
given rules for truth are in explicit disjunction form.

B/S/F B true
P/S/F for each rule P true

Next, the rule for disjunction. In analogy with conjunction and truth, it
is tempting to write the following two incorrect rules:
A/S/BVF B/S/F
—————— incorrect —————— incorrect
AVB/S/F 1/8/BVF
Let’s try to see the case in the soundness proof for the first rule. The sound-
ness proof proceeds by induction on the structure of the deduction for
A / S/ F. For the first of the incorrect rules we would have to show
thatif (AAS)V (B V F) true then (AV B) A S) V F true. By inversion
on the rules for disjunction, we know that either A A S true, or B true, or
F true. In the middle case (B true), we do not have enough information to
conclude that ((A Vv B) AS) V F true and the proof fails (see Exercises 5.2
and 5.3).
The failure of the soundness proof also suggests the correct rule: we
have to pair up the alternative B with the goal stack S and restore S it
when we backtrack to consider B.

A/S/(BANS)VF B/S/F
AVB/S/F 1/8/(BANS)VF
The goal stack S’ in the second rule is discarded, because it applies to the
goal L which cannot succeed. Instead we restore the goal stack S saved

with B.
It is worth noting explicitly that there is one case we did not cover

norulefor L /S /L

so that our overall goal fails if the current goal fails and there are no further
alternatives.
Finally, we need two rules for equality, where we appeal to the equality
(s = t) and disequality (s # t) in our languages of judgments.
s=t T/S/F s#t L /S/F
s=t/S/F s=t/S/F

In a Prolog implementation this will not lead to difficulties because we as-
sume all goals are ground, so we can always tell if two terms are equal or
not.

LECTURE NOTES SEPTEMBER 12, 2006

Backtracking L5.5

5.5 Soundness

The soundness proof goes along familiar patterns.
Theorem 5.1 If A/ S/ F then (AN S) V F true.

Proof: By induction on the structureof Dof A / S/ F.

Dy
Al/Ag/\S/F

Al/\Ag/S/F

Case: D =

(A1 A (A2 AS)) V F true

A1 A (Ag A S) true or F' true

A1 N (Ag A S) true

A1 true and As true and S true

(A1 AN Ag) AS true

((Ay N Ag) ANS) V F true

F true

((A1 AN Ag) AS)V F true

Dy
Ay / S1/ F

T/(A2NSy)) F

previous case.

Case: D =

Case: D =
T/T/F

T true
T AT true
(TAT)VFE true

(BAS)V F true

B true and S true

LECTURE NOTES

where A =

where A = A; A As.

By ind.hyp. on D,
By inversion

First subcase

By two inversions

By two rule applications
By rule (V1)

Second subcase
By rule (VI5)

where A = T and S = Ay A S7. Similar to the

where A =5=T.

By rule (T 1)
By rule (A1)
By rule VI;

B true
P true

P and

By ind.hyp. on D’

First subcase, after inversion

SEPTEMBER 12, 2006

L5.6 Backtracking

P true By rule
(PANS)VF By rules (Al and VI;)
F true Second subcase, after inversion
(PANS)VF By rule (VI5)
D,
A1/ S/ (Ao NS)V F
Case: D = 1/ 5/ (4) where A = A V As.
AV Ag / S/ F
(A1 ANS)V ((A2 AS) V F) true By ind.hyp. on D;
Aj true and S true First subcase, after inversion
AV As true By rule (V1)
((Ay V Ag) ANS) V F true By rules (Al and V1)
As true and S true Second subcase, after inversion
A1V As true By rule (V1)
((A1 V A) AS)V F true By rules (Al and VI;)
F true Third subcase, after inversion
((A1 V A) AS)V F true By rule (VI5)
Dy
Ay [/ S1/ Fo
Case: D = where A = 1 and F = (A3 A S1) V Fy.
J_/S/ (Ag/\Sl)\/Fo
(Ag A S1) V Fy true By ind.hyp. on D
(_L A S) V ((A2 N 51) V FO) true By rule (VIs)

Cases: The cases for equality are left to the reader (see Exercise 5.4).

5.6 Completeness

Of course, the given set of rules is not complete. For example, the single

rule
diverge vV T

diverge

LECTURE NOTES SEPTEMBER 12, 2006

Backtracking L5.7

cannot be found by search, that is, there is no proof of
diverge / T / L

even though there is a simple proof that diverge true.

TI
T true

diverge V T true

Vg

diverge true

However, it is interesting to consider that the set of rules is complete a
weaker sense, namely thatif A / T / L can be reducedto L / S / L then
there can be no proof of A true. We will not do this here (see Exercise 5.5).
One way to approach this formally is to add another argument and use a

four-place judgment
A/S/F/J

where J is either istrue (if a proof can be found) or isfalse (if the the attempt
to find a proof fails finitely).

5.7 A Meta-Interpreter with Explicit Backtracking

Based on the idea at the end of the last section, we can turn the inference
system into a Prolog program that can tell us explicitly whenever search
succeeds or fails finitely.

Recall the important assumption that all goals are ground, and that the
program is in explicit disjunction form.

solve(true, true, _, istrue).

solve(true, (A, S), F, J) :- solve(A, S, F,).

solve((A , B), S, F, J) :- solve(A, (B, S), F, 1.
solve(fail, _, fail, isfalse).

solve(fail, _, (B, S) ; F), J) :- solve(B, S, F, J).
solve((A ; B), S, F, J) :- solve(A, S, ((B, 8) ; F), .
solve(X =Y), S, F, J) :- X =Y, solve(true, S, F, J).
solve((X =Y), S, F, J) :- X \=Y, solve(fail, S, F, JI).
solve(P, S, F, J) :- clause(P, B), solve(B, S, F, J).

% top level interface
solve(A, J) :- solve(A, true, fail, J).

LECTURE NOTES SEPTEMBER 12, 2006

L5.8 Backtracking

Given a program in explicit disjunction form, such as

member (X, []) :- fail.
member (X, [YIYs]) :- X =Y ; member(X, Ys).

we can now ask

?7- solve(member (1, [2,3,4]), J).
J = isfalse;

?- solve(member (1, [1,2,1,4]), J).
J = istrue;

Each query will succeed only once since our meta-interpreter only searches
for the first solution (see Exercise 5.6).

5.8 Abstract Machines

The meta-interpreter in which both subgoal selection and backtracking are
explicit comes close to the specification of an abstract machine. In order
to see how the inference rule can be seen as transition rules, we consider
A / 8§/ F as the state of the machine. Each rule for this judgment has only
one premiss, so each rule, when read from the conclusion to the premiss
can be seen as a transition rule for an abstract machine.

Examining the rules we can see that for every state there is a unique
state transition, with the following exceptions:

1. Astate T / T / F is final since there is no premiss for the maching
rule. The computation finishes.

2. A state L / S / L is final since there is no rule that applies. The
computation fails.

3. Astate P/ S/ F applies a unique transition (by the requirement that
there be a unique rule for every atomic goal P), although how to find

that rule instance remains informal.

In the next lecture we make the process of rule application more precise,
and we also admit goals with free variables as in Prolog.

LECTURE NOTES SEPTEMBER 12, 2006

Backtracking L5.9

5.9 Historical Notes

The explicit disjunction form is a pre-cursor of Clark’s iff-completion of a
program [2]. This idea is quite general, is useful in compilation of logic
programs, and can be applied to much richer logic programming languages
than Horn logic [1].

Early logic programming theory generally did not make backtracking
explicit. Some references will appear in the next lecture, since some of the
intrinsic interest arises from the notion of substitution and unification.

5.10 Exercises

Exercise 5.1 Prove that if we replace every rule

By true ... B, true
P true

by
BiA---AB,, true

P true

to achieve the explicit conjunction form, the original and revised specification
are strongly equivalent in the sense that there is a bijection between the proofs
in the two formulations for each atomic proposition. Read the empty conjunction
(m=0)asT.

Exercise 5.2 Give a counterexample to show that the failure in the soundness
proof for the first incorrect disjunction rule is not just a failure in the proof: the
system is actually unsound with respect to logical truth.

Exercise 5.3 Investigate if the second incorrect rule for disjunction
B/S/|F

——— incorrect
1L/S/BVF

also leads to a failure in the soundness proof. If so, give a counterexample. If not,
discuss in what sense this rule is nonetheless incorrect.

Exercise 5.4 Complete the soundness proof by giving the cases for equality.

Exercise 5.5 I[nvestigate weaker notions of completeness for the backtracking se-
mantics, as mentioned at the end of the section of completeness.

LECTURE NOTES SEPTEMBER 12, 2006

L5.10 Backtracking

Exercise 5.6 Rewrite the meta-interpreter so it counts the number of proofs of a
goal instead of returning just an indication of whether it is true or false. You may
make all the same assumptions that solve(A, S, F, J) makes.

Exercise 5.7 Revisit the example from Lecture 3
digit(s(N))
digit(s(s(s(s(s(s(s(s(s(2))))))))) digit(IV)

and prove more formally now that any query ?- digit(n) for n > 9 will not
terminate. You should begin by rewriting the program into explicit disjunction
form. Please be clear what you are doing the induction over (if you use induction),
and explain in which way your theorem captures the statement above.

Exercise 5.8 If we were not concerned about space usage or efficiency, we could
write a breadth-first interpreter instead of backtracking. Specify such an inter-
preter using the judgmental style and prove that it is sound and complete with
respect to logical truth. Translate your interpreter into a Prolog program.

5.11 References

[1] Hliano Cervesato. Proof-theoretic foundation of compilation in logic
programming languages. In J. Jaffar, editor, Proceedings of the Joint In-
ternational Conference and Symposium on Logic Programming (JICSLP’98),
pages 115-129, Manchester, England, June 1998. MIT Press.

[2] Keith L. Clark. Negation as failure. In H. Gallaire and]. Minker, edi-
tors, Logic and Databases, pages 293-322. Plenum Press, New York, 1978.

LECTURE NOTES SEPTEMBER 12, 2006

