15-819K: Logic Programming
Lecture 6

Unification

Frank Pfenning

September 14, 2006

In this lecture we take the essential step towards making the choice of goal
and rule instantiation explicit in the operational semantics. This consists of
describing an algorithm for a problem called unification which, given two
terms ¢ and s, tries to find a substitution 6 for its free variables such that
td = s if such a substitution exists. Recall that we write ¢6 for the result of
applying the substitution 6 to the term ¢.

6.1 Using Unification in Proof Search

Before we get to specifics of the algorithm, we consider how we use uni-
fication in proof search. Let us reconsider the (by now tired) example of
unary addition

plus(M, N, P)
— Pz ps
plus(z, N,) plus(s(M), N, (P))

and an atomic goal such as

plus(s(z),s(s(z)), P).

Clearly the conclusion of the first rule does not match this goal, but the
second one does. What question do we answer to arrive at this statement?

The first attempt might be: “There is an instance of the rule such that the
conclusion matches the goal.” When we say instance we mean here the result
of substituting terms for the variables occuring in a rule, proposition, or
term. We can see that this specification is not quite right: we need to in-
stantiate the goal as well, since P must have the form s(P;) for some as yet

LECTURE NOTES SEPTEMBER 14, 2006

L6.2 Unification

unknown P;. The subgoal in that case would be plus(z,s(s(z)), P;) accord-
ing to the rule instantiation with z for M, s(s(z)) for N, and P, for P.

The second attempt would therefore be: “There is an instance of the rule
and an instance of the goal such that the two are equal.” This does not quite
capture what we need either. For example, substituting s(s(s(s(z)))) for P
in the goal and s(s(s(z))) for P in the rule, together with the substitution for
M and N from above, will also make the goal and conclusion of the rule
identical, but is nonetheless wrong. The problem is that it would overcom-
mit: using P; for P in the rule, on the other hand, keeps the options open.
P, will be determined later by search and other unifications. In order to
express this, we define that ¢, is more general than t, if ¢; can be instantiated
to to.

The third attempt is therefore: “Find the most general instance of the rule
and the goal so that the conclusion of the rule is equal to the instantiated goal.”
Phrased in terms of substitutions, this says: find #; and 6 such that P'6; =
PO, and any other common instance of P’ and P is an instance of P’6;.

In terms of the algorithm description it is more convenient if we rede-
fine the problem slightly in this way: “First rename the variables in the rule
so that they are disjoint from the variables in the goal. Then find a single most
general substitution 6 that unifies the renamed conclusion with the goal.” Here, a
unifying substitution 6 is most general if any other unifying substitution is
an instance of 6.

In the remainder of the lecture we will make these notions more precise
and present an algorithm to compute a most general unifier. In the next
lecture we show how to reformulate the operational semantics to explicitly
use most general unifiers. This means that for the first time the semantics
will admit free variables in goals.

6.2 Substitutions

We begin with a specification of substitutions. We use the notation FV(t)
for the set of all free variables in a term.

Substitutions 0 = ti/x1,...,t, /2y

We postulate that all z; are distinct. The order of the pairs in the substi-
tution is irrelevant, and we consider permutations of substitutions to be
equal. We denote the domain of § by dom(6) = {x1,...,x,}. Similarly, we
call the set of all variables occurring in the substitution term ¢; the codomain
and write cod(0) = U, FV(¢t;).

LECTURE NOTES SEPTEMBER 14, 2006

Unification Le6.3

An important general assumption is that the domain and codomain of
substitutions are disjoint.

Assumption: All substitutions we consider are valid, that is,
dom(6) N cod(#) = O for any substitution 6.

This is by no means the only way to proceed. A more common assumption
is that all substitutions are idempotent, but we believe the above is slightly
more convenient for our limited purposes.

Note that valid substitutions cannot contain pairs z/z, since it would
violate our assumption above. However, such pairs are not needed, since
their action is the identity, which can also be achieve by simply omitting
them.

Applying a substitution 6 to a term ¢ is easily defined compositionally.

x0 =t ift/xin 6
yo =y if y ¢ dom(0)
Fthye o t)8 = f(116,... tnf)

6.3 Composing Substitutions

In the course of search for a deduction, and even in the course of solv-
ing one unification problem, we obtain information in a piecemeal fash-
ion. This means we construct a (partial) substitution, apply it, and then
construct another substitution on the result. The overall answer is then
the composition of these two substitution. We write it as 76. The guiding
property we need is that for any ¢, we have (t7)f = t(70). In order for
this property to hold and maintain our general assumptions on substitu-
tions, we specify the precondition that dom(7) N dom(#) =) and also that
dom(7) N cod(f) = 0. We define the composition by going through the
substitution left-to-right, until encountering the empty substitution (-).

(t/z,7)0 = t0/x, 76
()0 = 0

First, note that dom(76) = dom(7) U dom(#) which is a union of disjoint
domains. Second, cod(78) = (cod(7) — dom(f)) U cod () so that cod(76) N
dom(76) = () as can be seen by calculation. In other words, 76 is a valid
substitution.

It is easy to verify that the desired property of composition actually
holds. We will also need a corresponding property stating that composition
of substitution is associative, under suitable assumptions.

LECTURE NOTES SEPTEMBER 14, 2006

Le6.4 Unification

Theorem 6.1 (Substitution Composition) Assume we are given a term t and
valid substitutions o and 0 with dom(c)Ndom(#) =) and dom(o)Ncod(f) = 0.
Then o8 is valid and

(to)8 = t(o0)

Furthermore, if T is a substitution such that dom(7) N dom(o) = dom(7) N
dom(0) = 0 then also
(10)8 = 7(00)

Proof: The validity of 06 has already been observed above. The first equal-
ity follows by induction on the structure of the term ¢, the second by induc-
tion on the structure of 7 (see Exercise 6.1).

Case: t = z for a variable x. Then we distinguish two subcases.

Subcase: = € dom(o) where s/x € o.

(xo)f = sb By defn. of zo
= z(00) Since s0/x € o0

Subcase: = ¢ dom(o).

(xo)f = x0 By defn. of zo
= z(00) By defn. of o6

Case: t = f(t1,...,t,) for terms ty,...,t,.

(to) = f(ti0,...,t,0)0 By defn. of to
= f((t10)0, ..., (t,0)0) By defn. of f(_)0
= f(t1(c0),...,t,(c8)) By ih., n times
= f(t1,...tn)(c0) = t(00) By defn. of ¢(c6)

O

6.4 Unification

We say 6 is a unifier of t and s if t6 = sf. We say that 6 is a most general
unifier for t and s if it is a unifier, and for any other unifier o there exists
a substitution ¢’ such that ¢ = fo’. In other words, a unifier is most gen-
eral if any other unifier is an instance of it, where “instance” refers to the
composition of substitutions.

As usual in this class, we present the algorithm to compute a most gen-
eral unifier as a judgment, via a set of inference rules. The judgment has

LECTURE NOTES SEPTEMBER 14, 2006

Unification Le6.5

the form ¢ = s | 6, where we think of ¢ and s as inputs and a most gen-
eral unifier § as the output. In order to avoid the n-ary nature of the list of
arguments, we will have an auxiliary judgment t = s | 6 for sequences of
terms t and s. Notions such as application of substitution are extended to
sequences of terms in the obvious way. We use (-) to stand for an empty
sequence of terms (as well as the empty substitution, which is a sequence
of term and variable pairs). In general, we will use boldface letters to stand
for sequences of terms.
We first consider function terms and term sequences.

t=s|0 t=s|0 t0 =s0y |0,
ft)=f(s) |0 =010 (t,t) = (s,s) | 6162
Second, the cases for variables.
z ¢ FV(t) t=f(t),z ¢ FV(t)
z=x|() z=t|(t/z) t=wz|(t/z)

The condition that t = f(t) in the last rule ensures that it does not overlap
with the rule for z = t. The condition that = ¢ FV(t) is necessary because,
for example, the two terms = and f(x) do not have unifier: no matter what,
the substitution f(x)f will always have one more occurrence of f than z6
and hence the two cannot be equal.

The other situations where unification fails is an equation of the form
f(t) = g(s) for f # g, and two sequences of terms of unequal length. The
latter can happen if function symbols are overloaded at different arities, in
which case failure of unification is the correct result.

6.5 Soundness

There are a number of properties we would like to investigate regarding
the unification algorithm proposed in the previous section. The first is its
soundness, that is, we would like to show that the substitution 6 is indeed
a unifier.

Theorem 6.2 Ift = s | 0 then t0 = s6.

Proof: We need to generalize this to cover the auxiliary unification judg-
ment on term sequences.

(i) Ift = s | 0 then t6 = s0.

LECTURE NOTES SEPTEMBER 14, 2006

L6.6 Unification

(i) Ift = s | 6 then t0 = 6.

The proof proceeds by mutual induction on the structure of the deduction
Doft = sand £ of t = s. This means that if one judgment appears as in
the premiss of a rule for the other, we can apply the appropriate induction
hypothesis.

In the proof below we will occasionally refer to equality reasoning, which
refers to properties of equality in our mathematical language of discourse,
not properties of the judgment ¢t = s. There are also some straightforward
lemmas we do not bother to prove formally, such as t(s/z) = tif z ¢ FV(t).

&
Case: D= 1" \heret = f(t) and s = (5
ase: D=—— — wheret = and s = f(s).
ft)=f(s) |0
t0 = sb By i.h.(ii) on &£
ft)8 = f(s)0 By definition of substitution
Case: D = there t=s=()and 6 = ().
()0 = ()0 By equality reasoning
D, &
th =581 |01 tof =800, |0
Case: £ = — 61 taby = =261 | 6o where t = (t1,t2) and s = (s1,s2)
(t1,t2) = (s1,82) | 0102
and 6 = 9192.
t191 = 8191 By lh(l) on Dl
(t161)02 = (s1071)62 By equality reasoning
t1(0162) = s1(6202) By substitution composition (Theorem 6.1)
(t2601)02 = (s201)62 By i.h.(ii) on &
t2(0102) = s2(6162) By substitution composition
(t1,t2)(01602) = (s1,82)(0162) By defn. of substitution
Case: D=————wheret=s=zand § = (:).
z=z]| (-
x(-) = () By equality reasoning

LECTURE NOTES SEPTEMBER 14, 2006

Unification Le6.7

x ¢ FV(s)
Case: D=—————— " wheret =z and 6 = (s/x).
z=s|(s/x)
x(s/x)=s By defn. of substitution
= s(s/x) Since x ¢ FV(s)
t=f(t),z ¢ FV(¢
Case: D = f(t),z ¢ EV() where s = z and 6 = (t/z).
t=x|(t/x)
t(t/x) =t Since = ¢ FV(t)
= z(t/x) By defn. of substitution

O

6.6 Completeness

Completness of the algorithm states that if s and ¢ have a unifer then there
exists a most general one according to the algorithm. We then also need
to observe that the unification judgment is deterministic to see that, if in-
terpreted as an algorithm, it will always find a most general unifier if one
exists.

Theorem 6.3 Iftoc = so thent = s | 8 and o = 0o’ for some 0 and o.

Proof: As in the soundness proof, we generalize to address sequences.
(i) If to = so thent = s | and o = 6o’
(ii) If to =sothent =s|6#and o = 6o’

The proof proceeds by mutual induction on the structure of to and to. We
proceed by distinguishing cases for t and s, as well as t and s. This structure
of argument is a bit unusual: mostly, we distinguish cases of the subject of
our induction, be it a deduction or a syntactic object. In the situation here
it is easy to make a mistake and incorrectly attempt to apply the induction
hypothesis, so you should carefully examine all appeals to the induction
hypothesis below to make sure you understand why they are correct.

Case: ¢t = f(t). In this case we distinguish subcases for s.

Subcase: s = f(s).

LECTURE NOTES SEPTEMBER 14, 2006

L6.8 Unification

ft)o = f(s)o Assumption

to =so By defn. of substitution

t =s|6and o = 6o’ for some § and o’ By i.h.(ii) on to

1) = f(s) | 6 By rule
Subcase: s = g(s) for f # g. This subcase is impossible:

ft)o =g(s)o Assumption

Contradiction By defn. of substitution

Subcase: s = z.

f(t)o = zo Assumption
o= (f(t)o/x,0’) for some o’ By defn. of subst. and reordering
x ¢ FV(f(t)) Otherwise f(t)o # xo
fi&)=x| (f(t)/z)soweletd = (f(t)/x) By rule
o= (f(t)o/x,0") See above
= (f(t)o'/z,0) Since = ¢ FV(f(t))
= (f(t)/x)o’ By defn. of substitution
= 0o’ Since 6§ = (f(t)/x)

Case: t = z. In this case we also distinguish subcases for s and proceed
symmetrically to the above.

Case: t = (-). In this case we distinguish cases for s.

Subcase: s = (-).

=010 By rule
o= ()o By defn. of substitution

Subcase: s = (s1,s2). This case is impossible:

(-)o = (s1,82)0 Assumption
Contradiction By definition of substitution

Case: t = (1, t2). Again, we distinguish two subcases.

Subcase: s = (-). This case is impossible, like the symmetric case
above.

Subcase: s = (s1,s2).

(t1,t2)o = (s1,82)0 Assumption
tio0 = s10 and
too = sq0 By defn. of substitution

LECTURE NOTES SEPTEMBER 14, 2006

Unification L6.9

t1 = S1 ‘ 91 and

o = 010 for some 0, and o} By ih.(i) on t;0
to(610]) = sa2(010%) By equality reasoning
(t2b1)o] = (s261)0] By subst. composition (Theorem 6.1)
t291 = 5291 ’ 92 and
o} = 0204 for some 03 and o By i.h.(ii) on teo (= (t261)07)
(tl,tg) = (81752) ’ 9192 By rule
o = 010] = 01(620%) By equality reasoning
= (6162)7), By subsitution composition (Theorem 6.1)
O

It is worth observing that a proof by mutual induction on the structure
of t and t would fail here (see Exercise 6.2).
An alternative way we can state the first induction hypothesis is:

For all r, s, t, and o such that r = to = so, there exists a # and a
o’ such thatt = s| 6 and o = 0c’.

The the proof is by induction on the structure of r, although the case we
distinguish still concern the structure of s and t.

6.7 Termination

From the completeness argument in the previous section we can see that if
given ¢t and s the deduction of t = s | # is bounded by the structure of the
common instance r = tf = sf. Since the rules furthermore have no non-
determinism and the occurs-checks in the variable/term and term/variable
cases also just traverse subterms of r, it means a unifier (if it exists) can be
found in time proportional to the size of r.

Unfortunately, this means that this unification algorithm is exponential
in the size of t and s. For example, the only unifier for

g(xo, 1,22, ... xn) = g(f(x1,21), f(22, 22), f(23,23),...0a)

has 2" occurrences of a.

Nevertheless, it is this exponential algorithm with a small, but signif-
icant modification that is used in Prolog implementations. This modifica-
tion (which make Prolog unsound from the logical perspective!) is to omit
the check = ¢ FV (t) in the variable/term and term/variable cases and con-
struct a circular term. This means that the variable/term case in unification

LECTURE NOTES SEPTEMBER 14, 2006

L6.10 Unification

is constant time, because in an implementation we just change a pointer as-
sociated with the variable to point to the term. This is of crucial importance,
since unification in Prolog models parameter-passing from other languages
(thinking of the predicate as a procedure), and it is not acceptable to take
time proportional to the size of the argument to invoke a procedure.

This observation notwithstanding, the worst-case complexity of the al-
gorithm in Prolog is still exponential in the size of the input terms, but it
is linear in the size of the result of unification. The latter fact appears to be
what rescues this algorithm in practice, together with its straightforward
behavior which is important for Prolog programmers.

All of this does not tell us what happens if we pass terms to our unifi-
cation algorithm that do not have a unifier. It is not even obvious that the
given rules terminate in that case (see Exercise 6.3). Fortunately, in practice
most non-unifiable terms result in a clash between function symbols rather
quickly.

6.8 Historical Notes

Unification was originally developed by Robinson [7] together with resolu-
tion as a proof search principle. Both of these critically influenced the early
designs of Prolog, the first logic programming language. Similar computa-
tions were described before, but not studied in their own right (see [1] for
more on the history of unification).

It is possible to improve the complexity of unification to linear in the
size of the input terms if a different representation for the terms and sub-
stitutions is chosen, such as a set of multi-equations [4, 5] or dag structures
with parent pointers [6]. These and similar algorithms are important in
some applications [3], although in logic programming and general theorem
proving, minor variants of Robinson’s original algorithm are prevalent.

Most modern versions of Prolog support sound unification, either as
a separate predicate unify_with_occurs_check/2 or even as an optional
part of the basic execution mechanism!. Given advanced compilation tech-
nology, I have been quoted figures of 10% to 15% overhead for using sound
unification, but I have not found a definitive study confirming this. We will
return to the necessary optimization in a later lecture.

Another way out is to declare that the bug is a feature, and Prolog is re-
ally a constraint programming language over rational trees, which requires
a small modification of the unification algorithm to ensure termination in

!for example, in Amzi!Prolog

LECTURE NOTES SEPTEMBER 14, 2006

Unification Le6.11

the presence of circular terms [2] but still avoids the occurs-check. The price
to be paid is that the connection to the predicate calculus is lost, and that
popular reasoning techniques such as induction are much more difficult to
apply in the presence of infinite terms.

6.9 Exercises

Exercise 6.1 Prove 7(08) = (70)60 under the conditions stated in Theorem 6.1.

Exercise 6.2 Show precisely where and why the attempt to prove completeness of
the rules for unification by mutual induction over the structure of t and t (instead
of to and to) would fail.

Exercise 6.3 Show that the rules for unification terminate no matter whether
given unifiable or non-unifiable terms t and s. Together with soundness, com-
pleteness, and determinacy of the rules this means that they constitute a decision
procedure for finding a most general unifier if it exists.

6.10 References

[1] Franz Baader and Wayne Snyder. Unification theory. In J.A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, volume 1,
chapter 8, pages 447-532. Elsevier and MIT Press, 2001.

[2] Joxan Jaffar. Efficient unification over infinite terms. New Generation
Computing, 2(3):207-219, 1984.

[3] Kevin Knight. Unification: A multi-disciplinary survey. ACM Comput-
ing Surveys, 2(1):93-124, March 1989.

[4] Alberto Martelli and Ugo Montanari. Unification in linear time and
space: A structured presentation. Internal Report B76-16, Istituto di
Elaborazione delle Informazione, Consiglio Nazionale delle Ricerche,
Pisa, Italy, July 1976.

[5] Alberto Martelli and Ugo Montanari. An efficient unification al-
)
gorithm. ACM Transactions on Programming Languages and Systems,
4(2):258-282, April 1982.

[6] M. S. Paterson and M. N. Wegman. Linear unification. Journal of Com-
puter and System Sciences, 16(2):158-167, April 1978.

[7] J. A. Robinson. A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM, 12(1):23-41, January 1965.

LECTURE NOTES SEPTEMBER 14, 2006

