
15-819K: Logic Programming

Lecture 7

Lifting

Frank Pfenning

September 19, 2006

Lifting is the name for turning a search calculus with ground judgments
into one employing free variables. Unification might be viewed as the
result of lifting a ground equality judgment, but we never explicitly in-
troduced such a judgment. In this lecture our goal is to lift previously
given operational semantics judgments for logic programming to permit
free variables and prove their soundness and completeness. Unification
and the judgment to compute most general unifiers are the central tools.

7.1 Explicating Rule Application

When explicating the left-to-right subgoal selection order in the operational
semantics, we needed to introduce conjunction and truth in order to expose
these choices explicitly. When explicating the first-to-last strategy of clause
selection and backtracking we need to introduce disjunction and falsehood.
It should therefore come as no surprise that in order to explicit the details of
rule application and unification we need some further logical connectives.
These include at least universal quantification and implication. However,
we will for the moment postpone their formal treatment in order to con-
centrate on the integration of unification from the previous lecture into the
operational semantics.

An inference rule
B true

P true

is modeled logically as the proposition

∀x1 . . . ∀xn. B ⊃ P

LECTURE NOTES SEPTEMBER 19, 2006

L7.2 Lifting

where {x1, . . . , xn} is the set of free variables in the rule. A logic program is
a collection of such propositions. According to the meaning of the universal
quantifier, we can use such a proposition by instantiating the universally
quantified variables with arbitrary terms. If we denote this substitution
by τ with dom(τ) = {x1, . . . , xn} and cod(τ) = ∅, then instantiating the
quantifiers yields Bτ ⊃ Pτ true . We can use this implication to conclude
Pτ true if we have a proof of Bτ true . Require the co-domain of τ to be
empty means that the substitution is ground: there are no variables in its
substitution terms. This is to correctly represent the convention that an
inference rule stands for all of its ground instances.

In order to match Prolog syntax more closely, we often write P ← B for
B ⊃ P . Moreover, we abbreviate a whole sequence of quantifiers as ∀x. A,
use x for a set of variables.

Previously, for every rule

B true

P true

we add a rule
B / S

P / S

to the operational semantics judgment A / S.

Now we want to replace all these rules by a single rule. This means
we have to make the program explicit as a collection Γ of propositions,
representing the rules as propositions. We always assume that all members
of Γ are closed, that is, FV(A) = ∅ for all A ∈ Γ. We write this judgment as

Γ ` A / S

which means that A under stack S follows from program Γ. Rule applica-
tion then has the form

∀x. P ′ ← B′ ∈ Γ

dom(τ) = x

cod(τ) = ∅
P ′τ = P Γ ` B′τ / S

Γ ` P / S

All the other rules just carry the program Γ along, since it remains fixed.
We will therefore suppress it when writing the judgment.

LECTURE NOTES SEPTEMBER 19, 2006

Lifting L7.3

7.2 Free Variable Deduction

We use the calculus with an explicit goal stack as the starting point. We
recall the rules, omitting Γ ` as promised.

A / B ∧ S

A ∧B / S

B / S

> / B ∧ S > / >

∀x. P ′ ← B′ ∈ Γ

dom(τ) = x

cod(τ) = ∅
P ′τ = P B′τ / S

P / S

In the free variable form we return a substitution θ, which is reminiscent
of our formulation of unification. The rough idea, formalized in the next
section, is that if A / S | θ then Aθ / Sθ. The first three rules are easily
transformed.

A / B ∧ S | θ

A ∧B / S | θ

B / S | θ

> / B ∧ S | θ > / > | (·)

The rule for atomic goals requires a bit of thought. In order to avoid a
conflict between the names of the variables in the rule, and the names of
variables in the goal, we apply a so-called renaming substitution. A renam-
ing substitution ρ has the form y1/x1, . . . , yn/xn where all the xi and yi are
distinct. We will always use ρ to denote renaming substitutions. In Prolog
terminology we say that we copy the clause, instantiating its variables with
fresh variables.

∀x. P ′ ← B′ ∈ Γ

dom(ρ) = x

cod(ρ) ∩ FV(P/S) = ∅
P ′ρ

.
= P | θ1 B′ρθ1 / Sθ1 | θ2

P / S | θ1θ2

7.3 Soundness

The soundness of the lifted calculus is a relatively straightforward prop-
erty. We would like to say that if P / S | θ then Pθ / Sθ. However, the
co-domain of θ may contain free variables, so the latter may not be well
defined. We therefore have to admit an arbitrary grounding substitution σ′

to be composed with θ. In the proof, we also need to extend σ′ to account

LECTURE NOTES SEPTEMBER 19, 2006

L7.4 Lifting

for additional variables. We write σ′′ ⊆ σ′ for an extension of σ′ with some
additional pairs t/x for ground terms t.

Theorem 7.1 If A / S | θ then for any substitution σ′ with FV((A/S)θσ′) = ∅
we have Aθσ′ / Sθσ′.

Proof: By induction on the structure of D of P / S | θ.

Cases: The first three rule for conjunction and truth are straightforward
and omitted here.

Case: D =
∀x. P ′ ← B′ ∈ Γ

dom(ρ) = x

cod(ρ) ∩ FV(P/S) = ∅
P ′ρ

.
= P | θ1

D′

B′ρθ1 / Sθ1 | θ2

P / S | θ1θ2

where A = P and θ = θ1θ2.

FV(P (θ1θ2)σ
′) = FV(S(θ1θ2)σ

′) = ∅ Assumption
Choose σ′′ ⊇ σ′ such that FV((B′ρθ1)θ2σ

′′) = ∅
(B′ρθ1)θ2σ

′′ / (Sθ1)θ2σ
′′ By i.h. on D′

B′(ρθ1θ2σ
′′) / Sθ1θ2σ

′′ By assoc. of composition
P ′ρθ1 = Pθ1 By soundness of unification
P ′ρθ1θ2σ

′′ = Pθ1θ2σ
′′ By equality reasoning

P ′(ρθ1θ2σ
′′) = Pθ1θ2σ

′′ By assoc. of composition
Pθ1θ2σ

′′ / Sθ1θ2σ
′′ By rule (using τ = ρθ1θ2σ

′′)
P (θ1θ2)σ

′′ / S(θ1θ2)σ
′′ By assoc. of composition

P (θ1θ2)σ
′ / S(θ1θ2)σ

′ Since σ′ ⊆ σ′′ and
FV(P (θ1θ2)σ

′) = FV(S(θ1θ2)σ
′) = ∅

2

The fact that we allow an arbitrary grounding substitution in the state-
ment of the soundness theorem is not just technical device. It means that if
there are free variables left in the answer substitution θ, then any instance of
θ is also a valid answer. For example, if we ask append([1,2,3], Ys, Zs)

and obtain the answer Zs = [1,2,3|Ys] then just by substituting [4,5] for
Ys we can conclude append([1,2,3], [4,5], [1,2,3,4,5]) without any
further search.

Unfortunately, in the presence of free variables built-in extra-logical
Prolog predicates such as disequality, negation-as-failure, or cut destroy
this property (in addition to other problems with soundness).

LECTURE NOTES SEPTEMBER 19, 2006

Lifting L7.5

7.4 Completeness

Completness follows the blueprint in the completeness proof for unifica-
tion. In the literature this is often called the lifting lemma, showing that if
there is ground deduction of a judgment, there must be a more general free
variable deduction.

The first try at a lifting lemma, in analogy with a similar completness
property for unification, might be:

If Aσ / Sσ then A / S | θ and σ = θσ′ for some θ and σ′.

This does not quite work for a technical reason: during proof search addi-
tional variables are introduced which could appear in the domain of θ (and
therefore in the domain of θσ′), while σ does not provide a substitution
term for them.

We can overcome this inaccuracy by just postulating that additional
term/variable pairs can be dropped, written as σ ⊆ θσ′. In the theorem
and proof below we always assume that substitutions τ and σ, possibly
subscripted or primed, are ground substitutions, that is, their co-domain is
empty.

Theorem 7.2 If Aσ / Sσ for ground Aσ, Sσ, and σ, then A / S | θ and σ ⊆ θσ′

for some θ and ground σ′.

Proof: The proof is by induction on the structure of the given deduction of
Aσ / Sσ.

Cases: The cases for the three rule for conjunction and truth are straight-
forward and omitted here.

Case: D =
∀x. P ′ ← B′ ∈ Γ

dom(τ) = x

cod(τ) = ∅
P ′τ = Pσ

D′

B′τ / Sσ

Pσ / Sσ
where Aσ = Pσ.

τ = ρτ ′ for some renaming ρ and substitution τ ′

with dom(ρ) = x, cod(ρ) = dom(τ ′), and
dom(τ ′) ∩ dom(σ) = ∅ Choosing fresh vars.
(τ ′, σ) a valid substitution By disjoint domains
(P ′ρ)τ ′ = (P ′ρ)(τ ′, σ) dom(σ) ∩ FV(P ′ρ) = ∅
Sσ = S(τ ′, σ) dom(τ ′) ∩ FV(S) = ∅
Pσ = P (τ ′, σ) dom(τ ′) ∩ FV(P) = ∅

LECTURE NOTES SEPTEMBER 19, 2006

L7.6 Lifting

P ′τ = Pσ Given premiss
P ′ρ(τ ′, σ) = P (τ ′, σ) By equality reasoning
P ′ρ

.
= P | θ1 and

(τ ′, σ) = θ1σ
′

1
for some θ1 and σ′

1
By completness of unification

B′τ / Sσ Given subderivation D′

B′τ = B′ρτ ′ By equality reasoning
= B′ρ(τ ′, σ) dom(σ) ∩ FV(B′ρ) = ∅
= B′ρ(θ1σ

′

1
) By equality reasoning

= (B′ρθ1)σ
′

1
By assoc. of composition

Sσ = S(τ ′, σ) = S(θ1σ
′

1
) By equality reasoning

= (Sθ1)σ
′

1
By assoc. of composition

B′ρθ1 / Sθ1 | θ2 and
σ′

1
⊆ θ2σ

′

2
for some θ2 and σ′

2
By i.h. on D′

P / S | θ1θ2 By rule
σ ⊆ (τ ′, σ) = θ1σ

′

1
By equality reasoning

⊆ θ1(θ2σ
′

2
) cod(θ1σ

′

1
) = ∅

= (θ1θ2)σ
′

2
By assoc. of composition

2

7.5 Occurs-Check Revisited

Now that the semantics of proof search with free variables has been clari-
fied, we return to the issue that Prolog omits the occurs-check as mentioned
in the last lecture. Instead, it builds circular terms when encountering prob-
lems such as X

.
= f(X).

To understand why, we reconsider the append program.

append(nil, Ys, Ys).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

In order to append two ground lists (for simplicity we assume of the same
length), we would issue a query

?- append([x1, . . . , xn], [y1, . . . , yn], Zs).

The fact that the first clause does not apply is discovered in one or two
steps, because nil clashes with cons. We then copy the second clause and
unify [X|Xs] = [x1, . . . , xn]. Assuming all the xi are integers, this oper-
ation will still take O(n) operations because of the occurs-check when uni-
fying Xs = [x2, . . . , xn]. Similarly, unifying Y = [y1, . . . , yn] would

LECTURE NOTES SEPTEMBER 19, 2006

Lifting L7.7

take O(n) steps to perform the occurs-check. Finally the unification in the
last argument [X|Zs1] = Zs just takes constant time.

Then the recursive call looks like

?- append([x2, . . . , xn], [y1, . . . , yn], Zs1).

which again takes O(n) operations. Overall, we will recurse O(n) times,
performing O(n) operations on each call, giving us a complexity of O(n2).
Obviously, this is unacceptable for a simple operations such as appending
two lists, which should be O(n).

We can see that the complexity of this implementation is almost entirely
due to the occurs-check. If we do not perform it, then a query such as the
one in our example will be O(n).

However, I feel the price of soundness is too high. Fortunately, in prac-
tice, the occurs-check can often be eliminated in a sound interpreter or com-
piler. The first reason is that in the presence of mode information, we may
know that some argument in the goal are ground, that is, contain no vari-
ables. In that case, the occurs-check is entirely superfluous.

Another reason is slightly more subtle. As we can see from the opera-
tional semantics, we copy the clause (and the clause head) by applying a
renaming substitution. The variables in the renamed clause head, P ′ρ are
entirely new and are not allowed do not appear in the goal P or the goal
stack S. As a result, we can omit the occurs-check when we first encounter
a variable in the clause head, because that variable couldn’t possible occur
in the goal.

However, we have to be careful for the second occurrence of a variable.
Consider the goal

?- append([], [1|Xs], Xs).

Clearly, this should fail because there is no term t such that [1|t] = t. If
we unify with the clause head append([], Ys, Ys), the first unification
Ys = [1|Xs] can be done without the occurs-check.

However, after the substitution for Ys has been carried out, the third
argument to append yields the problem [1|Xs] = Xs which can only be
solved correctly if the occurs-check is carried out.

If your version of Prolog does not have switch to enable sound uni-
fication to be used in its operational semantics, you can achieve the same
effect using the built-in unify_with_occurs_check/2. For example, we can
rewrite append to the following sound, but ugly program.

LECTURE NOTES SEPTEMBER 19, 2006

L7.8 Lifting

append(nil, Ys, Zs) :- unify_with_occurs_check(Ys, Zs).

append([X|Xs], Ys, [Z|Zs]) :-

unify_with_occurs_check(X, Z),

append(Xs, Ys, Zs).

7.6 Historical Notes

The basic idea of lifting to go from a ground deduction to one with free
variables goes back to Robinson’s seminal work on unification and resolu-
tion [3], albeit in the context of theorem proving rather than logic program-
ming. The most influential early paper on the theory of logic program-
ming is by Van Emden and Kowalski [2], who introduced several model-
theoretic notions that I have replaced here by more flexible proof-theoretic
definitions and relate them to each other. An important completeness re-
sult regarding the subgoal selection strategy was presented by Apt and Van
Emden [1] which can be seen as an analogue to the completeness result we
presented.

7.7 Exercises

Exercise 7.1 Give ground and free variable forms of deduction in a formulation
without an explicit goal stack, but with an explicit program, and show soundness
and completeness of the free variable version.

Exercise 7.2 Fill in the missing cases in the soundness proof for free variable de-
duction.

Exercise 7.3 Give three concrete counterexamples showing that the substitution
property for free variables in an answer substitution fails in the presence of dise-
quality on non-ground goals, negation-as-failure, and cut.

Exercise 7.4 Fill in the missing cases in the completeness proof for free variable
deduction.

Exercise 7.5 Analyze the complexity of appending two ground lists of integers of
length n and k given the optimization that the first occurrence of a variable in a
clause head does not require an occurs-check. Then analyze the complexity if it
is known that the first two argument to append are ground. Which one is more
efficient?

LECTURE NOTES SEPTEMBER 19, 2006

Lifting L7.9

7.8 References

[1] Krzysztof R. Apt and M. H. Van Emden. Contributions to the theory of
logic programming. Journal of the ACM, 29(3):841–862, July 1982.

[2] M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic
as a programming language. Journal of the ACM, 23(4):733–742, October
1976.

[3] J. A. Robinson. A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM, 12(1):23–41, January 1965.

LECTURE NOTES SEPTEMBER 19, 2006

