
15-819K: Logic Programming

Lecture 12

Linear Logic

Frank Pfenning

October 5, 2006

In this lecture we will rewrite the program for peg solitaire in a way that
treats state logically, rather than as an explicit data structure. In order to al-
low this we need to generalize the logic to handle state intrinsically, some-
thing provided by linear logic. We provide an introduction to linear logic as
a sequent calculus, which generalizes our previous way of specifying truth.
The sequent calculus is a bit too general to allow an immediate operational
interpretation to obtain a logic programming language, so we postpone this
step to the next lecture.

12.1 State-Passing Style

Let us reexamine the central part of the program for peg solitaire from the
last lecture. The first predicate moves passes state downward in the pro-
gram.

moves(0, _).

moves(N, State1) :-

N > 0,

move1(State1, State2),

N1 is N-1,

moves(N1, State2).

The second and third predicates, move1 and swap pass state from an input
argument (the first) to an output argument (the last).

LECTURE NOTES OCTOBER 5, 2006

L12.2 Linear Logic

move1(State1, State4) :-

(between(A,B,C) ; between(C,B,A)),

swap(State1, peg(A), State2),

swap(State2, peg(B), State3),

swap(State3, hole(C), State4).

swap([peg(A)|State], peg(A), [hole(A)|State]).

swap([hole(A)|State], hole(A), [peg(A)|State]).

swap([Place|State1], Place0, [Place|State2]) :-

swap(State1, Place0, State2).

This pattern of code is called state-passing or store-passing. State-passing
style is a common pattern in logic programs of a certain kind, specifically
state exploration as in puzzles and games or modeling concurrent or dis-
tributed systems.

We investigate in this and the next lecture how to eliminate explicit state
passing from such programs in favor of logical primitives.

In functional programming, the related store-passing style usually arises
in the opposite way: if we want to turn a functional program that uses mu-
table storage into a pure functional program we can pass the store around
as an explicit argument.

12.2 State-Dependent Truth

In our program, state is represented as a list of items peg(ij) and hole(ij)

for locations ij. Stepping back from this particular representation, it is easy
to interpret peg and hole as predicates, and peg(ij) and hole(ij) as propo-
sitions. For example, we say the proposition peg(ij) is true if there is a peg
in location ij on the board.

What makes this somewhat unusual, from the perspective of the logic
we have considered so far, is that the notion of truth depends on the state.
In some states, peg(ij) is true, in some it is false. In fact, the state of the
board is completely characterized by the peg and hole propositions.

In mathematical logic, truth is normally invariant and does depend on
state. This is because the mathematical objects we deal with, such as natu-
ral numbers, are themselved invariant and considered universal. In philo-
sophical logic, however, the concept of truth depending on the state of the
world is central and has been investigated under the name modal logic, of
which temporal logic is a particular branch. In these logics truth explicitly
depends on the state of the world, and the separate concept of necessary

LECTURE NOTES OCTOBER 5, 2006

Linear Logic L12.3

truth captures those properties that are state invariant. However, neither
modal nor temporal logic is particularly appropriate for our problem do-
main. As an example, let us consider how we would specify a legal state
transition, using the next-time operator ©. We might write

between(A,B,C) ∧ peg(A) ∧ peg(B) ∧ hole(C)
⊃ ©(hole(A) ∧ hole(B) ∧ hole(C)).

Unfortunately, unless we specify something else, the only thing we know
about the next state is hole(A) ∧ hole(B) ∧ hole(C). What we would really
like to say is that all other propositions regarding locations besides A, B,
and C remain unchanged.

This kind of circumscription is awkward, defeating the purpose of ob-
taining a higher-level and more elegant formulation of our example and
similar state-passing code. Moreoever, when we add more predicates then
the move specification must also change to carry these over unchanged. In
artificial intelligence this is called the frame problem. In the next section we
show an elegant and completely logical solution to this problem.

12.3 Linear Logic

Linear logic has been described as a logic of state or a resource-aware logic.1

Formally, it arises from complementing the usual notion of logical assump-
tion with so-called linear assumptions or linear hypotheses. Unlike traditional
assumptions which may be used many times in a proof, linear assumptions
must be used exactly once during a proof. Linear assumptions then become
(consumable) resources in the course of a proof.

This generalization of the usual mathematical standpoint may seem
slight, but as we will see it is quite expressive. We write

A1 res , . . . , An res `̀ C true

for a linear hypothetical judgment with resources A1, . . . , An and goal C .
If we can prove this, it means that we can achieve that C is true, given re-
sources A1 through An. Here, all Ai and C are propositions.2 The version
of linear logic defined by this judgment is called intuitionistic linear logic,

1The term linear is connected to its use in algebra, but the connection is not easy to
explain. For this lecture just think of “linear” as denoting “must be used exactly once”.

2In the end it will turn out that A res and A true are interchangeable in that we can go
from each one to the other. At this point, however, we do not know this yet, so the judgment
we make about our resources is not that they are true, but that they are given resources.

LECTURE NOTES OCTOBER 5, 2006

L12.4 Linear Logic

sometimes contrasted with classical linear logic in which the sequent calcu-
lus has multiple conclusions. While it is possible to develop classical linear
logic programming it is more difficult to understand and use.

Hidden in the judgment are other assumptions, usually abbreviated as
Γ, which can be used arbitrarily often (including not at all), and are there-
fore called the unrestricted assumptions. If we need to make them explicit in
a rule we will write

Γ;∆ `̀ C true

where ∆ abbreviates the resources. As in our development so far, unre-
stricted assumption are fixed and are carried through from every conclu-
sion to all premisses. Eventually, we will want to generalize this, but not
quite yet.

The first rule of linear logic is that if we have a resource P we can
achieve goal P , where P is an atomic proposition. It will be a consequence
of our definitions that this will be true for arbitrary propositions A, but we
need it as a rule only for the atomic case, where the structure of the propo-
sitions can not be broken down further.

P res `̀ P true
id

We call this the identity rule, it is also sometimes called the init rule, and the
sequent P `̀ P is called an initial sequent.

12.4 Connectives of Linear Logic

One of the curious phenomena of linear logic is that the ordinary connec-
tives multiply. This is because the presence of linear assumptions allows
us to make distinctions we ordinarily could not. The first example of this
kind is conjunction. It turns out that linear logic possesses two forms of
conjunction.

Simultaneous Conjunction (A ⊗ B). A simultaneous conjunction A ⊗ B

is true if we can achieve both A and B in the same state. This means we
have to subdivide our resources, devoting some of them to achieve A and
the others to achieve B.

∆ = (∆A,∆B) ∆A `̀ A ∆B `̀ B

∆ `̀ A ⊗ B
⊗R

LECTURE NOTES OCTOBER 5, 2006

Linear Logic L12.5

The order of linear assumptions is irrelevant, so in ∆ = (∆A,∆B) the
comma denotes the multi-set union. In other words, every occurrence of
a proposition in ∆ will end up in exactly one of ∆A and ∆B.

If we name the initial state of peg solitaire ∆0, then we have ∆0 `̀

peg(33) ⊗ hole(03) ⊗ . . . for some “. . .” because we can achieve a state with
a peg at location 33 and hole at location 03. On the other hand, we cannot
prove ∆0 `̀ peg(33) ⊗ hole(33) ⊗ . . . because we cannot have a peg and an
empty hole at location 33 in the same state. We will make the ellipsis “. . .”
precise below as consumptive truth >.

In a linear sequent calculus, the right rules shows when we can con-
clude a proposition. The left rule shows how we can use a resource. In this
case, the resource A ⊗ B means that we have A and B simultaneously, so
the left rule reads

∆, A res , B res `̀ C true

∆, A ⊗ B res `̀ C true
⊗L.

In comparison to the focusing judgment we used to explain the logical se-
mantics of pure Prolog programs, the left rules are not restricted to con-
tinuously decompose a single proposition until an atomic form is reached.
Instead, various applicable left rules that operate on different assumptions
can be freely interleaved. We consider the restriction to focusing in the next
lecture.

Alternative Conjunction (A & B). An alternative conjunction is true if
we can achieve both conjuncts, separately, with the current resources. This
means if we have a linear assumption A & B we have to make a choice:
either we use A or we use B, but we cannot use them both.

∆ `̀ A true ∆ `̀ B true

∆ `̀ A & B true
&R

∆, A res `̀ C true

∆, A & B res `̀ C true
&L1

∆, B res `̀ C true

∆, A & B res `̀ C true
&L2

It looks like the right rule duplicates the assumptions, but this does not
violate linearity because in a use of the assumption A & B res we have to
commit to one or the other.

Returning to the solitaire example, we have ∆0 `̀ peg(33)⊗hole(03)⊗. . .

and we also have ∆0 `̀ hole(33) ⊗ hole(03) ⊗ . . . because we can certainly
reach states with these properties. However, we cannot reach a single state
with both of these, because the two properties of location 33 clash. If we

LECTURE NOTES OCTOBER 5, 2006

L12.6 Linear Logic

want to express that both are reachable, we can form their alternative con-
junction

∆0 `̀ (peg(33) ⊗ hole(03) ⊗ . . .) & (hole(33) ⊗ hole(03) . . .).

Consumptive Truth (>). We have seen two forms of conjunction, which
are distinguished because of their resource behavior. There are also two
truth constants, which correspond to zero-ary conjunctions. The first is
consumptive truth >. A proof of it consumes all current resources. As such
we can extract no information from its presence as an assumption.

∆ `̀ > true
>R no >L rule

∆,> res `̀ C true

Consumptive truth is important in applications where there is an as-
pect of the state we do not care about, because of the stipulation of linear
logic that every linear assumption must be used exactly once. In the ex-
amples above so far we cared about only two locations, 33 and 03. The
state will have a linear assumption for every location, which means we can
not prove, for example, ∆0 `̀ peg(33) ⊗ hole(03). However, we can prove
∆0 `̀ peg(33) ⊗ hole(03) ⊗ >, because the consumptive truth matches the
remaining state.

Consumptive truth is the unit of alternative conjunction in that A & >

is equivalent to A.

Empty Truth (1). The other form of truth holds only if there are no re-
sources. If we have this as a linear hypothesis we can transform it into the
empty set of resources.

∆ = (·)

∆ `̀ 1 true
1R

∆ `̀ C true

∆,1 res `̀ C true
1L

Empty truth can be useful to dispose explicitly of specific resources.

Linear Implication (A(B). A linear implication A(B is true if we can
achieve B given resource A.

∆, A res `̀ B true

∆ `̀ A (B true
(R

LECTURE NOTES OCTOBER 5, 2006

Linear Logic L12.7

Conversely, if we have A (B as a resource, it means that we could trans-
form the resource A into the resource B. We capture this in the following
left rule:

∆ = (∆A,∆B) ∆A `̀ A true ∆B, B res `̀ C true

∆, A (B res `̀ C true
(L.

An assumption A (B therefore represents a means to transition from a
state with A to a state with B.

Unrestricted Assumptions Γ. The left rule for linear implication points at
a problem: the linear implication is itself linear and therefore consumed in
the application of that rule. If we want to specify via a linear logic program
how state may change, we will need to reuse the clauses over and over
again. This can be accomplished by a copy rule which takes an unrestricted
assumption and makes a linear copy of it. It is actually very much like the
focusing rule in an earlier system.

A ures ∈ Γ Γ;∆, A res `̀ C true

Γ;∆ `̀ C true

copy

We label the unrestricted assumptions as unrestricted resources, A ures . In
the logic programming interpretation, the whole program will end up in Γ
as unrestricted assumptions, since the program clauses can be used arbi-
trarily often during a computation.

Resource Independence (!A). The proposition !A is true if we can prove
A without using any resources. This means we can produce as many copies
of A as we need (since it costs nothing) and a linear resource !A licenses us
to make the unrestricted assumption A.

Γ; · `̀ A true

Γ; · `̀ !A true
!R

(Γ, A ures);∆ `̀ C true

Γ;∆, !A res `̀ C true
!L

Disjunction (A ⊕ B). The familiar conjunction from logic was split into
two connectives in linear logic: the simultaneous and the alternative con-
junction. Disjunction does not split the same way unless we introduce an
explicit judgment for falsehood (which we will not pursue). The goal A⊕B

can be achieved if we can achieve either A or B.

∆ `̀ A true

∆ `̀ A ⊕ B true
⊕R1

∆ `̀ B true

∆ `̀ A ⊕ B true
⊕R2

LECTURE NOTES OCTOBER 5, 2006

L12.8 Linear Logic

Conversely, if we are given A ⊕ B as a resource, we do not know which
of the two is true, so we have to account for both eventualities. Our proof
splits into cases, and we have to show that we can achieve our goal in either
case.

∆, A res `̀ C true ∆, B res `̀ C true

∆, A ⊕ B res `̀ C true
⊕L

Again, it might appear as if linearity is violated due to the duplication of
∆ and even C . However, only one of A or B will be true, so only one
part of the plan represented by the two premisses really applies, preserving
linearity.

Falsehood (0). There is no way to prove falsehood 0, so there is no right
rule for it. On the other hand, if we have 0 as an assumption we know we
are really in an impossible state so we are permitted to succeed.

no 0R rule
∆ `̀ 0 true ∆,0 res `̀ C true

0L

We can also formally think of falsehood as a disjunction between zero al-
ternatives and arrive at the same rule.

12.5 Resource Management

The connectives of linear logic are generally classified into multiplicative,
additive, and exponential.3

The multiplicative connectives, when their rules are read from conclu-
sion to the premisses, split their resources between the premisses. The con-
nectives ⊗, 1, and (have this flavor.

The additive connectives, when their rules are read from conclusion to
premisses, propagate their resources to all premisses. The connectives &,
>, ⊕, and 0 have this flavor.

The exponential connectives mediate the boundary between linear and
non-linear reasoning. The connective ! has this flavor.

During proof search (and therefore in the logic programming setting), a
significant question is how to handle the resources. It is clearly impractical,
for example, in the rule

∆ = (∆A,∆B) ∆A `̀ A true ∆B `̀ B true

∆ `̀ A ⊗ B true
⊗R

3Again, we will not try to explain the mathematical origins of this terminology.

LECTURE NOTES OCTOBER 5, 2006

Linear Logic L12.9

to simply enumerate all possibilities and try to prove A and B in each com-
bination until one is found that works for both.

Instead, we pass in all resources ∆ into the first subgoal A and keep
track which resources are consumed. We then pass the remaining ones to
the proof of B. Of course, if B fails we may have to find another proof of
A which consumes a different set of resources and then retry B, and so on.
In the logic programming setting this is certainly an issue the programmer
has to be aware of, just as the programmer has to know which subgoal is
solved first, or which clause is tried first.

We will return to this question in the next lecture where we will make
resource-passing explicit in the operational semantics.

12.6 Peg Solitaire, Linearly

We now return to the peg solitaire example. We coule like to rewrite the
moves predicate from a state-passing moves(n,s) to just moves(n), where
the state s is actually encoded in the linear context ∆. That is, we consider
the sitation

∆ `̀ moves(n)

where ∆ contains a linear assumption peg(ij) when there is a peg in loca-
tion ij and hole(ij) if there is an empty hole in location ij.

The first clause,

moves(0, _).

is translated to

moves(0) ◦− >.

where ◦− is reverse linear implication. The > here is necessary to consume
the state (which, in this case, we don’t care about).

The second clause for moves

moves(N, State1) :-

N > 0,

move1(State1, State2),

N1 is N-1,

moves(N1, State2).

as well as the auxiliary predicates move1 and swap are replaced by just one
clause in the definition of moves.

LECTURE NOTES OCTOBER 5, 2006

L12.10 Linear Logic

moves(N) ◦−

N > 0 ⊗ N1 is N-1 ⊗

(between(A,B,C) ⊕ between(C,B,A)) ⊗

peg(A) ⊗ peg(B) ⊗ hole(C) ⊗

(hole(A) ⊗ hole(B) ⊗ peg(C) (moves(N1)).

Operationally, we first compute n−1 and then find a triple A, B, C such that
B is between A and C . These operations are state independent, although
the clause does not indicate that.

At this point we determine if there are pegs at A and B and a hole at
C . If this is not the case, we fail and backtrack; if it is we remove these
three assumptions from the linear context (they are consumed!) and as-
sume instead hole(A), hole(B), and peg(C) before calling moves recursively
with n − 1. At this point this is the only outstanding subgoal, and the state
has changed by jumping A over B into C , as specified.

Observe how linearity and the intrinsic handling of state let’s us replace
a lot of code for state management with one short clause.

12.7 Historical Notes

Linear logic in a slightly different form than we present here is due to Gi-
rard [2]. He insisted on a classical negation in his formulation, which can
get in the way of an elegant logic programming formulation. The judg-
mental presentation we use here was developed for several courses on Lin-
ear Logic [3] at CMU. Some additional connectives, and some interesting
connections between the two formulations in linear logic are developed by
Chang, Chaudhuri and Pfenning [1]. We’ll provide some references on lin-
ear logic programming in the next lecture.

12.8 Exercises

Exercise 12.1 Prove that A res `̀ A true for any proposition A.

Exercise 12.2 For each of the following purely linear entailments, give a proof
that they hold or demonstrate that they do not hold because there is no deduction
in our system. You do not need to prove formally that no deduction exists.

i. A & (B ⊕ C) `̀ (A & B) ⊕ (A & C)

ii. A ⊗ (B ⊕ C) `̀ (A ⊗ B) ⊕ (A ⊗ C)

iii. A ⊕ (B & C) `̀ (A ⊕ B) & (A ⊕ C)

LECTURE NOTES OCTOBER 5, 2006

Linear Logic L12.11

iv. A ⊕ (B ⊗ C) `̀ (A ⊕ B) ⊗ (A ⊕ C)

Exercise 12.3 Repeat Exercise 12.2 by checking the reverse linear entailments.

Exercise 12.4 For each of the following purely linear entailments, give a proof
that they hold or demonstrate that they do not hold because there is no deduction
in our system. You do not need to prove formally that no deduction exists.

i. A ((B (C) `̀ (A ⊗ B) (C

ii. (A ⊗ B) (C `̀ A ((B (C)

iii. A ((B & C) `̀ (A (B) & (A (C)

iv. (A (B) & (A (C) `̀ A ((B & C)

v. (A ⊕ B) (C `̀ (A (C) & (A (C)

vi. (A (C) & (A (C) `̀ (A ⊕ B) (C

Exercise 12.5 For each of the following purely linear entailments, give a proof
that they hold or demonstrate that they do not hold because there is no deduction
in our system. You do not need to prove formally that no deduction exists.

i. C `̀ 1 (C

ii. 1 (C `̀ C

iii. A (> `̀ >

iv. > `̀ A (>

v. 0 (C `̀ >

vi. > `̀ 0 (C

Exercise 12.6 For each of the following purely linear entailments, give a proof
that they hold or demonstrate that they do not hold because there is no deduction
in our system. You do not need to prove formally that no deduction exists.

i. !(A ⊗ B) `̀ !A ⊗ !B

ii. !A ⊗ !B `̀ !(A ⊗ B)

iii. !(A & B) `̀ !A ⊗ !B

LECTURE NOTES OCTOBER 5, 2006

L12.12 Linear Logic

iv. !A ⊗ !B `̀ !(A & B)

v. !> `̀ 1

vi. 1 `̀ !>

vii. !1 `̀ >

viii. > `̀ !1

ix. !!A `̀ !A

x. !A `̀ !!A

12.9 References

[1] Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. A
judgmental analysis of linear logic. Technical Report CMU-CS-03-131R,
Carnegie Mellon University, December 2003.

[2] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[3] Frank Pfenning. Linear logic. Lecture Notes for a course at Carnegie
Mellon University, 1995. Revised 1998, 2001.

12.10 Appendix: Summary of Intuitionistic Linear Logic

In the rules below, we show the unrestricted assumptions Γ only where
affected by the rule. In all other rules it is propagated unchanged from the
conclusion to all the premisses. Also recall that the order of hypotheses is
irrelevant, and ∆A,∆B stands for the multiset union of two collections of
linear assumptions.

LECTURE NOTES OCTOBER 5, 2006

Linear Logic L12.13

Judgmental Rules

P res `̀ P true
id

A ures ∈ Γ Γ;∆, A res `̀ C true

Γ;∆ `̀ C true

copy

Multiplicative Connectives

∆A `̀ A ∆B `̀ B

∆A,∆B `̀ A ⊗ B
⊗R

∆, A res , B res `̀ C true

∆, A ⊗ B res `̀ C true
⊗L

· `̀ 1 true
1R

∆ `̀ C true

∆,1 res `̀ C true
1L

∆, A res `̀ B true

∆ `̀ A (B true
(R

∆A `̀ A true ∆B, B res `̀ C true

∆A,∆B , A (B res `̀ C true
(L

Additive Connectives

∆ `̀ A true ∆ `̀ B true

∆ `̀ A & B true
&R

∆, A res `̀ C true

∆, A & B res `̀ C true
&L1

∆, B res `̀ C true

∆, A & B res `̀ C true
&L2

∆ `̀ > true
>R

no >L rule

∆ `̀ A true

∆ `̀ A ⊕ B true
⊕R1

∆ `̀ B true

∆ `̀ A ⊕ B true
⊕R2

∆, A res `̀ C true ∆, B res `̀ C true

∆, A ⊕ B res `̀ C true
⊕L

no 0R rule ∆,0 res `̀ C true
0L

Exponential Connective

Γ; · `̀ A true

Γ; · `̀ !A true
!R

(Γ, A ures);∆ `̀ C true

Γ;∆, !A res `̀ C true
!L

Figure 1: Intuitionistic Linear Logic

LECTURE NOTES OCTOBER 5, 2006

