
15-819K: Logic Programming

Lecture 17

Mode Checking

Frank Pfenning

October 26, 2006

In this lecture we present modes to capture directionality in logic programs.
Mode checking helps to catch programming errors and also allows for more
efficient implementation. It is based on a form of abstract interpretation
where substitutions are approximated by a two-element lattice: completely
unknown terms, and terms known to be ground.

17.1 Modes

We have already informally used modes in the discussion of logic programs.
For example, we can execute certain predicates in multiple directions, but
this is impossible in other directions. We use modes + for input, - for output
and * for bi-directional arguments that are not designated as input or output.

We define the meaning as follows:

• Input arguments (+) must be ground when a predicate is invoked. It
is an error if the mode analysis cannot establish this for a call to a
predicate.

• Output arguments (-) must be ground when a predicate succeeds. It
is an error if the mode analysis cannot establish this for the definition
of a predicate.

From this we can deduce immediately:

• Input arguments (+) can be assumed to be ground when analyzing the
definition of a predicate.

LECTURE NOTES OCTOBER 26, 2006

L17.2 Mode Checking

• Output arguments (-) can be assumed to be ground after a call to a
predicate returns.

As an example, we return to our old program for addition.

plus(z, N, N).

plus(s(M), N, s(P)) :- plus(M, N, P).

First we check the mode

plus(+, +, -)

Consider the first clause, plus(z, N, N). We are permitted to assume that
the first two argument are ground, hence N is ground. We have to show the
third argument, N is ground, which we just established. Therefore, the first
clause is well-moded.

Looking at the head of the second clause, we may assume that M and
N are ground. We have to eventually show the s(P) will be ground upon
success. Now we analyze the body of the clause, plus(M, N, P). This call
is well-moded, because both M and N are known to be ground. Conversely,
we may now assume that the output argument P is ground. Consequently
s(P) is ground as required and the second clause is well-moded. Hence the
definition of plus has the indicated mode.

I suggest you walk through showing that plus as has modes

plus(+, -, +)

plus(-, +, +)

which are two ways to calculate the difference of two numbers.
On the other hand, it does not have mode

plus(+, -, -)

because, for example, plus(z, N, P) succeeds without grounding either
the second or third argument.

Modes are useful for a variety of purposes. First of all, they help to catch
program errors, just like types. If a predicate does not satisfy an expected
mode, it is likely a bug. This can happen fairly easily when names of free
variables in clauses are mistyped. It is standard practice for Prolog compil-
ers to produce a warning if a variable is used only once in a clause, under
the assumption that it is a likely source of bugs. Unfortunately, this pro-
duces many false positives on correct programs. Mode errors are a much
more reliable indication of bugs.

LECTURE NOTES OCTOBER 26, 2006

Mode Checking L17.3

Secondly, modes can be used to produce more efficient code in a com-
piler, for example, by optimizing away occurs-checks (presuming you are
interested in sound unification, as you should be), or by producing more
efficient code for matching a goal against clause heads.

Thirdly, modes are helpful as a precondition for other analyses, such as
termination analysis. For example, the nat predicate defined by

nat(s(N)) :- nat(N).

nat(z).

will terminate if the argument is ground, but diverge if the argument is a
variable.

17.2 Semantic Levels

As laid out in the previous lecture, we need to consider which kind of se-
mantics is appropriate for defining mode analysis? We would like to stay
as high-level as possible, while still being able to express the property in
question. Because mode analysis depends on subgoal order, one would
expect to make subgoal order explicit. Moreover, since groundedness is a
property related to the substitution that is applied, we also should make
a substitution explicit during computation. On the other hand, modes do
not interact with backtracking, so we don’t expect to need a failure contin-
uation.

We take here a slight shortcut, using a semantics with an explicit substi-
tution, but not a subgoal stack. The resulting soundness property for mode
analysis is not as strong as we may wish, as discussed in Exercise 17.1, but
it is a bit easier to manage because it is easier to understand the concept of
a successful return of a predicate call.

17.3 A Substitution Semantics

The semantics we gave in the previous lecture takes a goal G under a sub-
stitution τ . It produces a substitution θ with the invariant that Gτ [θσ] for
any grounding substitution σ. We define it on the fully residuated form,
where for every predicate p there is exactly one clause, and this clause has
the form ∀x,y, z. p(x,y, z) ← G where x are the input arguments, y are the
bi-directional arguments, and z are the output arguments of p. We have
collected them into left-to-right form only for convenience, although this
is probably also good programming practice. The rules are summarized in
Figure 1.

LECTURE NOTES OCTOBER 26, 2006

L17.4 Mode Checking

τ ` G1 / θ1 τ [θ1] ` G2 / θ2

τ ` G1 ∧G2 / θ1θ2 τ ` > / (·)

(∀x,y, z. p(x,y, z) ← G) ∈ Γ tτ/x, rτ/y, sτ/z ` G / θ

τ ` p(t, r, s) / θ

τ ` G1 / θ

τ ` G1 ∨G2 / θ

τ ` G2 / θ

τ ` G1 ∨G2 / θ
no rule for
τ ` ⊥ /

X 6∈ FV(τ) τ,X/x ` G / θ

τ ` ∃x.G / θ

tτ
.
= sτ | θ

τ ` t
.
= s / θ

Figure 1: Substitution Semantics

17.4 Abstract Substitutions

One common way of designing a program analysis is to construct and ab-
straction of a concrete domain involved in the operational semantics. Here,
we abstract away from the substitution terms, tracking only if the terms are
ground g or unknown u. They are related by an information ordering in the
sense that u has no information and g is the most information we can have
about a term. We write this in the form of a partial order which, in this case,
is rather trivial. u

g

We write g ≤ u. If we are lower in this partial order we have more informa-
tion; higher up we have less. This order is consistent with the interpretation
of g and u as sets of terms: g is the set of ground terms, which is a subset of
the set of all terms u.

Other forms of abstract interpretation, or a more detailed mode analy-
sis, demands more complex orderings. We will see in the analysis which
form of operations are required to be defined on the structure.

Abstract substitutions now have the form

τ̂ ::= · | τ̂ , u/x | τ̂ , g/x.

LECTURE NOTES OCTOBER 26, 2006

Mode Checking L17.5

An abstract substitution τ̂ approximates an actual substitution τ if they have
the same domain, and if whenever g/x ∈ τ̂ it is indeed the case that t/x ∈ τ
and FV(t) = ∅. For variables marked as unknown in τ̂ there is no require-
ment placed on τ . We write τ̂ 4 τ if τ̂ approximates τ .

17.5 Mode Analysis Judgment

Now we abstract from the concrete operational semantics to one where we
just carry abstract substitutions. The parallel nature of the operational and
analysis rules leads to a mangeable proof of soundness of the analysis. Of
course, completeness can not hold: there will always be programs that
will respect modes at run-time, but fail the decidable judgment of well-
modedness defined below (see Exercise 17.2).

At the top level we check each predicate separately. However, we as-
sume that modes for all predicates are declared simultaneously, or at least
that the modes of a predicate are defined before they are used in another
predicate. The main judgment is

τ̂ ` G / σ̂

where dom(τ) ⊇ FV(G) and τ̂ ≥ σ̂. The latter is interpreted pointwise,
according to the partial order among the abstract elements. So τ̂ and σ̂
have the same domain, and σ̂ preserves all g/x in τ̂ , but may transform
some u/x into g/x.

When analyzing the definition of a predicate we are allowed to assume
that all input arguments are ground and we have to show that upon suc-
cess, the output arguments are ground. We do not assume or check any-
thing about the bi-directional arguments.

(∀x,y, z. p(x,y, z) ← G) ∈ Γ
g/x,u/y,u/z ` G(x,y, z) / (g/x, /y,g/z)

p wellmoded

The judgment τ̂ ` t ground checks that all terms in t are ground assuming
the information given in τ̂ .

g/x ∈ τ̂

τ̂ ` x ground

τ̂ ` t ground

τ̂ ` f(t) ground

τ̂ ` (·) ground

τ̂ ` t ground τ̂ ` t ground

τ̂ ` (t, t) ground

LECTURE NOTES OCTOBER 26, 2006

L17.6 Mode Checking

Besides the abstraction, the gap to bridge between the operational and
abstract semantics is only that fact in τ ` G / θ the output θ is an increment:
we apply it to τ to obtain the substitution under which G is true. σ̂ on the
other hand is a completed approximate substitution. This is reflected in the
following property we show in the end.

If τ ` G / θ and τ̂ 4 τ and τ̂ ` G / σ̂ then σ̂ 4 τ [θ].

Atoms. An atomic goal represents a procedure call. We therefore have to
show that the input arguments are ground and we are permitted to assume
that the output arguments will subsequently be ground.

τ̂ ` t ground τ̂ ` s / σ̂

τ̂ ` p(t, r, s) / σ̂

The judgment τ̂ ` s / σ̂ refines the information in τ̂ by noting that all
variables in s can also be assumed ground.

(τ̂1, /x, τ̂2) ` x / (τ̂1, g/x, τ̂2)

τ̂ ` s / σ̂

τ̂ ` f(s) / σ̂

τ̂ ` (·) / τ̂

τ̂1 ` s / τ̂2 τ̂2 ` s / τ̂3

τ̂1 ` (s, s) / τ3

Conjunction. Conjunctions are executed from left-to-right, so we propa-
gate the mode information in the same order.

τ̂1 ` G1 / τ̂2 τ̂2 ` G2 / τ̂3

τ̂1 ` G1 ∧G2 / τ̂3

Truth. Truth does not affect any variables, so the modes are simply prop-
agated unchanged.

τ̂ ` > / τ̂

Disjunction. Disjunction represents an interesting challenge. For a goal
G1 ∨G2 we do not know which subgoal will succeed. Therefore a variable

LECTURE NOTES OCTOBER 26, 2006

Mode Checking L17.7

is only definitely known to be ground after execution of the disjunction, if
it is known to be ground in both cases.

τ̂ ` G1 t σ̂1 τ̂ ` G2 t σ̂2

τ̂ ` G1 ∨G2 / σ̂1 t σ̂2

The least upper bound operation t is applied to two abstract substitutions
point-wise, and on abstract terms it is defined by

g t g = g

g t u = u

u t g = u

u t u = u

This is a common pattern in logic program analysis, where the least upper
bound operations comes from the order on the abstract elements. To make
sure that such a least upper bound always exist we generally stipulate that
the order of abstract elements actually constitutes a lattice so that least up-
per bounds (t) and greatest lower bounds (u) of finite sets always exist. As
a special case, the least upper bound of the empty set is the bottom element
of the lattice, usually denoted by ⊥ or 0. We use the latter because ⊥ is
already employed with its logical meaning. Here, the bottom element is g

for an individual element, and g/x for a substitution.

Falsehood. In the operational semantics there is no rule for proving false-
hood. In the mode analysis, however, we need a rule for handling false-
hood, since analysis should not fail unless there is a mode error. Recall that
we need for the output of mode analysis to approximate the output substi-
tution τ [θ] if τ ` G / θ. But G = ⊥ can never succeed, so this requirement is
vacuous. Consequently, is it safe to pick the bottom element of the lattice.

dom(τ̂) = x

τ̂ ` ⊥ / (g/x)

Existential. Solving an existential creates a new logic variable. This is still
a free variable, so we mark its value as not known to be ground.

(τ̂ , u/x) ` G / (σ̂, /x)

τ̂ ` ∃x.G / σ̂

Since there is no requirement that existential variables eventually become
ground, we do not care what is known about the substitution term for x
upon the successful completion of G.

LECTURE NOTES OCTOBER 26, 2006

L17.8 Mode Checking

Equality. When encountering an equality we need to descend into the
terms, abstractly replaying unification, to approximate the resulting substi-
tution. We therefore distinguish various cases. Keep in mind that analysis
should always succeed, even if unification fails at runtime, which gives us
more cases to deal with than one would initially expect. We write τ̂ + g/x
for the result of setting the definition for x in τ̂ to g.

τ̂ ` s ground

τ̂ ` x
.
= s / τ̂ + g/x

g/x ∈ τ̂
τ̂ 6` s ground τ̂ ` s / σ̂

τ̂ ` x
.
= s / σ̂

u/x ∈ τ̂
τ̂ 6` s ground

τ̂ ` x
.
= s / τ̂

τ̂ ` t ground

τ̂ ` t
.
= y / τ̂ + g/y

g/y ∈ τ̂
τ̂ 6` t ground τ̂ ` t / σ̂

τ̂ ` t
.
= y / σ̂

u/y ∈ τ̂
τ̂ 6` t ground

τ̂ ` t
.
= y / τ̂

τ̂ ` t
.
= s / σ̂

τ̂ ` f(t)
.
= f(s) / σ̂

f 6= g dom(τ̂) = x

τ̂ ` f(t)
.
= g(s) / (g/x)

τ̂1 ` t
.
= s / τ̂2 τ̂2 ` t

.
= s / τ̂3

τ̂1 ` (t, t)
.
= (s, s) / τ̂3 τ̂ ` (·)

.
= (·) / τ̂

dom(τ̂) = x

τ̂ ` (·)
.
= (s, s) / (g/x)

dom(τ̂) = x

τ̂ ` (t, t)
.
= (·) / (g/x)

The first and second lines overlap in the sense that for some equations,
more than one rule applies. However, the answer is the same in either
case. We could resolve the ambiguity by requiring, for example, that in the
second line t is not a variable, that is, of the form f(t).

17.6 Soundness

Next we have to prove soundness of the analysis. First we need a couple
of lemmas regarding the term-level judgments. One can view these as en-
coding what happens when an approximate substitution is applied, so we
refer to them as the first and second approximate substitution lemma. To
see how they arise you might analyze the soundness proof below first.

Lemma 17.1 If τ̂ ` t ground and τ̂ 4 τ and then tτ ground .

Proof: By induction on the structure of D of τ̂ ` t ground . 2

LECTURE NOTES OCTOBER 26, 2006

Mode Checking L17.9

Lemma 17.2 If τ̂ ` s / σ̂ and τ̂ 4 τ and sτ [θ] ground then σ̂ 4 τ [θ].

Proof: By induction on the structure of D of τ̂ ` s / σ̂. 2

Theorem 17.3 If τ ` G / θ and τ̂ 4 τ and τ̂ ` G / σ̂ then σ̂ 4 τ [θ].

Proof: By induction on the structure of D of τ ` G / θ, applying inversion
to the given mode derivation in each case.

Case: D =
(∀x,y, z. p(x,y, z) ← G) ∈ Γ (t+τ/x, r∗τ/y, s−τ/z) ` G / θ

τ ` p(t+, r∗, s−) / θ
.

τ̂ ` p(t+, r∗, s−) / σ̂ Assumption
τ̂ ` t+ ground and
τ̂ ` s− / σ̂ By inversion
τ̂ 4 τ Assumption
t+τ ground By approx. subst. lemma
(g/x,u/y,u/z) 4 (t+τ/x, r∗τ/y, s−τ/z) From previous line
p wellmoded Assumption
g/x,u/y,u/z ` G / (g/x, /y,g/z) By inversion
(g/x, /y,g/z) 4 (t+τθ/x, r∗τθ/y, s−τθ/z) By ind.hyp.
s−τθ ground By defn. of 4

σ̂ 4 τθ By approx. subst. lemma

Case: D =
τ ` G1 / θ1 τθ1 ` G2 / θ2

τ ` G1 ∧G2 / θ1θ2

.

τ̂ ` G1 ∧G2 / σ̂2 Assumption
τ̂ ` G1 / σ̂1 and
σ̂1 ` G2 / σ̂2 for some σ̂1 By inversion
τ̂ 4 τ Assumption
σ̂1 4 τ [θ1] By ind.hyp.
σ̂2 4 (τ [θ1])[θ2] By ind.hyp.
σ̂2 4 τ [θ1θ2] By assoc of composition

Case: D =
τ ` > / (·)

.

τ̂ ` > / σ̂ Assumption
σ̂ = τ̂ By inversion
τ̂ 4 τ Assumption
σ̂ 4 τ [·] By identity of (·)

LECTURE NOTES OCTOBER 26, 2006

L17.10 Mode Checking

Case: D =
τ ` G1 / θ

τ ` G1 ∨G2 / θ
.

τ̂ ` G1 ∨G2 / σ̂ Assumption
τ̂ ` G1 / σ̂1 and
τ̂ ` G2 / σ̂2 for some σ̂1, σ̂2 with σ̂ = σ̂1 t σ̂2 By inversion
τ̂ 4 τ Assumption
σ̂1 4 τ [θ] By ind.hyp.
σ̂1 t σ̂2 4 τ [θ] By property of least upper bound

Case: D =
τ ` G2 / θ

τ ` G1 ∨G2 / θ
. Symmetric to the previous case.

Case: τ ` ⊥ / θ. There is no rule to conclude such a judgment. Therefore
the property holds vacuously.

Case: D =
τ,X/x ` G / θ X /∈ FV(τ)

τ ` ∃x.G / θ
.

τ̂ ` ∃x.G / σ̂ Assumption
τ̂ , u/x ` G / (σ̂, /x) By inversion
τ̂ 4 τ Assumption
(τ̂ , u/x) 4 (τ,X/x) By defn. of 4

(σ̂, /x) 4 (τ,X/x)[θ] By ind.hyp.
σ̂ 4 τ [θ] By prop. of subst. and approx.

Case: D =
tτ

.
= sτ | θ

τ ` t
.
= s / θ

. This case is left to the reader (see Exercise 17.3).

2

17.7 Exercises

Exercise 17.1 One problem with well-modedness in this lecture is that we only
prove that if a well-moded query succeeds then the output will be ground. A
stronger property would be that during the execution of the program, every goal
and subgoal we consider will be well-moded. However, this requires a transition
semantics and a different soundness proof.

Write a suitable operational semantics and prove soundness of mode checking
in the sense sketched above. This is a kind of mode preservation theorem, analogous
to a type preservation theorem.

LECTURE NOTES OCTOBER 26, 2006

Mode Checking L17.11

Exercise 17.2 Give a program that respects modes at run-time in the sense that

• input arguments (+) are always ground when a predicate is invoked, and

• output arguments (-) are always ground when a predicate succeeds,

and yet is not well-moded according to our analysis.

Exercise 17.3 Complete the proof of soundness of mode analysis by giving the case
for unification. If you need a new lemma in addition to the approximate substitu-
tion lemmas, carefully formulate and prove them.

LECTURE NOTES OCTOBER 26, 2006

