
15-819K: Logic Programming

Lecture 13

Abstract Logic Programming

Frank Pfenning

October 10, 2006

In this lecture we discuss general criteria to judge whether a logic or a frag-
ment of it can be considered a logic programming language. Taking such
criteria as absolute is counterproductive, but they might nonetheless pro-
vide some useful insight in the design of richer languages. Three criteria
emerge: the first two characterize the relationship to logic in that the lan-
guage should be sound and (non-deterministically) complete, allowing us
to interpret both success and finite failure. The third is operational: we
would like to be able to interpret connectives in goals as search instruc-
tions, giving them a predictable operational semantics.

13.1 Logic and Logic Programming

For a language to claim to be a logic programming language, the first cri-
terion seems to be soundness with respect to the logical interpretation of
the program. I consider this non-negotiable: when the interpreter claims
something is true, it should be true. Otherwise, it may be a programming
language, but the connection to logic has been lost. Prolog, unfortunately,
is unsound in this respect, due to the lack of occurs-check and the incorrect
treatment of disequality. We either have to hope or verify that these features
of Prolog did not interfere with the correctness of the answer. Other non-
logical features such as meta-call, cut, or input and output are borderline
with respect to this criterion: since these do not have a logical interpreta-
tion, it is difficult to assess soundness of such programs, except by reference
to an operational semantics.

The second criterion is non-deterministic completeness. This means
that if search fails finitely, no proof can exist. This does not seem quite

LECTURE NOTES OCTOBER 10, 2006

L13.2 Abstract Logic Programming

as fundamental, since we should be mostly interested in obtaining proofs
when they exist, but from an abstract perspective it is certainly desirable.
Again, this fails for full Prolog, but is satisfied by pure Prolog even with a
depth-first interpreter.

Summary: if we would like to abstractly classify logics or logical frag-
ments as suitable basis for logic programming languages, we would expect
at least soundness and non-deterministic completeness so we can correctly
interpret success and failure of goals.

13.2 Logic Programming as Goal-Directed Search

Soundness and completeness (in some form) establish a connection to logic,
but by themselves they are clearly insufficient from a programming per-
spective. For example, a general purpose theorem prover for a logic is
sound and complete, and yet not by itself useful for programming. We
would like to ensure, for example, that our implementation of quicksort
really is an implementation of quicksort, and similarly for mergesort. The
programmer should be able to predict and control operational behavior
well enough to cast algorithms into correct implementations.

As we have seen in the case of Prolog, if the language of goals is suffi-
ciently rich, we can transform all the clauses defining a predicate into the
form ∀x. p(x) ← G through a process of residuation. Searching for a proof
of a goal p(t) then becomes a procedure call, solving instead G(t/x), which
is another goal. In that way, all computational mechanisms are concen-
trated on the interpretation of goals. Logic programming, as conceived so
far, is goal-directed search. Elevating these observations to a design princi-
ple we postulate:

An abstract logic programming language is defined by a subset
of the propositions in a logic together with an operational semantics
via proof search on that subset. The operational semantics should be
sound, non-deterministically complete, and goal-directed.

But what exactly does goal-directed search mean? If we consider a se-
quent . . . `̀ G true where “. . .” collects all hypotheses (linear, unrestricted,
and whatever judgments may arise in other logics), then search is goal-
directed if we can always break down the structure of the goal G first before
considering the hypotheses, including the program. This leads us to the
definition of asynchronous connectives.

LECTURE NOTES OCTOBER 10, 2006

Abstract Logic Programming L13.3

13.3 Asynchronous Connectives

A logial constant or connective is asynchronous if its right rule can always
be applied eagerly without loosing completeness. For example, A & B is
asynchronous, because the rule

∆ `̀ A true ∆ `̀ B true

∆ `̀ A & B true
&R

can always be used for a conjunctive goal A & B, rather than first applying
a left rule to an assumption ∆ or the using a clause in the program Γ. This
intuitively coincides with our reading of conjunction as a search instruc-
tions: to search for a proof of A & B, first find a proof of A and then of B.
This does not talk about possibly having to decompose the program. The
property of being asynchronous turns out to be relatively easy to prove.
For example, given ∆ `̀ A & B true , we can prove that ∆ `̀ A true and
∆ `̀ B true by induction on the structure of the given derivation.

On the other hand, the disjunction A⊕B (which corresponds to A ∨B
in ordinary logic programming) is not asynchronous. As a countexample,
consider

C,C ((B ⊕A) `̀ A⊕B.

We can use neither the ⊕R1 nor the ⊕R2 rule, because neither

C,C ((B ⊕A) `̀ A

nor
C,C ((B ⊕A) `̀ B

are provable. Instead we can prove it as follows in the sequent calculus:

C `̀ C
id

B `̀ B
id

B `̀ A⊕B
⊕R2

A `̀ A
id

A `̀ A⊕B
⊕R1

B ⊕A `̀ A⊕B
⊕L

C,C ((B ⊕A) `̀ A⊕B
(L.

Observe that we took two steps on the left ((L and ⊕L) before decompos-
ing the right.

This counterexample shows that we could not decompose A⊕B eagerly
in goal-directed search, unless we are willing to sacrifice completeness. But
what, then, would the program C,C ((B ⊕A) mean?

LECTURE NOTES OCTOBER 10, 2006

L13.4 Abstract Logic Programming

We have already seen that disjunction is useful in Prolog programs, and
the same is true for linear logic programs, so this would seem unfortunate.
Before we rescue disjunction, let us analyze which connectives are asyn-
chronous.

We postpone the proofs that the asynchronous connectives are indeed
asynchronous, and just give counterexamples for those that are not asyn-
chronous.

C,C ((B ⊗A) `̀ A⊗B
C,C (1 `̀ 1

C,C ((B ⊕A) `̀ A⊕B
C,C (0 `̀ 0

C,C (!A `̀ !A

In each case we have to apply two left rules first, before any right rule can
be applied.

This leaves A(B, A&B, and> as asynchronous. Atomic propositions
have a somewhat special status in that we cannot decompose them, but we
have to switch to the left-hand side and focus on an assumption (which
models procedure call).

We have not discussed the rules for linear quantifiers (see below) but it
turns out that ∀x.A is asynchronous, while ∃x.A is not asynchronous.

13.4 Asynchronous Connectives vs. Invertibility of Rules

We call an inference rules invertible if the premisses are provable whenever
the conclusion is. It is tempting to think that a connective is asynchronous
if and only if its right rule is invertible. Not so. Please consider the question
and see a counterexample at the end of the lecture notes only in despara-
tion.

13.5 Unrestricted Implication

The analysis so far would suggest that the fragment of our logic has the
form

A ::= P | A1 (A2 | A1 & A2 | > | ∀x.A

However, this is insufficient, because it is purely linear. Usually we inte-
grate non-linear reasoning into linear logic using the “of course” operator
‘!’, but this is not asynchronous. Instead we can use ordinary implication
to complete the picture. The proposition A ⊃ B is true if assuming A as an

LECTURE NOTES OCTOBER 10, 2006

Abstract Logic Programming L13.5

unrestricted resource we can prove B.

Γ, A ures ;∆ `̀ B true

Γ;∆ `̀ A ⊃ B true
⊃R

Γ; · `̀ A true Γ;∆ `̀ C true

Γ;∆, A ⊃ B res `̀ C true
⊃L

In the left rule for implication, we cannot use any linear resources to prove
A, because A may be used in an unrestricted way when proving B. We
would need those resources potentially many times in the proof of B, vio-
lating linearity of the overall system.

The implication A ⊃ B is equivalent to (!A)(B (see Exercise 13.1), but
they have different proof theoretic properties since !A is not asynchronous.

13.6 Focusing and Synchronous Connectives

If all goal connectives are asynchronous, then we will hit eventually hit
an atomic predicate without even looking at the program. What happens
then? Recall from Lecture 8 that we now focus on a particular program
clause and decompose this in a focusing phase. In the setting here this just
means that the left rules are applied in sequence to the proposition in focus
until an atomic formula is reached, and this formula then must match the
conclusion.

In general, we call a connective synchronous if we can continue to fo-
cus on its components when it is in focus without losing completeness.
Note that in logic programming we focus on assumptions (that is, program
clauses or part of the state), so the status of a connective as synchronous
or asynchronous has be considered separately depending on whether it oc-
curs as a goal (on the right-hand side) or as an assumption (on the left-hand
side). A remarkable fact is that all the connectives that were asynchronous
as goals are synchronous as assumptions.

We now write ∆;A � P for a focus on A where we just wrote ∆;A `
P earlier, to avoid potential confusion with other hypothetical judgment
forms.

Unlike the decomposition of asynchronous connectives (which is com-
pletely mechanical), the decomposition of propositions in focus in the syn-
chronous phase of search involves choices. For example the pair of rules

∆;A1 res � P true

∆;A1 ∧A2 res � P true
&L1

∆;A2 res � P true

∆;A1 ∧A2 res � P true
&L2

requires a choice between A1 and A2 in the focusing phase of search, and
similarly for other connectives.

LECTURE NOTES OCTOBER 10, 2006

L13.6 Abstract Logic Programming

To restate the focusing property again: it allows us to continue to make
choices on the proposition in focus, without reconsidering other assump-
tions, until we reach an atomic proposition. If that matches the conclusion
that branch of the proof succeeds, otherwise it fails.

In the next lecture we will get a hint on how to prove this, although we
will not do this in full detail.

We close this section by giving the focusing rules for the asynchronous
fragment of linear logic, which is at the heart of our logic programming lan-
guage. The rules can be found in Figure 1. Unfortunately our motivating
example from the earlier lecture does not fall into this fragment. For exam-
ple, we used both simultaneous conjunction A ⊗ B and disjunction A ⊕ B
as goals which are so far prohibit. We will resurrect them via residuation,
not because they truly add expressive power, but they are convenient both
for program expression and for compilation.

13.7 Historical Notes

The notion that a logic programming language should be characterized
as a fragment of logic with complete goal-directed search originated with
Miller, Nadathur, and Scedrov [11] who explored logic programming based
on higher-order logic. A revised and expanded version appeared a couple
of years later [10]. These papers introduced the term uniform proofs for those
proofs that work asynchronously on the goal until it is atomic.

Some time later this was generalized by Andreoli and Pareschi who first
recognized the potential of linear logic for logic programming [3]. They
used a fragment of classical linear logic (rather than the intuitionistic linear
logic we use here), which does not have a distinguished notion of goal. The
language LO was therefore more suited to concurrent and object-oriented
programming [1, 5, 4].

Andreoli also generalized the earlier notion of uniform proofs to focus-
ing proofs [2], capturing now both the asynchronous as well as the syn-
chronous behavior of connectives in a proof-theoretic manner. This seminal
work subsequently had many important applications in logic, concurrency,
and functional programming, and not just in logic programming.

The thread of research on intuitionistic, goal-directed logic program-
ming resumed with the work by Hodas and Miller [8, 9] who proposed
essentially what we presented in this lecture, with some additional extra-
logical features borrowed from Prolog. In honor of its central new con-
nective the language was called Lolli. These ideas were later picked up in
the design of a linear logical framework [6, 7] which augments Lolli with a

LECTURE NOTES OCTOBER 10, 2006

Abstract Logic Programming L13.7

richer quantification and explicit proof terms.

13.8 Exercises

Exercise 13.1 Prove that A ⊃ B is equivalent to (!A) (B in the sense that each
entails the other, that is, A ⊃ B `̀ (!A) (B and vice versa.

Exercise 13.2 At one point we defined pure Prolog with the connectives A ∧ B,
>, A∨B,⊥, A ⊃ B, and ∀x.A, suitably restricted into legal goals and programs.
Show how to translate such programs and goals into linear logic so that focusing
proofs for (non-linear) logic are mapped isomorphically to focusing proofs in linear
logic, and prove that your translation is correct in that sense.

13.9 Answer

Consider the right rule for !A.

Γ; · `̀ A true

Γ; · `̀ !A true
!R

This rule is invertible: whenever the conclusion is provable, then so is the
premiss. However, !A is not asynchronous (see the counterexample in this
lecture). If we had formulated the rule as

∆ = (·) Γ; · `̀ A true

Γ;∆ `̀ !A true
!R

we would have recognized it as not being invertible, because ∆ is not nec-
essarily empty.

13.10 References

[1] Jean-Marc Andreoli. Proposal for a Synthesis of Logic and Object-Oriented
Programming Paradigms. PhD thesis, University of Paris VI, 1990.

[2] Jean-Marc Andreoli. Logic programming with focusing proofs in lin-
ear logic. Journal of Logic and Computation, 2(3):297–347, 1992.

[3] Jean-Marc Andreoli and Remo Pareschi. LO and behold! Concurrent
structured processes. In Proceedings of OOPSLA’90, pages 44–56, Ot-
tawa, Canada, October 1990. Published as ACM SIGPLAN Notices,
vol.25, no.10.

LECTURE NOTES OCTOBER 10, 2006

L13.8 Abstract Logic Programming

[4] Jean-Marc Andreoli and Remo Pareschi. Linear objects: Logical pro-
cesses with built-in inheritance. New Generation Computing, 9:445–473,
1991.

[5] Jean-Marc Andreoli and Remo Pareschi. Logic programming with se-
quent systems: A linear logic approach. In P. Schröder-Heister, editor,
Proceedings of Workshop to Extensions of Logic Programming, Tübingen,
1989, pages 1–30. Springer-Verlag LNAI 475, 1991.

[6] Iliano Cervesato and Frank Pfenning. A linear logical framework. In
E. Clarke, editor, Proceedings of the Eleventh Annual Symposium on Logic
in Computer Science, pages 264–275, New Brunswick, New Jersey, July
1996. IEEE Computer Society Press.

[7] Iliano Cervesato and Frank Pfenning. A linear logical framework. In-
formation & Computation, 179(1):19–75, November 2002.

[8] Joshua S. Hodas and Dale Miller. Logic programming in a fragment
of intuitionistic linear logic. In Proceedings of the 6th Annual Symposium
on Logic in Computer Science (LICS’91), pages 32–42, Amsterdam, The
Netherlands, July 1991. IEEE Computer Society Press.

[9] Joshua S. Hodas and Dale Miller. Logic programming in a fragment of
intuitionistic linear logic. Information and Computation, 110(2):327–365,
1994.

[10] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.
Uniform proofs as a foundation for logic programming. Annals of Pure
and Applied Logic, 51:125–157, 1991.

[11] Dale Miller, Gopalan Nadathur, and Andre Scedrov. Hereditary Har-
rop formulas and uniform proof systems. In David Gries, editor, Sym-
posium on Logic in Computer Science, pages 98–105, Ithaca, NY, June
1987.

LECTURE NOTES OCTOBER 10, 2006

Abstract Logic Programming L13.9

Judgmental Rules

P res � P true
id

A ures ∈ Γ Γ;∆;A res � P true

Γ;∆ `̀ P true

copy
∆;A res � P true

∆, A res `̀ P true
focus

Multiplicative Connective

∆, A res `̀ B true

∆ `̀ A (B true
(R

∆A `̀ A true ∆B;B res � P true

∆A,∆B ;A (B res � P true
(L

Additive Connectives

∆ `̀ A true ∆ `̀ B true

∆ `̀ A & B true
&R

∆;A res � P true

∆;A & B res � P true
&L1

∆;B res � P true

∆;A & B res � P true
&L2

∆ `̀ > true
>R

no >L rule

Exponential Connective

(Γ, A ures);∆ `̀ B true

Γ;∆ `̀ A ⊃ B true
⊃R

Γ; · `̀ A true Γ;B res � P true

Γ;∆;A ⊃ B res � P true
⊃L

Quantifier

∆ `̀ A x /∈ FV(Γ;∆)

∆ `̀ ∀x.A
∀R

∆;A(t/x) res � P true

∆;∀x.A res � P true
∀L

Figure 1: Focused Intuitionistic Linear Logic; Asynchronous Fragment

LECTURE NOTES OCTOBER 10, 2006

