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In this lecture we look at programming techniques that are specific to logic
programming, or at least significantly more easily expressed and reasoned
about in logic programming than other paradigms. The first example is
difference lists, which we use for a queue data structure, list reversal, an
improvement of our earlier quicksort implementation, and a breadth-first
logic programming engine that can be seen as the core of a theorem prover.
We also introduce a program for peg solitaire as a prototype for state ex-
ploration. This will lead us towards considering imperative logic program-
ming.

11.1 Functional Queues

We would like to implement a queue with operations to enqueue, dequeue,
and test a queue for being empty. For illustration purposes we use a list of
instructions enq(z) and deq(x). Starting from an empty queue, we execute
the instructions in the order given in the list. When the instruction list is
empty we verify that the queue is also empty. Later we will use queues to
implement a breadth-first logic programming interpreter.

First, a naive, and very inefficient implementation, where a queue is
simply a list.

queue0(Is) :- q0(Is, [1).
q0([enq(X) 1Is], Q) :- append(Q, [XI, Q2), q0(Is, Q2).

q0([deq(X) 1Is], [XIQ]) :- q0(Is, Q).
qo (1, [1).
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L11.2 Difference Lists

This is inefficient because of the repeaated calls to append which copy the
queue.

In a more efficient functional implementation we instead maintain two
lists, one the front of the list and one the back. We enqueue items on the
back and dequeue them from the front. When the front is empty, we reverse
the back and make it the new front.

queuel(Is) :- q1(Is, [1, [1).

ql(lenq(X)1Is], F, B) :- qi1(Is, F, [XIBI).
ql([deq(X)|Is], [XIF], B) :- qi(Is, F, B).
ql([deq(X)I1Is], [1, B) :- reverse(B,[X|F]), q1(Is,F,[]).
qi(ll, (1, [1).

Depending on the access patterns for queues, this can much more efficient
since the first since the cost of the list reversal can be amortized over the
enqueuing and dequeuing operations.

11.2 Queues as Difference Lists

The idea behind this implementation is that the a queue with elements
Z1i,...,Ty is represented as a pair [x;, ..., x, | Bl \ B, where B is a
logic variable. Here \ is simply a constructor written in infix form to sug-
gest list difference because the actual queue of elements for F \ Bis the list
F minus the tail B.

One may think of the variable B as a pointer to the end of the list, pro-
viding a means to add an element at the end in constant time (instead of
calling append as in the very first implementation). Here is a first imple-
mentation using this idea:

queue(Is) :- q(Is, B\B).

q(lenq(X) |Is], F\[XIB]) :- q(Is, F\B).
q([deq(X) IIs], [XIFI\B) :- q(Is, F\B).
q(l, O\NID).

We consider is line by line, in each case considering the invariant:

A queue zi,...,2, is represented by [z;, ..., z, | Bl \ B
for a logic variable B.

In the first clause
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Difference Lists L11.3

queue(Is) :- q(Is, B\B).

we see that the empty queue is represented as B\B for a logic variable B,
which is an instance of the invariant for n = 0.
The second clause

q(lenq(X) IIs], F\[XIB]) :- q(Is, F\B).
is trickier. A goal matching the head of this clause will have the form

?- q(lenq(xpy1) 111, [z1, ..., x, | BO] \ BO).

for a term x,,41, list I, terms z1,...,z, and variable BO. Unification will
instantiate

X =2xpp1

Is = |

F=1[z1, ..., Ty, Tnt1 | B]

BO = [I’n_l,_l | B]
where B is a fresh logic variable. Now the recursive call is
?7- qU, [z1, ..., Tn, Tp+1 | B11 \ B1).

satisfying our representation invariant.
The third clause

q([deq(X) IIs], [XIFI\B) :- q(Is, F\B).

looks straightforward, since we are just working on the front of the queue,
removing its first element. However, there is a tricky issue when the queue
is empty. In that case it has the form BO \ BO for some logic variable BO, so
it can actually unify with [X|F]. In that case, BO = [X|F], so the recursive
call will be on q(I, F \ [XIF]) which not only violates our invariant, but
also unexpectedly allows us to remove an element from the empty queue!

The invariant will right itself once we enqueue another element that
matches X. In other words, we have constructed a “negative” queue, bor-
rowing against future elements that have not yet arrived. If this behavior
is undesirable, it can be fixed in two ways: we can either add a counter as a
third argument that tracks the number of elements in the queue, and then
verify that the counter is positive before dequeuing and element. Or we
can check if the queue is empty before dequeuing and fail explicitly in that
case.

Let us consider the last clause.
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q(ll, [ONID.

This checks that the queue is empty by unifying it with [J\[]. From the
invariant we can see that it succeeds exactly if the queue is empty (neither
positive nor negative, if borrowing is allowed).

When we started with the empty queue, we used the phrase B\B for a
logic variable B to represent the empty queue. Logically, this is equivalent
to checking unifiability with [J\[], but operationally this does not work
because of the lack of occurs-check in Prolog. A non-empty queue such as
[z11B0] \ BO will incorrectly “unify” with B1\B1 with B1 being instanti-
ated to a circular term B1 = [x7|B1].

To complete this example, we show the version that prevents negative
queues by testing if the front is unifiable with [] before proceeding with a
dequeue operation.

queue(Is) :- q(Is, B\B).

q(lenq(X) IIs], F\[XIB]) :- q(Is, F\B).
q([deq(X) |Is], F\B) :-

F =[] -> fail ; F = [X|F1], q(Is, F1\B).
q(ll, ONID.

11.3 Other Uses of Difference Lists

In the queue example, it was important that the tail of the list is always
a logic variable. There are other uses of difference list where this is not
required. As a simple example consider reverse. In its naive formulation
it overuses append, as in the naive formulation of queues.

naive_reverse([X|Xs], Zs) :-
naive_reverse(Xs, Ys),
append(Ys, [X], Zs).

naive_reverse([], [1).

To make this more efficient, we use a difference list as the second argu-
ment.

reverse(Xs, Ys) :- rev(Xs, Ys\[]).

rev([X|Xs], Ys\Zs) :- rev(Xs, Ys\[X|Zs]).
rev([], Ys\Ys).
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Difference Lists L11.5

This time, the front of the difference list is a logic variable, to be filled in
when the input list is empty.

Even though this program is certainly correctly interpreted using list
difference, the use here corresponds straightforwardly to the idea of accu-
mulators in functional programming: In rev(Xs, Ys\Zs), Zs accumulates
the reverse list and eventually returns it in Ys.

Seasoned Prolog hackers will often break up an argument which is a
difference list into two top-level arguments for efficiency reasons. So the
reverse code above might actually look like

reverse(Xs, Ys) :- rev(Xs, Ys, [1).

rev([X|Xs], Ys, Zs) :- rev(Xs, Ys, [X|Zs]).
rev([]l, Ys, Ys).

where the connection to difference lists is harder to recognize.

Another useful example of difference lists is in quicksort from Lecture
2, omitting here the code for partition/4. We construct two lists, Ys1 and
Ys2 and append them, copying Ys1 again.

quicksort([1, [1).

quicksort([X0|Xs], Ys) :-
partition(Xs, X0, Ls, Gs),
quicksort(Ls, Ysl),
quicksort(Gs, Ys2),
append(Ys1l, [X0|Ys2], Ys).

Instead, we can use a difference list.

quicksort(Xs, Ys) :-
gsort(Xs, Ys\[]).

gsort([], Ys\Ys).

gsort ([X0|Xs], Ys\Zs) :-
partition(Xs, X0, Ls, Gs),
gsort(Gs, Ys2\Zs),
gsort(Ls, Ys\[X0|Ys2]).

In this instance of difference lists, it may be helpful to think of

gsort(Xs, Ys\Zs)
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as adding the sorted version of Xs to the front of Zs to obtain Y's. Then,
indeed, the result of subtracting Zs from Y s is the sorted version of Xs. In
order to see this most directly, we have swapped the two recursive calls to
gsort so that the tail of the difference list is always ground on invocation.

11.4 A Breadth-First Logic Programming Interpreter

With the ideas of queues outlined above, we can easily construct a breadth-
first interpreter for logic programs. Breadth-first search consumes a lot of
space, and it is very difficult for the programmer to obtain a good model
of program efficiency, so this is best thought of as a naive, first attempt at a
theorem prover that can find proofs even where the interpreter would loop.

The code can be found on the course website.! It is obtained in a pretty
simple way from the depth-first interpreter, by replacing the failure contin-
uation F' by a pair F;\ F», where F; is always a logic variable that occurs at
the tail of F;. While F; is not literally a list, it should be easy to see what
this means.

We show here only four interesting clauses. First three that are directly
concerned with the failure continuation.

% prove(G, Gamma, S, F1\F2, N, J)
% Gamma |- G / S / FQ, N is next free variable
% J = success or failure

prove(bot, _, _, bot\bot, _, J) :- !, J = failure.
prove(bot, Gamma, _, or(and(G2,S8),F1)\F2, N, J) :-
prove (G2, Gamma, S, F1\F2, N, J).
prove(or(G1,G2), Gamma, S, Fllor(and(G2,S8),F2), N, J) :-
prove(Gl, Gamma, S, F1\F2, N, J).

The first clause here needs to commit so that the second clause cannot bor-
row against the future. It should match only if there is an element in the
queue.

In order to make this prover complete, we need to cede control imme-
diately after an atomic predicate is invoked. Otherwise predicates such as

diverge :- diverge ; true.

would still not terminate since alternatives, even though queued rather
than stacked, would never be considered. The code for this case looks like

Thttp://www.cs.cmu.edu/ " fp/courses/lp/code/11-diff/meta.pl
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prove(app(Pred, Ts), Gamma, S, FQ, N, J) :-
prove(or(bot,GTheta), Gamma, S, FQ, N, J).

where GTheta will be the body of the definition of Pred, with arguments Ts
substituted for the argument variables. We assume here that the program is
already in residuated form, as is necessary for this semantics to be accurate.

In the next step we will queue up GTheta on the failure continuation and
then fail while trying to prove bot. Another alternative, suspended earlier,
will then be removed from the front of the queue and its proof attempted.?

11.5 State Exploration

We now switch to a different category of programs, broadly categorized
as exploring state. Game playing programs are in this class, as are puzzle
solving programs. One feature of logic programming we hope to exploit is
the backtracking nature of the operational semantics.

The example we use is peg solitaire. We are given a board of the form

where a solid circle ® is a hole filled with a peg, while a © hollow circle
represents an empty hole. In each move, a peg can jump over an adjacent
one (right, down, left, or up), if the hole behind is empty. The peg that is
jumped over is removed from the board. For example, in the initial position
shown above there are four possible moves, all ending up in the center. If

2I have no proof that this really is complete—I would be interested in thoughts on the
issue.
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we take the possible jump to the right, we would be in the position

The objective is continue jumps until only one peg is left over.

This puzzle has been extensively analyzed (see, for example, the Wiki-
pedia article on the subject). Our logic programming implementation will
to inefficient to solve the problem by brute force, but it is nonetheless an
illustrative example.’

We introduce a unique name for every place on the board by using a
integer coordinate address and concatenating the two digits starting with
00 at the lower-left hand corner which is unoccupied, proceeding to 66 in
the upper right-hand corner. Some place names are drawn in the following
diagram.

Now the current state of the board during the search for a solution is
represented by a list containing peg(ij) if there is a peg at location ij and

3This program was written by committee in real-time during lecture. Another some-
what more efficient version can be found with code that accompanies the lecture at
http://www.cs.cmu.edu/ " fp/courses/lp/code/11-diff/.
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hole(ij) if the location ij is an empty hole. We have a prediate init (Sy)
which holds for the initial state Sj.

init ([
peg(20) ,peg(30) ,peg(40),
peg(21) ,peg(31) ,peg(41),
peg(02) ,peg(12) ,peg(22) ,peg(32) ,peg(42) ,peg(52) ,peg(62),
peg(03) ,peg(13) ,peg(23) ,hole(33),peg(43) ,peg(53) ,peg(63),
peg(04) ,peg(14) ,peg(24) ,peg(34) ,peg(44) ,peg(54) ,peg(64) ,
peg(25) ,peg(35) ,peg(45),
peg(26) ,peg(36) ,peg(46)
D.

We also have a predicate between/3 which holds between three places 4, B,
and C whenever there is a possible jump to the right or up. This means that
if between(C', B, A) is true then a jump left or up from A to C is possible.
We show a few cases in the definition of between.

between(20,30,40) .
between(20,21,22).
between(30,31,32).
between(40,41,42).

There are 38 such clauses altogether.
Next we have a predicate to flip a peg to a hole in a given state returning
the new state.

swap ([peg(A) |State], peg(A), [hole(A)|State]).

swap([hole(A) |State], hole(A), [peg(A)|State]).

swap([Place|Statel], PlaceO, [Placel|State2]) :-
swap(Statel, Place0, State2).

This fails if the requested place is not a peg or hole, respectively.

In order to make a single move, we find all candidate triples A, B, or C
using the between relation and then swap the two pegs and hole to be two
holes and a peg.

movel (Statel,Stated) :-
( between(A,B,C) ; between(C,B,A) ),
swap(Statel, peg(A), State2),
swap(State2, peg(B), State3d),
swap(State3, hole(C), Stated).

LECTURE NOTES OCTOBER 3, 2006
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To see if we can make n moves from a given state we make one move
and then see if we can make n — 1 moves from the resulting state. If this
fails, we backtrack, trying another move.

moves (0, _).

moves (N, Statel) :-
N > 0,
movel(Statel,State2),
N1 is N-1,
moves (N1, State2).

Finally, to solve the puzzle we have to make n moves from the initial
state. To have a full solution, we would need n = 31, since we start with 32
pegs so making 31 moves will win.

solve(N) :-
init(State0),
moves (N, StateO).

Since in practice we cannot solve the puzzle this wayj, it is interesting to
see how many sequences of moves of length n are possible from the initial
state. For example, there are 4 possible sequences of a single move and, 12
possible sequences of two moves, and 221072 sequences of seven moves.

There we encounter a difficulty, namely that we cannot maintain any
information about the number of solutions upon backtracking in pure Pro-
log (even though as you have seen in a homework assignments, it is easy
to count the number of solutions in the meta-interpreter).

This inability to preserve information is fundamental, so Prolog imple-
mentations offer several ways to circumvent it. One class of solutions is
represented by findall and related predicates which can collect the solu-
tions to a query in a list. A second possibility is to use assert and retract
to change the program destructively while it is running—a decidedly non-
logical solution. Final, modern Prolog implementations offer global vari-
ables that can be assigned to and incremented in a way that survives back-
tracking.

We briefly show the third solution in GNU Prolog. A global variable is
addressed by an atom, here count. We can assign to it with g_assign/2,
increment it with g_inc/1 and read its value with g_read/2. The idea is
to let a call to solve succeed, increment a global variable count, then fail
and backtrack into solve to find an another solution, etc., until there are no
further solutions.
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test(N) :-
g_assign(count, 0),
solve(N),
g_inc(count),
fail.
test(N) :-
g_read(count, K),
format ("At “p, “p solutiomns\n", [N,K]).

This works, because the effect of incrementing count remains, even when
backtracking fails past it.

Although global variables are clearly non-logical, their operational se-
mantics is not so difficult to specify (see Exercise 11.4).

This example reveals imperative or potentially imperative operations
on several levels. In the next lecture we will explore one of them.

11.6 Historical Notes

Okasaki has given a perceptive analysis of purely functional queues [2].
According to Sterling and Shapiro [3], difference lists have been Prolog
folklore since the early days, with a first published description in a paper
by Clark and Téarnlund [1].

11.7 Exercises

Exercise 11.1 Reconsider the Dutch national flag problem introduced in Exercise
2.4 and give an efficient solution using difference lists.

Exercise 11.2 Think of another interesting application of difference lists or related
incomplete data structures and write and explain your implementation.

Exercise 11.3 Give a Prolog implementation of the following triangular version
of peg solitaire
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where jumps can be made in 6 directions: east, northeast, northwest, west, south-
west, and southeast (but not directly north or south). Use your program to de-
termine the number of solutions (you may count symmetric ones), and in which
locations the only remaining peg may end up in. Also, what is the maximal number
of pegs that may be left on the board without any possible further moves?

Exercise 11.4 Give an extension of the operational semantics with goal stacks,
failure continuations, and explicit unification to model global variables (named by
constants) which can be assigned, incremented, decremented, and read. Glean their
intended meaning from the use in the test/1 predicate for peg solitaire.

You may assume that the values assigned to global variables in this manner are
ground and remain unaffected by backtracking.
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