
15-819K: Logic Programming

Lecture 18

Proof Terms

Frank Pfenning

October 31, 2006

In this lecture we will substantiate an earlier claim that logic programming
not only permits the representation of specifications and the implementa-
tion of algorithm, but also the realization of proofs of correctness of algo-
rithms. We will do so by first showing how deductions can be represented
as terms, so-called proof terms. We also discuss the problems of checking
the validity of deductions, which amounts to type checking the terms that
represent them.

18.1 Deductions as Terms

In logic programming we think of computation as proof search. However,
so far search only returns either success together with an answer substitu-
tion, fails, or diverges. In the case of success it is reasonable to expect that
the logic programming engine could also return a deduction of the instan-
tiated goal. But this raises the question of how to represent deductions. In
the traditional logic programming literature we will find ideas such as a
list of the rules that have been applied to solve a goal. There is, however, a
much better answer. We can think of an inference rule as a function which
takes deductions of the premisses to a deduction of the conclusion. Such a
function is a constructor for proof terms. For example, when interpreting

plus(z, N,N)
pz

plus(M,N,P )

plus(s(M),N, s(P ))
ps

we extract two constructors

pz : plus(z,N,N)
ps : plus(M,N,P )→ plus(s(M),N, s(P )).

LECTURE NOTES OCTOBER 31, 2006



L18.2 Proof Terms

The only unusual thing about these constructors is their type. The type of
pz, for example, is a proposition.

The idea that propositions can be types is a crucial observation of the
Curry-Howard isomorphism in functional programming that also identi-
fies proofs (of a proposition) with programs (of the correspending type).
Here, the correspondence of propositions with types is still perfect, but
proofs are not programs (which, instead, or are given by inference rules).

As an example of how a complete proof is interpreted as a term, con-
sider the computation of 2 + 2 = 4.

plus(0, 2, 2)
pz

plus(1, 2, 3)
ps

plus(2, 2, 4)
ps

Here we have abbreviated z = 0, s(z) = 1, . . .. This deduction becomes the
very simple term

ps(ps(pz)).

Our typing judgment should be such that

ps(ps(pz)) : plus(2, 2, 4)

so that a proposition acts as the type of its proofs.
As a slightly more complex example, consider multiplication

times(z, N, z)
tz

times(M,N,P ) plus(P,N,Q)

times(s(M),N,Q)
ts

which yields the following constructors

tz : times(z, N, z)
ts : times(M,N,P ), times(P,N,Q)→ times(M,N,Q).

Now the deduction that 2 ∗ 2 = 4, namely

times(0, 2, 0)
tz

plus(0, 2, 2)
pz

times(1, 2, 2)
ts

plus(0, 2, 2)
pz

plus(1, 2, 3)
ps

plus(2, 2, 4)
ps

times(2, 2, 4)
ts

LECTURE NOTES OCTOBER 31, 2006



Proof Terms L18.3

becomes the term

ts(ts(tz, pz), ps(ps(pz))) : times(2, 2, 4).

The tree structure of the deduction is reflected in the corresponding tree
structure of the term.

18.2 Indexed Types

Looking at our example signature,

pz : plus(z, N,N)
ps : plus(M,N,P )→ plus(s(M),N, s(P ))

tz : times(z, N, z)
ts : times(M,N,P ), times(P,N,Q)→ times(M,N,Q)

we can observe a new phenomenon. The types of our constructors contain
terms, both constants (such as z) and variables (such as M , N , or P ). We say
that plus is a type family indexed by terms. In general, under the propositions-
as-types interpretation, predicates are interpreted type families indexed by
terms.

The free variables in the declarations are interpreted schematically, just
like in inference rules. So pz is really a family of constants, indexed by N .
This has some interesting consequences. For example, we found earlier
that

ps(ps(pz)) : plus(2, 2, 4).

However, we can also check that

ps(ps(pz)) : plus(2, 3, 5).

In fact, our type system will admit a most general type:

ps(ps(pz)) : plus(s(s(z)),N, s(s(N))).

This schematic type captures all types of the term on the left, because any
type for ps(ps(pz)) is an instance of plus(s(s(z)),N, s(s(N))).

18.3 Typing Rules

In order to write down the typing rules, it is convenient to make quantifi-
cation over schematic variables in a indexed type declaration explicit. We

LECTURE NOTES OCTOBER 31, 2006



L18.4 Proof Terms

write ∀x:τ for quantification over a single variable, and following our gen-
eral notational convention, ∀x:τ for a sequence of quantifiers. We have
already introduced quantified propositions, so we emphasize its role as
quantifying over the schematic variables of a proposition viewed as a type.
The example of addition would be written as

z : nat

s : nat→ nat

pz : ∀N :nat. plus(z, N,N)
ps : ∀M :nat.∀N :nat.∀P :nat. plus(M,N,P )→ plus(s(M),N, s(P ))

We call such explicitly quantified types dependent types. Unlike other for-
mulations (for example, in the LF logical framework), but similarly to our
treatment of polymorphism, the quantifiers do not affect the term language.
We write ‘∀’ to emphasize the logical reading of the quantifiers; in a fully
dependent type theory they would be written as ‘Π’.

There are a many of similarities between polymorphic and dependent
types. We will see that in addition to the notation, also the typing rules
are analogous. Nevertheless, they are different concepts: polymorphism
quantifies over types, while dependency quantifies over terms. We review
the rule for polymorphic typing.

dom(θ̂) = α

f : ∀α.σ → τ ∈ Σ ∆ ` t : σθ̂

∆ ` f(t) : τ θ̂

Recall that θ̂ is a substitution of types for type variables, and that ∆ contains
declarations x:τ as well as α type .

The rule for dependent types is analogous, using ordinary substitutions
instead of type substitution.

dom(θ) = x

c : ∀x:τ .Q→ P ∈ Σ ∆ ` t : Qθ

∆ ` c(t) : Pθ

We have written P and Q instead of τ and σ to emphasize the interpreta-
tion of the types as propositions.

If we require θ to be a ground substitution (that is, cod(θ) = ∅), then we
can use this rule to determine ground typings such as

ps(ps(pz)) : plus(2, 2, 4).

LECTURE NOTES OCTOBER 31, 2006



Proof Terms L18.5

If we allow free variables, that is, cod(θ) = dom(∆), then we can write out
schematic typings, such as

n:nat ` ps(ps(pz)) : plus(s(s(z)), n, s(s(n))).

In either case we want the substitution to be well-typed. In the presence of
dependent types, the formalization of this would lead us a bit far afield, so
we can think of it just as before: we always substitute a term of type τ for a
variable of type τ .

18.4 Type Checking

Ordinarily in logic programming a query is simply a proposition and the
result is an answer substitution for its free variables. When we have proof
terms we can also ask if a given term constitutes a proof of a given propo-
sition. We might write this as

?- t : P.

where t is a term representing a purported proof and P is a goal proposi-
tion. From the typing rule we can see that type-checking comes down to
unification. We can make this more explicit by rewriting the rule:

dom(ρ) = x

c : ∀x:τ .Q→ P ′ ∈ Σ P ′ρ
.
= P | θ ∆ ` t : Qρθ

∆ ` c(t) : P

Here ρ is a renaming substituting generating fresh logic variables for the
bound variables x.

Because a constant has at most one declaration in a signature, and uni-
fication returns a unique most general unifier, the type-checking process is
entirely deterministic and will always either fail (in which case there is no
type) or succeed. We can even leave P as a variable and obtain the most
general type for a given term t.

Checking that a given term represents a valid proof can be useful in a
number of situations. Some practical scenarios where this has been applied
is proof-carrying code and proof-carrying authorization. Proof-carrying code is
the idea that we can equip a piece of mobile code with a proof that it is
safe to execute. A code recipient can check the validity of the proof against
the code and then run the code without further run-time checks. Proof-
carrying authorization is a similar idea, except that the proof is used to

LECTURE NOTES OCTOBER 31, 2006



L18.6 Proof Terms

convince a resource monitor that a client is authorized for access. Please
see the section on historical notes for some references on these applications
of logic programming.

18.5 Proof Search

Coming back to proof search: we would like to instrument our interpreter
so it returns a proof term (as well as an answer substitution) when it suc-
ceeds. But the exact rule for type-checking with a slightly different inter-
pretation on modes, will serve that purpose.

dom(ρ) = x

c : ∀x:τ .Q→ P ′ ∈ Σ P ′ρ
.
= P | θ ∆ ` t : Qρθ

∆ ` c(t) : P

Above, we thought of c(t) and therefore t as given input, so this was a
rule for type-checking. Now we think of t as an output, produced by proof
search for the premiss, which then allows us to construct c(t) as an output
in the conclusion. Now the rule is non-deterministic since we do not know
which rule for a given atomic predicate to apply, but for a given proof we
will be able to construct a proof term as an output.

We have not addressed here if ordinary untyped unification will be suf-
ficient for program execution (or, indeed, type-checking), or if unification
needs to be changed in order to take typing into account. After a consider-
able amount of technical work, we were able to show in the case of poly-
morphism that function symbols needed to be type preserving and clause
heads parametric for untyped unification to suffice. If we explicitly stratify
our language so that in a declaration c : ∀x:τ .Q → P ′ all the types τ have
no variables then the property still holds for well-typed queries; otherwise
it may not (see Exercise 18.1).

18.6 Meta-Theoretic Proofs as Relations

We now take a further step, fully identifying types with propositions. This
means that quantifiers in clauses can now range over deductions, and we
can specify relations between deductions. Deductions have now become
first-class.

There are several uses for first-class deductions. One is that we can now
implement theorem provers or decision procedures in a way that intrinsi-
cally guarantees the validity of generated proof objects.

LECTURE NOTES OCTOBER 31, 2006



Proof Terms L18.7

Another application is the implementation of proofs about the predi-
cates that make up logic programs. To illustrate this, we consider the proof
that the sum of two even numbers is even. We review the definitions:

even(z)
ez

even(N)

even(s(s(N)))
ess

so that the type declarations for proof constructors are

ez : even(z)
ess : even(N)→ even(s(s(N)))

pz : plus(z,N,N)
ps : plus(M,N,P )→ plus(s(M),N, s(P ))

Theorem 18.1 For any m, n, and p, if even(m), even(n), and plus(m,n, p) then
even(p).

Proof: By induction on the structure of the deduction D of even(m).

Case: D =
even(z)

where m = z.

even(n) Assumption
plus(z, n, p) Assumption
n = p By inversion
even(p) Since n = p

Case: D =

D′

even(m′)

even(s(s(m′)))
where m = s(s(m′)).

plus(s(s(m′)), n, p) Assumption
plus(s(m′), n, p′) with p = s(p′) By inversion
plus(m′, n, p′′) with p′ = s(p′′) By inversion
even(p′′) By ind. hyp.
even(s(s(p′′))) By rule

2

LECTURE NOTES OCTOBER 31, 2006



L18.8 Proof Terms

The theorem and its proof involves four deductions:

D
even(m)

E
even(n)

F
plus(m,n, p)

G
even(p)

The theorem states that for any derivations D, E , and F there exists a de-
duction G. Using our newfound notation for proof terms we can write this
as

For every m, n, and p, and for every D : even(m), E : even(n), and
F : plus(m,n, p) there exists G : even(p).

If this course were about functional programming, we would ensure that
this theorem holds by exhibing a total function

eee : even(M)→ even(N)→ plus(M,N,P )→ even(P ).

It is important that the function be total so that it is guaranteed to generate
an output deduction of even(P ) for any combination of input deductions,
thereby witnessing its truth.

In logic programming, such functions are not at our disposal. But we
can represent the same information as a total relation

eee : even(M), even(N), plus(M,N,P ), even(P )→ o.

The predicate symbol eee represents a four-place relation between deduc-
tions, where we consider the first three deductions as inputs and the last
one as an output.

In the next lecture we consider in some details what is required to verify
that this relation represents a meta-theoretic proof of the property that the
sum of two even number is even. Before we get to that, let us examine how
our careful, but informal proof is translated into a relation. We will try to
construct clauses for

eee(D,E,F,G)

where D : even(M), E : even(N), F : plus(M,N,P ), and G : even(P ). We
repeat the proof, analyzing the structure of D, E, F , and G. We highlight
the incremental construction of clauses for eee in interspersed boxes.

Case: D =
even(z)

ez where m = z.

LECTURE NOTES OCTOBER 31, 2006



Proof Terms L18.9

At this point we start to construct a clause

eee(ez, E, F,G)

because D = ez, and we do not yet know E, F , or G.

E : even(n) Assumption
F : plus(z, n, p) Assumption
F = pz and n = p By inversion

At this point we have some more information, namely F = pz. So
the partially constructed clause now is

eee(ez, E, pz, G).

G = E : even(p) Since n = p

Now we see that the output G is equal to the second input E.

eee(ez, E, pz, E)

This completes the construction of this clause. The second argu-
ment E is not analyzed and simply returned as G.

Case: D =

D′

even(m′)

even(s(s(m′)))
ess where m = s(s(m′)).

The partially constructed second clause now looks like

eee(ess(D′), E, F,G).

F : plus(s(s(m′)), n, p) Assumption
F = ps(F ′) where F ′ : plus(s(m′), n, p′) with p = s(p′) By inversion

Now we have
eee(ess(D′), E, ps(F ′), G)

replacing F above by ps(F ′).

F ′ = ps(F ′′) where F ′′ : plus(m′, n, p′′) with p′ = s(p′′) By inversion

LECTURE NOTES OCTOBER 31, 2006



L18.10 Proof Terms

In this step, the third argument has been even further refined to
ps(ps(F ′′)) which yields

eee(ess(D′), E, ps(ps(F ′′)), G).

G′ : even(p′′) By ind. hyp. on D′, E, and F ′′

An appeal to the induction hypothesis corresponds to a recursive
call in the definition of eee.

eee(ess(D′), E, ps(ps(F ′′)), G)← eee(D′, E, F ′′, G′)

The first three arguments of the recursive call correspond to the de-
ductions on which the induction hypothesis is applied, the fourth
argument is the returned deduction G′. The question of how we
construct the G still remains.

G = ess(G′) : even(s(s(p′′))) By rule ess applied to G′

Now we can fill in the last missing piece by incorporating the defi-
nition of G.

eee(ess(D′), E, ps(ps(F ′′)), ess(G′))← eee(D′, E, F ′′, G′)

In summary, the meta-theoretic proof is represented as the relation eee

shown below. We have named the rules defining eee for consistency, even
though it seems unlikely we will want to refer to these rules by name.

eee : even(M), even(N), plus(M,N,P ), even(P )→ o.

eeez : eee(ez, E, pz, E).
eeess : eee(ess(D′), E, ps(ps(F ′′)), ess(G′))← eee(D′, E, F ′′, G′).

Each case in the definition of eee corresponds to a case in the inductive
proof, a recursive call corresponds to an appeal to the induction hypoth-
esis. A constructed term on an input argument of the clause head corre-
sponds to a case split on the induction variable or an appeal to inversion.
A constructed term in an output position of the clause head corresponds to
a rule application to generate the desired deduction.

It is remarkable how compact the representation of the informal proof
has become: just one line declaring the relation and two lines defining the
relation. This is in contrast to the informal proof which took up 11 lines.

LECTURE NOTES OCTOBER 31, 2006



Proof Terms L18.11

18.7 Verifying Proofs of Meta-Theorems

In the previous section we showed how to represent a proof of a theorem
about deductions as a relation between proofs. But what does it take to
verify that a given relation indeed represents a meta-theoretic proof of a
proposed theorem? A full treatment of this question is beyond the scope of
this lecture (and probably this course), but meta-logical frameworks such
as Twelf can indeed verify this. Twelf decomposes this checking into mul-
tiple steps, each making its own contribution to the overall verification.

1. Type checking. This guarantees that if eee(D,E,F,G) for deductions
D, E, F , and G is claimed, all of these are valid deductions. In partic-
ular, the output G will be acceptable evidence that P is even because
G : even(P ).

2. Mode checking. The mode eee(+,+,+,−) guarantees that if the in-
puts are all complete (ground) deductions and the query succeeds,
then the output is also a complete (ground) deduction. This is impor-
tant because a free variable in a proof term represents an unproven
subgoal. Such deductions would be insufficient as evidence that P is
indeed even.

3. Totality checking. If type checking and mode checking succeeds, we
know that P is even if a query eee(D,E,F,G) succeeds for ground
D, E, F and free variable G. All that remains is to show that all such
queries succeed. We decompose this into two properties.

(a) Progress checking. For any given combination of input deduc-
tions D, E, and F there is an applicable clause and we either
succeed or at least can proceed to a subgoal. Because of this,
eee(D,E,F,G) can never fail.

(b) Termination checking. Any sequence of recursive calls will ter-
minate. Since queries can not fail (by progress) the only remain-
ing possibility is that they succeed, which is what we needed to
verify.

We have already extensively discussed type checking and mode check-
ing. In the next lecture we sketch progress checking. For termination check-
ing we refer to the literature in the historical notes below.

LECTURE NOTES OCTOBER 31, 2006



L18.12 Proof Terms

18.8 Polymorphism and Dependency

Because of the similarity of polymorphic and dependent types, and because
both have different uses, it is tempting to combine the two in a single lan-
guage. This is indeed possible. For example, if we would like to index a
polymorphic list with its length we could define

nat : type.

z : nat.

s : nat -> nat.

list : type,nat -> type.

nil : list(A,z).

cons : A,list(A,N) -> list(A,s(N)).

In the setting of functional programming, such combinations have been
thoroughly investigated, for examples, as fragments of the Calculus of Con-
structions. In the setting here we are not aware of a thorough study of either
type checking or unification. A tricky issue seems to be how much type in-
formation must be carried at run-time, during unification, especially if a
type variable can be instantiated by a dependent type.

18.9 Historical Notes

The notion of proof term originates in the so-called Curry-Howard iso-
morphism, which was noted for combinatory logic by Curry and Feys in
1956 [8] and for natural deduction by Howard in 1969 [10]. The empha-
sis in this work is on functional computation, by combinatory reduction
or β-reduction, respectively. The presentation here is much closer to the
LF logical framework [9] in which only canonical forms are relevant, and
which is entirely based on dependent types. We applied one main sim-
plification: because we restricted ourselves to the Horn fragment of logic,
proof terms contain no λ-abstractions. This in turn allows us to omit Π-
quantifiers without any loss of decidability of type checking, since type
inference can be achieved just by ordinary unification.

The combination of polymorphism and dependency is present in the
Calculus of Constructions [6]. Various fragments were later analyzed in
detail by Barendregt [2], including the combination of polymorphism with
dependent types. A modern version of the Calculus of Constructions is the
basis for the Coq theorem proving system.1

1http://coq.inria.fr/

LECTURE NOTES OCTOBER 31, 2006



Proof Terms L18.13

The use of explicit proof terms to certify the safety of mobile code goes
back to Necula and Lee [13, 12]. They used the LF logical framework with
some optimizations for proof representation. Proof-carrying authorization
was proposed by Appel and Felten [1] and then realized for the first time
by Bauer, Schneider, and Felten [5, 3]. It is now one of the cornerstones
of the Grey project [4] for universal distributed access control at Carnegie
Mellon University.

The technique of representing proofs of meta-theorems by relations is
my own work [14, 15], eventually leading to the Twelf system [17] which
has many contributors. Type reconstruction for Twelf was already sketched
in the early work [15], followed the first foray into mode checking and
termination checking [19] later extended by Pientka [18]. Totality check-
ing [21] was a further development of meta-proofs that were correct by
construction proposed by Schürmann [20]. The example in this lecture can
be easily verified in Twelf. For more on Twelf see the Twelf home page.2

Relational representation of meta-theory has recently been shown to be
sufficiently powerful to mechanize the theory of full-scale programming
languages (Typed Assembly Language [7] and Standard ML [11]). For
further references and a more general introduction to logical frameworks,
see [16].

18.10 Exercises

Exercise 18.1 We can translate the conditions on polymorphism, namely that that
term constructors be type-preserving and predicates be parametric, to conditions
on dependency. Give such a parallel definition.

Further, give examples that show the need for type information to be carried
during unification to avoid creating ill-typed terms if these conditions are violated.

Finally, discuss which of these, if any, would be acceptable in the case of depen-
dent types.

Exercise 18.2 Revisit the proof that the empty list is the right unit for append

(Exercise 3.5 from Assignment 2) and represent it formally as a relation between
deductions.

Exercise 18.3 Revisit the proof that addition is commutative (Exercise 3.4 from
Assignment 2) and represent it formally as a relation between deductions.

Exercise 18.4 Revisit the proof that append is associative (Exercise 3.6 from As-
signment 2) and represent it formally as a relation between deductions.

2http://www.twelf.org/

LECTURE NOTES OCTOBER 31, 2006



L18.14 Proof Terms

Exercise 18.5 If we do not want to change the logic programming engine to pro-
duce proof objects, we can transform a program globally by adding an additional
argument to every predicate, denoting a proof term.

Formally define this transformation and prove its correctness.

18.11 References

[1] Andrew W. Appel and Edward W. Felten. Proof-carrying authentica-
tion. In G. Tsudik, editor, Proceedings of the 6th Conference on Computer
and Communications Security, pages 52–62, Singapore, November 1999.
ACM Press.

[2] Henk P. Barendregt. Lambda calculi with types. In S. Abramsky,
D. Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 2, chapter 2, pages 117–309. Oxford University Press,
1992.

[3] Lujo Bauer. Access Control for the Web via Proof-Carrying Authorization.
PhD thesis, Princeton University, November 2003.

[4] Lujo Bauer, Scott Garriss, Jonathan M. McCune, Michael K. Reiter, Ja-
son Rouse, and Peter Rutenbar. Device-enabled authorization in the
Grey system. In Proceedings of the 8th Information Security Conference
(ISC’05), pages 431–445, Singapore, September 2005. Springer Verlag
LNCS 3650.

[5] Lujo Bauer, Michael A. Schneider, and Edward W. Felten. A general
and flexible access-control system for the web. In Proceedings of the
11th USENIX Security Symposium, San Francisco, California, August
2002.

[6] Thierry Coquand and Gérard Huet. The calculus of constructions. In-
formation and Computation, 76(2/3):95–120, 1988.

[7] Karl Crary and Susmit Sarkar. Foundational certified code in a meta-
logical framework. ACM Transactions on Computational Logic, 2006. To
appear.

[8] H. B. Curry and R. Feys. Combinatory Logic. North-Holland, Amster-
dam, 1958.

[9] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework
for defining logics. Journal of the Association for Computing Machinery,
40(1):143–184, January 1993.

LECTURE NOTES OCTOBER 31, 2006



Proof Terms L18.15

[10] W. A. Howard. The formulae-as-types notion of construction. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, pages 479–490. Academic Press,
1980. Hitherto unpublished note of 1969, rearranged, corrected, and
annotated by Howard.

[11] Daniel K. Lee, Karl Crary, and Robert Harper. Mechanizing the
metatheory of Standard ML. Technical Report CMU-CS-06-138, Car-
negie Mellon University, 2006.

[12] George C. Necula. Proof-carrying code. In Neil D. Jones, editor, Con-
ference Record of the 24th Symposium on Principles of Programming Lan-
guages (POPL’97), pages 106–119, Paris, France, January 1997. ACM
Press.

[13] George C. Necula and Peter Lee. Safe kernel extensions without run-
time checking. In Proceedings of the Second Symposium on Operating
System Design and Implementation (OSDI’96), pages 229–243, Seattle,
Washington, October 1996.

[14] Frank Pfenning. Elf: A language for logic definition and verified meta-
programming. In Fourth Annual Symposium on Logic in Computer Sci-
ence, pages 313–322, Pacific Grove, California, June 1989. IEEE Com-
puter Society Press.

[15] Frank Pfenning. Logic programming in the LF logical framework. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
149–181. Cambridge University Press, 1991.

[16] Frank Pfenning. Logical frameworks. In Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, chapter 17, pages
1063–1147. Elsevier Science and MIT Press, 2001.

[17] Frank Pfenning and Carsten Schürmann. System description: Twelf
— a meta-logical framework for deductive systems. In H. Ganzinger,
editor, Proceedings of the 16th International Conference on Automated De-
duction (CADE-16), pages 202–206, Trento, Italy, July 1999. Springer-
Verlag LNAI 1632.

[18] Brigitte Pientka and Frank Pfenning. Termination and reduction
checking in the logical framework. In Carsten Schürmann, editor,
Workshop on Automation of Proofs by Mathematical Induction, Pittsburgh,
Pennsylvania, June 2000.

[19] Ekkehard Rohwedder and Frank Pfenning. Mode and termination
checking for higher-order logic programs. In Hanne Riis Nielson, edi-

LECTURE NOTES OCTOBER 31, 2006



L18.16 Proof Terms

tor, Proceedings of the European Symposium on Programming, pages 296–
310, Linköping, Sweden, April 1996. Springer-Verlag LNCS 1058.

[20] Carsten Schürmann. Automating the Meta Theory of Deductive Systems.
PhD thesis, Department of Computer Science, Carnegie Mellon Uni-
versity, August 2000. Available as Technical Report CMU-CS-00-146.

[21] Carsten Schürmann and Frank Pfenning. A coverage checking al-
gorithm for LF. In D. Basin and B. Wolff, editors, Proceedings of the
16th International Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2003), pages 120–135, Rome, Italy, September 2003. Springer-
Verlag LNCS 2758.

LECTURE NOTES OCTOBER 31, 2006


