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In this lecture we address the resource management problem in linear logic
programming. We also give some small but instructive examples of linear
logic programming, supplementing the earlier peg solitaire code.

15.1 Input/Output Interpretation of Resources

Reconsider the rule for simultaneous conjunction as a goal.

∆ = (∆1,∆2) ∆1 `̀ G1 ∆2 `̀ G2

∆ `̀ G1 ⊗ G2

⊗R

The difficulty in using this rule in proof search is that, as written, we have
to “guess” the right way to split the resources ∆ into two. Clearly, enumer-
ating all possible ways to split ∆ will be very inefficient, and also difficult
for the programmer to predict.

Instead, we pass all resources to the goal G1 and then pass the ones that
were not consumed in the derivation of G1 to G2. We write

∆I \ ∆O `̀ G

where ∆I is the input context and ∆O is the output context generated by
the proof search for G. The invariant we preserve is that

∆I \ ∆O `̀ G iff ∆I − ∆O `̀ G

where ∆I − ∆O subtracts the resources in ∆O from the resources in ∆I .
It is convenient to keep ∆I and ∆O ordered, so that this difference can be
computed component by component (see below).
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L15.2 Resource Management

Now the rule for simultaneous conjunction is

∆I \ ∆M `̀ G1 ∆M \ ∆O `̀ G2

∆I \ ∆O `̀ G1 ⊗ G2

⊗R.

It is easy to verify that the above invariant holds for this rule. More for-
mally, this would be part of a soundness and completeness proof for the
input/output interpretation of resources.

15.2 Slack Resources

The simple input/output interpretation for resources breaks down for con-
sumptive truth (>). Recall the rule

∆ `̀ >
>R

which translates to
∆I ⊇ ∆O

∆I \ ∆O `̀ >
>R

because > may consume any of its input but does not need to. Now we are
back at the original problem, since we certainly do not want to enumerate
all possible subsets of ∆I blindly.

Instead, we pass on all the input resources, but also a flag to indicate
that all of these resources could have been consumed. That means if they
are left over at the end, we can succeed instead of having to fail. We write
the judgment as

∆I \ ∆O `̀ v G

where v = 0 means G used exactly the resources in ∆I − ∆O, while v = 1
means G could also have consumed additional resources from ∆O. Now
our invariants are:

i. ∆I \ ∆O `̀ 0 G iff ∆I − ∆O `̀ G

ii. ∆I \ ∆O `̀ 1 G iff ∆I − ∆O,∆′ `̀ G for any ∆O ⊇ ∆′.

The right rule for > with slack is just

∆I \ ∆I `̀ 1 >
>R.
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In contrast, the rule for equality which requires the linear context to be
empty is

∆I \ ∆I `̀ 0 t
.
= t

.
=R.

As far as resources are concerned, the only difference is whether slack is
allowed (v = 1) or not (v = 0).

We now briefly return to simultaneous conjunction. There is slack in
the deduction for G1 ⊗ G2 if there is slack on either side: any remaining
resources could be pushed up into either of the two subderivations as long
as there is slack in at least one.

∆I \ ∆M `̀ v G1 ∆M \ ∆O `̀w G2

∆I \ ∆O `̀ v∨w G1 ⊗ G2

⊗R.

Here v ∨ w is the usual Boolean disjunction between the two flags: it is 0 if
both disjuncts are 0 and 1 otherwise.

15.3 Strict Resources

Unfortunately, there is still an issue in that resource management does not
take into account all information it should. There are examples in the litera-
ture [2], but they are not particularly natural. For an informal explanation,
consider the overall query ∆ `̀ G. We run this as ∆ \ ∆O `̀ v G, where
∆O and v are returned. We then have to check that all input has indeed be
consumed by verifying that ∆O is empty. If ∆O is not empty, we have to
fail this attempt and backtrack.

We would like to achieve that we fail as soon as possible when no proof
can exist due to resource management issues. In the present system we
may sometimes run to completion only to note at that point that we failed
to consume all resources. We can avoid this issue by introducing yet one
more distinction into our resource management judgment by separating
out strict resources. Unlike ∆I , which represents resources which may be
used, Ξ represent resources which must be used in a proof.

Ξ;∆I \ ∆O `̀ v G

The invariant does not get significantly more complicated.

i. Ξ;∆I \ ∆O `̀ 0 G iff Ξ,∆I − ∆O `̀ G

ii. Ξ;∆I \ ∆O `̀ 1 G iff Ξ,∆I − ∆O,∆′ `̀ G for all ∆O ⊇ ∆′.
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When reading the rules please remember that no resource in Ξ is ever
passed on: it must be consumed in the proof of Ξ;∆I \ ∆O `̀ v G. The un-
restricted context Γ remains implicit and is always passed from conclusion
to all premisses.

We will enforce as an additional invariant that input and output context
have the same length and structure, except that some inputs have been con-
sumed. Such consumed resources are noted as underscores ‘ ’ in a context.
We use ∆I ⊇ ∆O and ∆I − ∆O with the following definitions:

(·) ⊇ (·)

∆I ⊇ ∆O

(∆I , ) ⊇ (∆O, )

∆I ⊇ ∆O

(∆I , A) ⊇ (∆O, )

∆I ⊇ ∆O

(∆I , A) ⊇ (∆O, A)

and, for ∆I ⊇ ∆O,

(·) − (·) = (·)

∆I − ∆O = ∆

(∆I , ) − (∆O, ) = (∆, )

∆I − ∆O = ∆

(∆I , A) − (∆O, ) = (∆, A)

∆I − ∆O = ∆

(∆I , A) − (∆O, A) = (∆, )

Atomic Goals. When a goal is atomic, we focus on an assumption, resid-
uate, and solve the resulting subgoal. There are three possibilities for using
an assumption: from Γ, from Ξ, or from ∆I . Because we use residuation,
resource management is straightforward here: we just have to replace the
assumption with the token ‘ ’ to indicate that the resource has been con-
sumed.

D ∈ Γ D `̀ P > G Γ;Ξ;∆I \ ∆O `̀ v G

Γ;Ξ;∆I \ ∆O `̀ v P
resid!

D `̀ P > G Γ; (Ξ1, ,Ξ2);∆I \ ∆O `̀ v G

Γ; (Ξ1,D,Ξ2);∆I \ ∆O `̀ v P
resid1

D `̀ P > G Γ;Ξ; (∆′

I
, ,∆′′

I
) \ ∆O `̀ v G

Γ;Ξ; (∆′

I
,D,∆′′

I
) \ ∆O `̀ v P

resid2

Asynchronous Multiplicative Connective. There is only one multiplica-
tive asynchronous connective, D ( G which introduces a new linear as-
sumption. Since D must be consumed in the proof of G, we add it to the
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strict context Ξ.
(Ξ,D);∆I \ ∆O `̀ v G

Ξ;∆I \ ∆O `̀ v D ( G
(R

Synchronous Multiplicative Connectives. In the linear hereditary Har-
rop fragment as we have constructed it here, there are only two multiplica-
tive connectives that are synchronous as goals: equality and simultaneous
conjunction. The multiplicative unit 1 is equivalent to P

.
= P and does not

explicitly arise in residuation. For equality, we just need to check that Ξ is
empty and pass on all input resources to the output, indicating that there
is no slack (v = 0).

Ξ = ( , . . . , )

Ξ;∆I \ ∆I `̀ 0 P
.
= P

.
=R

For simultaneous conjunction, we distinguish two cases, depending on
whether the first subgoal has slack. Either way, we turn all strict resources
from Ξ into lax resources for the first subgoal, since the second subgoal
is waiting, and may potentially consume some of the formulas in Ξ that
remain unconsumed in the first subgoal.

. ; Ξ,∆I \ Ξ′,∆′

I
`̀ 0 G1 Ξ′;∆′

I
\ ∆O `̀ v G2 (Ξ ⊇ Ξ′)

Ξ;∆I \ ∆O `̀ v G1 ⊗ G2

⊗R0

If the first subgoal is slack, then it could consume the leftover resources in
Ξ′, so they do not necessarily need to be consumed in the second subgoal.
Originally strict resources that remain after the second subgoal are then
dropped, noting that the first subgoal must have (implicitly) consumed
them.

. ; Ξ,∆I \ Ξ′,∆′

I
`̀ 1 G1 . ; Ξ′,∆′

I
\ Ξ′′,∆O `̀ ∗ G2 (Ξ ⊇ Ξ′ ⊇ Ξ′′)

Ξ;∆I \ ∆O `̀ 1 G1 ⊗ G2

⊗R1

It does not matter whether the second subgoal is strict or lax, since the
disjunction is already known to be 1. We indicate this with an asterisk ‘∗’.

Asynchronous Additive Connectives. The additive connectives that are
asynchronous as goals are alternative conjunction (G1 & G2) and consump-
tive truth (>). First >, which motivated the slack indicator v. It consumes
all of Ξ and passes the remaining inputs on without consuming them.

Ξ;∆I \ ∆I `̀ 1 >
>R
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For alternative conjunction, we distinguish two subcases, depending on
whether the first subgoal turns out to have slack or not. If not, then the
second subgoal must consume exactly what the first subgoal consumed,
namely Ξ and ∆I − ∆O. We therefore add this to the strict context. The lax
context is empty, and we do not need to check the output (it must also be
empty, since it is a subcontext of the empty context). Again, we indicate
this with a ‘∗’ to denote an output we ignore.

Ξ;∆I \ ∆O `̀ 0 G1 Ξ,∆I − ∆O; · \ ∗ `̀ ∗ G2

Ξ;∆I \ ∆O `̀ 0 G1 & G2

&R0

If the first subgoal has slack, with still must consume everything that was
consumed in the first subgoal. In addition, we may consume anything that
was left.

Ξ;∆I \ ∆M `̀ 1 G1 Ξ,∆I − ∆M ;∆M \ ∆O `̀ v G2

Ξ;∆I \ ∆O `̀ v G1 & G2

&R1

Synchronous Additive Connectives. Disjunction is easy, because it in-
volves a choice among alternatives, but not resources, which are just passed
on.

Ξ;∆I \ ∆O `̀ v G1

Ξ;∆I \ ∆O `̀ v G1 ⊕ G2

⊕R1

Ξ;∆I \ ∆O `̀ v G2

Ξ;∆I \ ∆O `̀ v G1 ⊕ G2

⊕R2

Falsehood is even easier, because it represents failure and therefore has no
right rule.

no rule 0R
Ξ;∆I \ ∗ `̀ ∗ 0

Exponential Connectives. Unrestricted implication is quite simple, since
we just add the new assumption to the unrestricted context.

Γ,D; Ξ;∆I \ ∆O `̀ v G

Γ;Ξ;∆I \ ∆O `̀ v D ⊃ G
⊃R

The (asymmetric) exponential conjunction passes all resources to the first
subgoal, since the second cannot use any resources. We do not care if the
exponential subgoal is strict or lax, since it does not receive or return any
resources anyway.

Γ;Ξ;∆I \ ∆O `̀ v G1 Γ; ·; · \ ∗ `̀ ∗ G2

Γ;Ξ;∆I \ ∆O `̀ v G1 ⊗! G2

⊗!R
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Quantifiers. Quantifiers are resource neutral.

Γ;Ξ;∆I \ ∆O `̀ v G x /∈ FV(Γ;Ξ;∆I)

Γ; Ξ;∆I \ ∆O `̀ v ∀x.G
∀R

Γ;Ξ;∆I \ ∆O `̀ v G(t/x)

Γ; Ξ;∆I \ ∆O `̀ v ∃x.G
∃R

This completes the connectives for the linear hereditary Harrop formu-
las. The proof that these are sound and complete amounts to showing the
invariants stated at the beginning of this section. A crucial lemma states
that resources can be added to the lax input context without affecting prov-
ability.

If Ξ;∆I \ ∆O `̀ v G then Ξ; (∆I ,∆
′) \ (∆O,∆′) `̀ v G for all ∆′.

This provides a measure of modularity to proofs using consumable re-
sources, at least as far as the existence of proofs is concerned. During proof
search, however, it is clear that ∆′ could interfere with with the proof if
added to the input.

At the top level, we solve ∆ `̀ G by invoking ∆; · \ ∗ `̀ ∗ G. We do
not need to check the output context (which will be empty) or the slack
indicator, because ∆ is passed in as strict context.

15.4 Sample Program: Permutation

To illustrate linear logic programming we give a few small programs. The
first computes all permutations of a list. It does so by adding the elements
to the linear context and then reading them out. Since the linear context is
not ordered, this allows all permutations.

perm([X|Xs],Ys) ◦− (elem(X) ( perm(Xs,Ys)).

perm([],[Y|Ys]) ◦− elem(Y) ⊗ perm([],Ys).

perm([],[]).

The last clause can only apply if the context is empty, so any order of these
clauses will work. However, putting the third before the second will cause
more backtracking especially if permutation is embedded multiplicatively
in a larger program.
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15.5 Sample Program: Depth-First Search

Imperative algorithms for depth-first search mark nodes that have been
visited to prevent looping. We can model this in a linear logic program by
starting with a linear assumption node(x) for every node x and consuming
this assumption when visiting a node. This means that a node cannot be
used more than once, preventing looping.

We assume a predicate edge(x,y) which holds whenever there is a di-
rected edge from x to y.

dfs(X,Y) ◦− edge(X,Y).

dfs(X,Y) ◦− edge(X,Z) ⊗ node(Z) ⊗ dfs(Z,Y).

This by itself is note quite enough because not all nodes might be visited.
We can allow this with the following top-level call

path(X,Y) ◦− node(X) ⊗ dfs(X,Y) ⊗ >.

15.6 Sample Program: Stateful Queues

In Lecture 11 we have seen how to implement a queue with a difference
list, but we had to pass the queue around as an argument to any predicate
wanting to use it. We can also maintain the queue in the linear context.
Recall that we used a list of instructions enq(x) and deq(x), and that at the
end the queue must be empty.

queue(Is) ◦− (front(B) ⊗ back(B) ( q(Is)).

q([enq(X)|Is]) ◦− back([X|B]) ⊗ (back(B) ( q(Is)).

q([deq(X)|Is]) ◦− front([X|Xs]) ⊗ (front(Xs) ( q(Is)).

q([]) ◦− front([]) ⊗ back([]).

In this version, the dequeuing may borrow against future enqueue opera-
tions (see Exercise 15.2).

It is tempting to think we might use the linear context itself as a kind
of queue, similar to the permutation program, but using cut ‘!’ to avoid
getting all solution. This actually does not work, since the linear context is
maintained as a stack: most recently made assumptions are tried first.
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15.7 Historical Notes

Resource management for linear logic programming was first considered
by Hodas and Miller in the design of Lolli [7, 8]. The original design
underestimated the importance of consumptive truth, which was later re-
paired by adding the slack indicator [5] and then the strict context [1, 2].
Primitive operations on the contexts are still quite expensive, which was
addressed subsequently through so-called tag frames which implement the
context management system presented here in an efficient way [6, 9].

An alternative approach to resource management is to use Boolean con-
straints to connect resources in different branches of the proof tree, devel-
oped by Harland and Pym [3, 4]. This is more general, because one is not
committed to depth-first search, but also potentially more expensive.

An implementation of the linear logic programming language Lolli in
Standard ML can be found at http://www.cs.cmu.edu/~fp/lolli. The
code presented in this course, additional puzzles, a propositional theorem
prover, and more example can be found in the distribution.

15.8 Exercises

Exercise 15.1 Prove carefully that the perm predicate does implement permuta-
tion when invoked in the empty context. You will need to generalize this statement
to account for intermediate states in the computation.

Exercise 15.2 Modify the stateful queue program so it fails if an element is de-
queued before it is enqueued.

Exercise 15.3 Give an implementation of a double-ended queue in linear logic
programming, where elements can be both enqueued and dequeued at both ends.

Exercise 15.4 Sometimes, linear logic appears excessively pedantic in that all re-
source must be used. In affine logic resources may be used at most once. De-
velop the connectives of affine logic, its asynchronous fragment, residuation, and
resource management for affine logic. Discuss the simplifications in comparison
with linear logic (if any).

Exercise 15.5 Philosophers have developed relevance logic in order to capture
that in a proof of A implies B, some use of A should be made in the proof of B.
Strict logic is a variant of relevance logic where we think of strict assumptions as
resources which must be used at least once in a proof. Develop the connectives of
strict logic, its asynchronous fragment, residuation, and resource management for
strict logic. Discuss the simplifications in comparison with linear logic (if any).
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L15.10 Resource Management

Exercise 15.6 In the resource managment system we employed a relatively high-
level logical system, without goal stack, failure continuation, or explicit unifica-
tion. Extend the abstract machine which uses these mechanisms by adding resource
management as given in this lecture.

Because we can make linear or unrestricted assumptions in the course of search,
not all information associated with a predicate symbol p is static, in the global
program. This means the rule for atomic goals must change. You should fix the
order in which assumptions are tried by using most recently made assumptions
first and fall back on the static program when all dynamic possibilities have been
exhausted.
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[6] Joshua S. Hodas, Pablo López, Jeffrey Polakow, Lubomira Stoilova,
and Ernesto Pimentel. A tag-frame system of resource management
for proof search in linear-logic programming. In J. Bradfield, edi-
tor, Proceedings of the 16th International Workshop on Computer Science
Logic (CSL’02), pages 167–182, Edinburgh, Scotland, September 2002.
Springer Verlag LNCS 2471.

LECTURE NOTES OCTOBER 17, 2006



Resource Management L15.11

[7] Joshua S. Hodas and Dale Miller. Logic programming in a fragment
of intuitionistic linear logic. In Proceedings of the 6th Annual Symposium
on Logic in Computer Science (LICS’91), pages 32–42, Amsterdam, The
Netherlands, July 1991. IEEE Computer Society Press.

[8] Joshua S. Hodas and Dale Miller. Logic programming in a fragment of
intuitionistic linear logic. Information and Computation, 110(2):327–365,
1994.
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