
15-819K: Logic Programming

Lecture 8

Completion

Frank Pfenning

September 21, 2006

In this lecture we extend the ground backtracking semantics to permit free
variables. This requires a stronger normal form for programs. After intro-
ducing this normal form related to the so-call iff-completion of a program,
we give the semantics at which point we have a complete specification of
the pure Prolog search behavior including unification, subgoal selection
and backtracking. At this point we return to the logical meaning of Prolog
programs and derive the iff-completion of a program via a process called
residuation.

8.1 Existential Quantification

First we return to the backtracking semantics with the intent of adding free
variables and unification to make it a fully specified semantics for pure
Prolog.

The first problem is presented by the rules for atomic goals. In a ground
calculus, the rule

∀x. P ′ ← B′ ∈ Γ

dom(τ) = x

cod(τ) = ∅
P ′τ = P B′τ / S / F

P / S / F

is correct only if we stipulate that for every ground atomic goal P there is
exactly one program clause for which the rule above can be applied. Other-
wise, not all failure or choice points would be explicit in the semantics.

LECTURE NOTES SEPTEMBER 21, 2006

L8.2 Completion

Now we need the property that for every atomic goal P (potentially
containing free variables) there is exactly one program clause that applies.
Because goals can have the form p(X1, . . . ,Xn) for variables X1, . . . ,Xn,
this means that for every predicate p there should be only one clause in
the program. Moreover, the head of this clause must unify with every per-
missible goal. At first this may seem far-fetched, but since our extended
language includes equality, we can actually achieve this by transforming
the program so that all clause heads have the form p(X1, . . . ,Xn) for dis-
tinct variables X1, . . . ,Xn.

As an example, consider the member predicate in the form appropriate
for the ground semantics.

member(X, []) :- fail.

member(X, [Y|Ys]) :- X = Y ; member(X, Ys).

We can transform this further by factoring the two cases as

member(X, Ys) :-

(Ys = [], fail) ;

(Ys = [Y|Ys1], (X = Y ; member(X, Ys1))).

This can be simplified, because the first disjunct will always fail.

member(X, Ys) :- Ys = [Y|Ys1], (X = Y ; member(X, Ys1)).

Writing such a program would be considered poor style, since the very first
one is much easier to read. However, as an internal representation it turns
out to be convenient.

We take one more step which, unfortunately, does not have a simple
rendering in all implementations of Prolog. We can simplify the treatment
of atomic goals further if the only free variables in a clause are the ones
appearing in the head. In the member example above, this is not the case,
because Y and Ys1 occur in the body, but not the head. If we had existen-
tial quantification ∃x.A, we could overcome this. In logical form, the rule
would be the following.

∃y.∃ys1. Y s
.
= [y|ys1] ∧ (X

.
= y ∨member(X, ys1)) true

member(X,Y s) true

In some implementations of Prolog, existential quantification is available
with the syntax X^A for ∃x.A.1 Then the program above would read

1You should beware, however, that some implementations of this are unsound in that
the variable X is visible outside its scope.

LECTURE NOTES SEPTEMBER 21, 2006

Completion L8.3

member(X, Ys) :-

Y^Ys1^(Ys = [Y|Ys1], (X = Y ; member(X, Ys1))).

On the logical side, This requires a new form of proposition, ∃x.A,
where x is a bound variable with scope A. We assume that we can always
rename bound variables. For example, we consider ∃x.∃y. p(x, x, y) and
∃y.∃z. p(y, y, z) to be identical. We also assume that bound variables (writ-
ten as lower-case identifiers) and free variables (written as upper-case iden-
tifiers) are distinct syntactic classes, so no clash between them can arise.

Strictly speaking we should differentiate between substitutions for vari-
ables x that may be bound, and for logic variables X (also called meta-
variables). At this point, the necessary machinery for this distinction would
yield little benefit, so we use the same notations and postulate the same
properties for both.

Existential quantification is now defined by

A(t/x) true

∃x.A true
∃I

where the the substitution term t is understood to have no free variables
since logical deduction is ground deduction.

When carrying out a substitution θ, we must take care when encounter-
ing a quantifier ∃x.A. If x is in the domain of θ, we should first rename it to
avoid possible confusion between the bound x and the x that θ substitutes
for. The second condition is that x does not occur in the co-domain of θ.
This condition is actually vacuous here (t is closed), but required in more
general settings.

(∃x.A)θ = ∃x. (Aθ) provided x /∈ dom(θ) ∪ cod(θ)

Recall the convention that bound variables can always be silently renamed,
so we can always satisfy the side condition no matter what θ is.

The search semantics for existential quantification comes in two flavors:
in the ground version we guess the correct term t, in the free variable ver-
sion we substitute a fresh logic variable.

A(t/x) / S

∃x.A / S

A(X/x) / S | θ X /∈ FV(∃x.A / S)

∃x.A / S | θ

Since X does not occur in ∃x.A / S, we could safely restrict θ in the con-
clusion to remove any substitution term for X.

LECTURE NOTES SEPTEMBER 21, 2006

L8.4 Completion

8.2 Backtracking Semantics with Free Variables

Now we assume the program is in a normal form where for each atomic
predicate p of arity n there is exactly one clause

∀x1 . . . ∀xn. p(x1, . . . xn)← B′

where the FV(B′) ⊆ {x1, . . . , xn}.

We will not endeavor to return the answer substitution from the free
variable judgment, but just describe the computation to either success or
failure. The extension to compute an answer substitution requires some
thought, but does not add any essentially new elements (see Exercise 8.1).
Therefore, the we write A / S / F where A, S, and F may have free
variables. The intended interpretation is that if A / S / F in the free
variable semantics then there exists a grounding substitution σ such that
Aσ / Sσ / Fσ in the ground semantics. This is not very precise, but suffi-
cient for our purposes.

First, the rules for conjunction and truth. They are the same in the free
and ground semantics.

A / B ∧ S / F

A ∧B / S / F

B / S / F

> / B ∧ S / F > / > / F

Second, the rules for disjunction and falsehood. Again, it plays no role if
the goals are interpreted as closed or with free variables.

A / S / (B ∧ S) ∨ F

A ∨B / S / F

B / S′ / F

⊥ / S / (B ∧ S′) ∨ F

fails (no rule)

⊥ / S / ⊥

Third, the equality rules. Clearly, these involve unification, so substitutions
come into play.

t
.
= s | θ > / Sθ / F

t
.
= s / S / F

there is no θ with t
.
= s | θ ⊥ / S / F

t
.
= s / S / F

When unification succeeds, the most general unifier θ must be applied to
the success continuation S which shares variables with t and s. But we
do not apply the substitution to F . Consider a goal of the form (X

.
= a ∧

p(X)) ∨ (X
.
= b∧ q(X)) to see that while we try the first disjunction, X

.
= a

the instantiations of X should not affect the failure continuation.

LECTURE NOTES SEPTEMBER 21, 2006

Completion L8.5

The rule for existentials just introduces a globally fresh logic variable.

A(X/x) / S / F X /∈ FV(∃x.A / S / F)

∃x.A / S / F

Finally the rule for atomic propositions. Because of the normal form
for each clause in the program, this rule no longer involves unification or
generation of fresh variables. Such considerations have now been relegated
to the cases for equality and existential quantification.

(∀x. p(x)← B′) ∈ P B′(t/x) / S / F

p(t) / S / F

Here we wrote t/x as an abbreviation for the substitution t1/x1, . . . , tn/xn

where t = t1, . . . , tn and x = x1, . . . , xn.

8.3 Connectives as Search Instructions

The new operational semantics, based on the normal form for programs,
beautifully isolates various aspects of the operational reading for logic pro-
grams. It is therefore very useful as an intermediate form for compilation.

Procedure Call (p(t)). An atomic goal p(t) now just becomes a procedure
call, interpreting a predicate p as a procedure in logic programming. We
use a substitution t/x for parameter passing if the clause is ∀x. p(x) ← B′

and FV(B′) ⊆ x.

Success (>). A goal > simply succeeds, signaling the current subgoal has
been solved. Stacked up subgoals are the considered next.

Conjunctive choice (A∧B). A conjunction A∧B represents two subgoals
that have to be solved. The choice is which one to address first. The rule
for conjunction says A.

Failure (⊥). A goal ⊥ simply fails, signaling the current subgoal fails. We
backtrack to previous choice points, exploring alternatives.

Disjunctive choice (A ∨ B). A disjunction A ∨ B represents a choice be-
tween two possibly path towards a solution. The rules for disjunction say
we try A first and later B (if A fails).

LECTURE NOTES SEPTEMBER 21, 2006

L8.6 Completion

Existential choice (∃x.A). An existential quantification ∃x.A represents
the choice which term to use for x. The rule for existential quantification
says to postpone this choice and simply instantiate x with a fresh logic
variable to be determined later during search by unification.

Unification (t
.
= s). An equality t

.
= s represents a call to unification, to

determine some existential choices postponed earlier in a least committed
way (if a unifier exists) or fail (if no unifier exists).

Let us read the earlier member program as a sequence of these instruc-
tions.

member(X, Ys) :-

Y^Ys1^(Ys = [Y|Ys1], (X = Y ; member(X, Ys1))).

Given a procedure call

?- member(t, s).

we substitute actual arguments for formal parameters, reaching

?- Y^Ys1^(s = [Y|Ys1], (t = Y ; member(t, Ys1))).

We now create fresh variables Y and Ys1 (keeping their names for simplicity),
yielding

?- (s = [Y|Ys1], (t = Y ; member(t, Ys1))).

Now we have two subgoals to solve (a conjunction), which means we solve
the left side first by unifying s, the second argument in the call to member,
with [Y|Ys1]. If this fails, we fail and backtrack. If this succeeds, we apply
the substitution to the second subgoal.

Let us assume s = [s1|s2], so that the substitution will be s1/Y, s2/Y s1.
Then we have to solve

?- t = s1 ; member(t, s2).

Now we have a disjunctive choice, so we first try to unify t with s1, push-
ing the alternative onto the failure continuation. If unification succeeds, we
succeed with the unifying substitution. Note that besides the unifying sub-
stitution, we have also changed the failure continuation by pushing a call to
member onto it. If the unification fails, we try instead the second alternative,
calling member recursively.

?- member(t, s2).

I hope this provides some idea how the body of the member predicate could
be compiled to a sequence of instructions for an abstract machine.

LECTURE NOTES SEPTEMBER 21, 2006

Completion L8.7

8.4 Logical Semantics Revisited

So far, we have carefully defined truth for all the connectives and quantifers
except for universal quantification and implication which appeared only in
the program. These introduction rules show how to establish that a given
proposition is true. For universal quantification and implication we follow
a slight different path, because from the logical point of view the program is
a set of assumptions, not something we are trying to prove. In the language
of judgments, we are dealing with a so-called hypothetical judgment

Γ ` A true

where Γ represents the program. It consists of a collection of propositions
D1 true, . . . ,Dn true .

In logic programming, occurrences of logical connectives are quite re-
stricted. In fact, as we noted at the beginning, pure Prolog has essentially
no connectives, just atomic predicates and inference rules. We have only
extended the language in order to accurately describe search behavior in
a logical notation. The restrictions are different for what is allowed as a
program clause and what is allowed as a goal. So for the remainder of
this lecture we will use G to stand for legal goals and D to stand for legal
program propositions.

We summarize the previous rules in this slightly generalized form.

Γ ` G1 true Γ ` G2 true

Γ ` G1 ∧G2 true
∧I

Γ ` > true
>I

Γ ` G1 true

Γ ` G1 ∨G2 true
∨I1

Γ ` G2 true

Γ ` G1 ∨G2 true
∨I2

no rule
Γ ` ⊥ true

Γ ` t
.
= t true

.
=I

Γ ` G(t/x) true

Γ ` ∃x.G true
∃I

When the goal is atomic, we have to use an assumption, corresponding
to a clause in the program. Choosing a particular assumption and then
breaking down its structure as an assumption is called focusing. This is a
new judgment Γ;D true ` P true . The use of the semi-colon here “;” is
unrelated to its use in Prolog where it denotes disjunction. Here is just
isolates a particular assumption D. We call this the focus rule.

D ∈ Γ Γ;D true ` P true

Γ ` P true
focus

LECTURE NOTES SEPTEMBER 21, 2006

L8.8 Completion

When considering which rules should define the connectives in D it
is important to keep in mind that the rules now define the use of an as-
sumption, rather than how to prove its truth. Such rules are called left rules
because the apply to a proposition to the left of the turnstile symbol ‘`’.

First, if the assumption is an atomic fact, it must match the conclusion.
In that case the proof is finished. We call this the init rule for initial sequent.

Γ;P true ` P true
init

Second, if the assumption is an implication we would have written P ← B
so far. We observe that B will be a subgoal, so we write it as G. Further,
P does not need to be restricted to be an atom—it can be an arbitrary legal
program formula D. Finally, we turn around the implication into the more
customary form G ⊃ D.

Γ;D true ` P true Γ ` G true

Γ;G ⊃ D true ` P true
⊃L

Here, G actually appears as a subgoal in one premise and D as an assump-
tion in the other, which is a correct given the intuitive meaning of implica-
tion to represent clauses.

If we have a universally quantified proposition, we can instantiate it
with an arbitrary (closed) term.

Γ;D(t/x) true ` P true

Γ;∀x.D true ` P true
∀L

It is convenient to also allow conjunction to combine multiple clauses for
a given predicate. Then the use of a conjunction reduces to a choice about
which conjunct to use, yielding two rules.

Γ;D1 true ` P true

Γ;D1 ∧D2 true ` P true
∧L1

Γ;D2 true ` P true

Γ;D1 ∧D2 true ` P true
∧L2

We can also allow truth, but there is no rule for it as an assumption

no rule
Γ;> true ` P true

since the assumption that > is true gives us no information for proving P .

LECTURE NOTES SEPTEMBER 21, 2006

Completion L8.9

We have explicitly not defined how to use disjunction, falsehood, equal-
ity, or existential quantification, or how to prove implication or universal
quantification. This is because attempting to add such rules would sig-
nificantly change the nature of logic programming. From the rules, we can
read off the restriction to goals and program as conforming to the following
grammar.

Goals G ::= P | G1 ∧G2 | > | G1 ∨G2 | ⊥ | t
.
= s | ∃x.G

Clauses D ::= P | D1 ∧D2 | > | G ⊃ D | ∀x.D

Clauses in this form are equivalent to so-called Horn clauses, which is why
it is said that Prolog is based on the Horn fragment of first-order logic.

8.5 Residuation

A program in the form described above is rather general, but we can trans-
form it into the procedure call form described earlier with a straightforward
and elegant algorithm. To begin, for any predicate p we collect all clauses
contributing to the definition of p into a single proposition Dp, which is the
conjunction of the universal closure of the clauses whose head has the form
p(t). For example, given the program

nat(z).

nat(s(N)) :- nat(N).

plus(z, N, N).

plus(s(M), N, s(P)) :- plus(M, N, P).

we generate a logical rendering in the form of two propositions:

Dnat = nat(z) ∧ ∀n. nat(n) ⊃ nat(s(n)),
Dplus = (∀n. plus(z, n, n))

∧ ∀m.∀n.∀p. plus(m,n, p) ⊃ plus(s(m), n, s(p))

The idea now is that instead of playing through the choices for breaking
down Dp when searching for a proof of

Γ;Dp ` p(t)

we residuate those choices into a goal whose search behavior is equivalent.
If we write the residuating judgment as

Dp ` p(x) > G

LECTURE NOTES SEPTEMBER 21, 2006

L8.10 Completion

then the focus rule would be

Dp ∈ Γ Dp ` p(x) > Gp Γ ` Gp(t/x)

Γ ` p(t)

Residuation must be done deterministically and is not allowed to fail, so that
we can view Gp as the compilation of p(x), the parametric form of a call to
p.

To guide the design of the rules, we will want that if Dp ` p(x) > G
then Γ;Dp ` p(t) iff Γ ` G(t/x). Further more, if Dp and p(x) are given,
then there exists a unique G such that Dp ` p(x) > G.

p′(s) ` p(x) > p′(s)
.
= p(x)

D1 ` p(x) > G1 D2 ` p(x) > G2

D1 ∧D2 ` p(x) > G1 ∨G2

> ` p(x) > ⊥

D ` p(x) > G1

G ⊃ D ` p(x) > G1 ∧G

D ` p(x) > G y /∈ x

∀y.D ` p(x) > ∃y.G

The side condition in the last rule can always be satisfied by renaming of
the bound variable x.

First, the soundness of residuation. During the proof we will discover
a necessary property of deductions, called a substitution property. You may
skip this and come back to it once you understands its use in the proof
below.

Lemma 8.1 If D ` p(x) > G and y /∈ x, then D(s/y) ` p(x) > G(s/y) for any
closed term s. Moreover, if the original derivation is D, the resulting derivation
D(s/y) has exactly the same structure as D.

Proof: By induction on the structure of the derivation for D ` p(x) > G.
In each case we just apply the induction hypothesis to all premisses and
rebuild the same deduction from the results. 2

Now we can prove the soundness.

Theorem 8.2 If D ` p(x) > G for x ∩ FV(D) = ∅ and Γ ` G(t/x) for ground
t then Γ;D ` p(t).

LECTURE NOTES SEPTEMBER 21, 2006

Completion L8.11

Proof: By induction on the structure of the deduction of the given residu-
ation judgment, applying inversion to the second given deduction in each
case. All cases are straightforward, except for the case of quantification
which we show.

Case: D =

D1

D1 ` p(x) > G1 y /∈ x

∀y.D1 ` p(x) > ∃y.G1

where D = ∀y.D1 and G = ∃y.G1.

Γ ` (∃y.G1)(t/x) Assumption
Γ ` ∃y.G1(t/x) Since y /∈ x and t ground
Γ ` G1(t/x)(s/y) for some ground s By inversion
Γ ` G1(s/y)(t/x) Since y /∈ x and t and s ground
D1(s/y) ` p(x) > G1(s/y) By substitution property for residuation
Γ;D1(s/y) ` p(t) By i.h. on D1(s/y)
Γ;∀y.D1 ` p(t) By rule

We may apply the induction hypothesis to D1(s/y) because D1 is a
subdeduction of D, and D1(s/y) has the same structure as D1.

2

Completeness follows a similar pattern.

Theorem 8.3 If D ` p(x) > G with x∩FV(D) = ∅ and Γ;D ` p(t) for ground
t then Γ ` G(t/x)

Proof: By induction on the structure of the given residuation judgment, ap-
plying inversion to the second given deduction in each case. In the case for
quantification we need to apply the substitution property for residuation,
similarly to the case for soundness. 2

Finally, termination and uniqueness.

Theorem 8.4 If D and p(x) are given with x ∩ FV(D) = ∅, then there exists a
unique G such that D ` p(x) > G.

Proof: By induction on the structure of D. There is exactly one rule for
each form of D, and the propositions are smaller in the premisses. 2

LECTURE NOTES SEPTEMBER 21, 2006

L8.12 Completion

8.6 Logical Optimization

Residuation provides an easy way to transform the program into the form
needed for the backtracking semantics with free variables. For each predi-
cate p we calculate

Dp ` p(x) > Gp

and then replace Dp by
∀x. p(x)← Gp.

With respect to the focusing semantics, Dp is equivalent to the new formu-
lation (see Exercise 8.4).

We reconsider the earlier example.

Dnat = nat(z) ∧ ∀n. nat(n) ⊃ nat(s(n)),
Dplus = (∀n. plus(z, n, n))

∧ ∀m.∀n.∀p. plus(m,n, p) ⊃ plus(s(m), n, s(p))

Running our transformation judgment, we find

Dnat ` nat(x) > nat(z)
.
= nat(x) ∨ ∃n. nat(s(n))

.
= nat(x) ∧ nat(n)

Dplus ` plus(x1, x2, x3) > (∃n. plus(z, n, n)
.
= plus(x1, x2, x3))∨

(∃m.∃n.∃p. plus(s(m), n, s(p))
.
= plus(x1, x2, x3) ∧ plus(m,n, p)).

These compiled forms can now be the basis for further simplification and
optimizations. For example,

Gplus = (∃n. plus(z, n, n)
.
= plus(x1, x2, x3)) ∨ . . .

Given our knowledge of unification, we can simplify this equation to three
equations.

G′

plus = (∃n. z = x1 ∧ n = x2 ∧ n = x3) ∨ . . .

Since n does not appear in the first conjunct, we can push in the existential
quantifier, postponing the creation of an existential variable.

G′′

plus = (z = x1 ∧ ∃n. n = x2 ∧ n = x3) ∨ . . .

The next transformation is a bit trickier, but we can see that there exists an
n which is equal to x2 and x3 iff x2 and x3 are equal. Since n is a bound vari-
able occurring nowhere else, we can exploit this observation to elimination
n altogether.

G′′′

plus = (z = x1 ∧ x2 = x3) ∨ . . .

The optimized code will unify the first argument with z and, if this suc-
ceeds, unify the second and third arguments.

LECTURE NOTES SEPTEMBER 21, 2006

Completion L8.13

8.7 Iff Completion

We now revisit the normal form ∀x. p(x) ← Gp. Since this represents the
only way of succeeding in a proof of p(t), we can actually turn the implica-
tion around, replacing it by an if and only if (↔)

∀x. p(x)↔ Gp.

Of course, this proposition is outside the fragment that is amenable to logic
programming search (considering the right-to-left implication), but it has
found some application in the notion of definitional reflection, where it is
usually written as

∀x. p(x)
4
= Gp.

This allows us to draw conclusions that the program alone does not permit,
specifically about the falsehood of propositions.

We do not have the formal reasoning rules available to us at this point,
but given the (slightly optimized) iff-completion of nat,

∀x. nat(x)↔ z
.
= x ∨ ∃n. s(n)

.
= x ∧ nat(n)

we would be able to prove, explicitly with formal rules, that nat(a) is false
for a new constant a, because a is neither equal to z nor to s(n) for some n.

Unfortunately the expressive power of the completion is still quite lim-
ited in that it is much weaker than induction.

8.8 Historical Notes

The notion of iff-completion goes back to Clark [2] who investigated no-
tions of negation and their justification in the early years of logic program-
ming.

The use of goal-directed search and focusing to explain logic program-
ming goes back to Miller et al. [3], who tested various extensions of the
logic presented here for suitability as the foundation for a logic program-
ming language.

The use of residuation for compilation and optimization has been pro-
posed by Cervesato [1], who also shows that the ideas are quite robust by
addressing a much richer logic.

The notion of definitional reflection goes back to Schroeder-Heister [5]
who also examined its relationship to completion [4]. More recently, reflec-
tion has been employed in a theorem prover derived from logic program-
ming [6] in the Bedwyr system.

LECTURE NOTES SEPTEMBER 21, 2006

L8.14 Completion

8.9 Exercises

Exercise 8.1 Extend the free variable semantics with backtracking to explicitly
return an answer substitution θ. State the soundness and completness of this
semantics with respect to the one that does not explicitly calculate the answer sub-
stitution. If you feel brave, prove these two theorems.

Exercise 8.2 Prove that the free variable backtracking semantics given in lecture
is sound and complete with respect to the ground semantics.

Exercise 8.3 Prove the completeness of residuation.

Exercise 8.4 Given soundness and completeness of residuation, show that if we
replace programs Dp by ∀x. p(x)← Gp where Dp ` p(x) > Gp then the focusing
semantics is preserved.

8.10 References

[1] Iliano Cervesato. Proof-theoretic foundation of compilation in logic
programming languages. In J. Jaffar, editor, Proceedings of the Joint In-
ternational Conference and Symposium on Logic Programming (JICSLP’98),
pages 115–129, Manchester, England, June 1998. MIT Press.

[2] Keith L. Clark. Negation as failure. In H. Gallaire and J. Minker, edi-
tors, Logic and Databases, pages 293–322. Plenum Press, New York, 1978.

[3] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.
Uniform proofs as a foundation for logic programming. Annals of Pure
and Applied Logic, 51:125–157, 1991.

[4] Peter Schroeder-Heister. Definitional reflection and the completion.
In R. Dyckhoff, editor, Proceedings of the 4th International Workshop on
Extensions of Logic Programming, pages 333–347. Springer-Verlag LNCS
798, March 1993.

[5] Peter Schroeder-Heister. Rules of definitional reflection. In M. Vardi,
editor, Proceedings of the 8th Annual Symposium on Logic in computer Sci-
ence (LICS’93), pages 222–232, Montreal, Canada, July 1993. IEEE Com-
puter Society Press.

[6] Alwen Tiu, Gopalan Nadathur, and Dale Miller. Mixing finite suc-
cess and finite failure in an automated prover. In C.Benzmüller,
J.Harrison, and C.Schürmann, editors, Proceedings of the Workshop on
Empirically Successful Automated Reasnoing in Higher-Order Logics (ES-
HOL’05), pages 79–98, Montego Bay, Jamaica, December 2005.

LECTURE NOTES SEPTEMBER 21, 2006

