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In this lecture we introduce a semantics with an explicit substitution, in
preparation for presenting various program analyses later. The semantics
will have the property that its goals appear exactly as in the original pro-
grams, with a separate substitution as part of the judgment. We also re-
viewed potential project areas during lecture, which is not represented in
these notes.

16.1 Semantic Levels

When designing a program analysis we need to consider which level of se-
mantic description is appropriate. This is relevant both for designing and
proving the correctness of the analysis, which could be either simple or
difficult, depending on our starting point. By the “level of semantic de-
scription” we mean here the spectrum from the logical semantics (in which
we can only talk about truth), through one where subgoal order is explicit,
to one with a failure continuation. An additional dimension is if a substi-
tution is explicit in the semantics.

Which kind of semantics is appropriate, for example, for defining mode
analysis? We would like to stay as high-level as possible, while still being
able to express the property in question. Because mode analysis depends
on subgoal order, one would expect to make subgoal order explicit. More-
over, since groundedness is a property of the substitution that is applied,
we also should make a substitution explicit during computation. On the
other hand, modes do not interact with backtracking, so we do not expect
to need a failure continuation.

We take here a slight shortcut, using a semantics with an explicit sub-
stitution, but not a subgoal stack. Of course, it is possible to give such a
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semantics as well. Omitting the subgoal stack has the advantage that we
can relatively easily talk about the successful return of a predicate.

16.2 A Substitution Semantics

The semantics we give takes a goal G under a substitution τ . It produces a
substitution θ with the invariant that Gτθσ for any grounding substitution
σ. We define it on the fully residuated form, where for every predicate p
there is exactly one clause, and this clause has the form ∀x. p(x)← G.

In the judgment τ ` G / θ we maintain the invariant that dom(τ) ⊇
FV(G) and that Gτθ true where we mean that there is a proof paramet-
ric in the remaining free variables. Moreover, θ substitutes only for logic
variables X.

An important point1 is that τ should substitute exactly for the originally
quantified variables of G, and not for logic variables introduced during the
computation. This is the role of θ which substitutes only for logic variables.
The rule for atomic predicates is one place where this is important.

(∀x. p(x)← G) ∈ Γ tτ/x ` G / θ

τ ` p(t) / θ

We see that, indeed, the substitution on the premise accounts for all vari-
ables in G by the assumption of a closed normal form for programs.

The rule for conjunction presumes a subgoal order via the threading of
θ1, without using a subgoal stack.

τ ` G1 / θ1 τ [θ1] ` G2 / θ2

τ ` G1 ∧G2 / θ1θ2

Here we have used a variant of the composition operator in order to main-
tain our invariant on the input substitution. τ [θ1] applies θ1 to every ele-
ment of τ , but does not extend it. That is,

(t1/x1, . . . , tn/xn)[θ] = (t1[θ]/x1, . . . , tn[θ]/xn)

Truth is straightforward, as are the rules for disjunction and falsehood.

τ ` > / (·)

τ ` G1 / θ

τ ` G1 ∨G2 / θ

τ ` G2 / θ

τ ` G1 ∨G2 / θ
no rule for
τ ` ⊥ /

1I missed this point in lecture, which is why the system I gave did not work quite as well
to prove the correctness of mode analysis.
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The existential quantifier introduces a fresh logic variable X. This logic
variable can somehow “escape” in that it may occur in the domain or co-
domain θ. Intuitively, this makes sense because a logic variable that is not
instantiated during the solution of G will remain after success.

X 6∈ FV(τ) τ,X/x ` G / θ

τ ` ∃x.G / θ

Finally, equality reduces to unification.

tτ
.
= sτ | θ

τ ` t
.
= s / θ

16.3 Correctness

The substitution semantics from the previous section is sound and com-
plete in relation to the logical semantics of truth. First, the soundness. As
remarked above, truth of a proposition with free variables is defined para-
metrically. That is, there must be one deduction with free variables every
ground instance of which is true under the usual ground interpretation.

Theorem 16.1 If τ ` G / θ for dom(τ) ⊇ FV(G) then Gτθ true .

Proof: By induction on the deduction D of τ ` G / θ. For unification, we
rely on soundness of unification. 2

Completeness follows the usual pattern of lifting to deduction with free
variables.

Theorem 16.2 If Gτσ true where dom(τ) ⊇ FV(G) and cod(σ) = ∅ then
τ ` G / θ and σ = θσ′ for some θ and σ′.

Proof: By induction on the deduction of Gτσ θ. For unification we invoke
the property that unification returns a most general unifier. 2

16.4 An Asynchronous Substitution Semantics

Instead of giving substitution on goals for the residuated semantics, we can
also give it directly on programs and goals if a normal form for programs
is not desired or needed. There will be two judgments: τ ` A / θ where A
functions as a goal, and τ ;A� P / θ where A is formula under focus.
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τ ` A1 / θ1 τ [θ1] ` A2 / θ2

τ ` A1 ∧A2 / θ1θ2 τ ` > / (·)

omitted here
τ ` A1 ⊃ A2 /

omitted here
τ ` ∀x.A /

τ ;A� P / θ A ∈ Γ

τ ` P / θ

τ ;A1 � P / θ

τ ;A1 ∧A2 � P / θ

τ ;A2 � P / θ

τ ;A1 ∧A2 � P / θ
no rule for

τ ;> � P /

X /∈ FV(τ) (τ,X/x);A� P / θ

τ ;∀x.A� P / θ

P ′τ
.
= Pτ | θ

τ ;P ′ � P / θ

τ ;A1 � P / θ1 τ [θ1] ` A2 / θ2

τ ;A2 ⊃ A1 � P / θ1θ2

We have not treated here implication and universal quantification as a
goal. Implication is straightforward (see Exercise 16.1). Universal quantifi-
cation in goals (which we have mostly avoided so far) creates difficulties
for unification and is left to a future lecture.

The correctness theorem for this version of the semantics is left to Exer-
cise 16.2.

16.5 Exercises

Exercise 16.1 Extend the substitution semantics to permit dynamic assumptions
Γ and goals of the form A1 ⊃ A2. Take care to account for the possibility that that
dynamic assumptions may contain free variables.

Exercise 16.2 State and prove the correctness theorems for the asynchronous sub-
stitution semantics.
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