
15-819K: Logic Programming

Lecture 19

Verifying Progress

Frank Pfenning

November 2, 2006

In this lecture we discuss another logic program analysis, namely verify-
ing the progress property. Progress guarantees that a predicate can never
fail for arbitrary values of its input arguments. Together with termination
this guarantees that a predicate is total in its given input arguments. As
sketched in the previous lecture, this an important piece in the general tech-
nique of verifying properties of logic programs by reasoning about proof
terms.

19.1 The Progress Property

Progress in general just says that during the execution of a program we
have either finished computation with a value, or we can make a further
step. In particular, computation can never “get stuck”. In logic program-
ming this translates to saying the computation can never fail. This requires
an understanding of the intended input and output arguments of a predi-
cate, as well as the domain on which it is to be applied.

Returning to the well-worn example of addition,

plus(z, N,N).
plus(s(M),N, s(P )) ← plus(M,N,P ).

the plus predicate is total in the first two arguments, assuming they are nat-
ural numbers. It is not total in the first and third argument, because a query
such as plus(s(z), N, z) will fail. Totality decomposes into two subquestions,
namely progress and termination, since we always assume the program is
well-typed and well-moded. Termination is easy to see here because the

LECTURE NOTES NOVEMBER 2, 2006



L19.2 Verifying Progress

first argument decreases strictly in each recursive call. Progress is also easy
to see because the first argument must be a natural number, and therefore
be either of the form z or s(m) for some m, and the second argument can be
anything because both clause heads have a variable in that position.

Even though the principal application of progress is probably the ver-
ification of proof of metatheorems presented in relational form, progress
can also be used to check that some given predicates are total functions (al-
though ruling out multi-valued functions requires another step). This may
provide the programmer with additional confidence that no cases in the
definition of a logic program were missed.

19.2 The Right Semantic Starting Point

As repeatedly emphasized, finding the right semantic starting point for an
analysis is the key to obtaining a simple, predictable system and the easiest
proof of correctness. For progress, the residuated form of the program is
somewhat difficult to deal with. Consider the simple form of plus(+,+,−)
above (easily seen to satisfy progress) and the residuated form

plus(x1, x2, x3)← (∃N.x1

.
= z ∧ x2

.
= N ∧ x2

.
= N)

∨ (∃M.∃N.∃P. x1

.
= s(M) ∧ x2

.
= N ∧ x3

.
= s(P ) ∧ plus(M,N,P ))

on which it is more difficult to discern the same property. Moreover, failure
plays no role in the progress property because, in fact, it is never permitted
to occur, so the semantics should not need to carry a failure continuation.

Hence we return to a fairly early semantics, in which the subgoal stack
is explicit, but not the failure continuation. On the other hand, the substi-
tution for the variables is crucial, so we make that explicit. Recall that there
is a fixed program Γ with a set of closed clauses.

τ ` G1 / G2 ∧ S

τ ` G1 ∧G2 / S

τ ` G2 / S

τ ` > / G2 ∧ S τ ` > / >

(∀x. P ′ ← G) ∈ Γ P ′ρ
.
= Pτ | θ τθ, ρθ ` G / S

τ ` P / S

In the last rule, ρ is a substitution renaming x to a new set of logic variables
X, that is, dom(ρ) = x, cod(ρ) ∩ cod(τ) = ∅. We also assume that the
variables x have been renamed so that x ∩ dom(τ) = ∅.

From this semantics it is easily seen that progress is a question regard-
ing atomic goals, because the cases for conjunction and truth always apply.

LECTURE NOTES NOVEMBER 2, 2006



Verifying Progress L19.3

19.3 Input and Output Coverage

Focusing in, we rewrite the rules for predicate calls assuming the predicate
p(t, s) has a mode declaration which divides the arguments into input ar-
guments t, which come first, and output arguments s, which come second.

(∀x. p(t′, s′)← G) ∈ Γ (t′ρ, s′ρ)
.
= (tτ, sτ) | θ τθ, ρθ ` G / S

τ ` p(t, s) / S

We have ensured progress if such a clause and unifier θ always exist.
Breaking it down a bit further, we see we must have

There exists a θ such that (1) t
′ρθ = tτθ, and (2) s

′ρθ = sτθ where
t
′ are the input terms in the clause head, s′ are the output terms in the

clause head, t are the input arguments to the predicate call, and s are
the output arguments in the predicate call.

We refer to part (1) as input coverage and part (2) as output coverage. In
the problem analysis above a single substitution θ is required, but we will
approximate this by two separate checks. In the next two sections we will
describe the analysis for the two parts of coverage checking. We preview
them here briefly.

For input coverage we need to recall the assumption that predicates are
well-moded. This means that the input arguments in the call, tτθ will be
ground. Hence input coverage is satisfied if for any sequence t of ground
terms of the right types, there exists a clause head such that its input argu-
ments t

′ can be instantiated to t.
Output coverage is trickier. The problem is that mode analysis does not

tell us anything about the output argument sτ of the call p(tτ, sτ). What we
know if that if p succeeds with substitution τθ′, then sτθ′ will be ground,
but this does not help. From examples, like plus above, we can observe that
output coverage is satisfied because the output argument of the call (in the
second clause for plus it is P ) is a variable, and will remain a variable until
the call is made. This means we have to sharpen mode checking to verify
that some variables remain free, which we tackle below.

19.4 Input Coverage

Given a program Γ and a predicate p : (τ ,σ) → o with input arguments
of type τ . We say that p satisfies input coverage in Γ if for any sequence of
ground terms t : τ there exists a clause ∀x:τ ′. p(t′, s′) ← G and a substitu-
tion θ : (x:τ ′) such that t

′θ = t.

LECTURE NOTES NOVEMBER 2, 2006



L19.4 Verifying Progress

For the description of the algorithm, we will need a slightly more gen-
eral form. We write ∆ ` Γp � t (read: Γp immediately covers t) if there
exists a clause ∀x:τ ′. p(t′, s′) ← G in Γp and a substitution ∆ ` θ : (x : τ

′)
such that t

′θ = t. We write ∆ ` Γp > t (read: Γp covers t) if for every
ground instance tσ with σ : ∆ there exists a clause ∀x:τ ′. p(t′, s) ← G in
Γp and a subsitution ∆ ` θ : (x:τ ′) such that t

′θ = tσ. Clearly, immediate
coverage implies coverage, but not vice versa.

We reconsider the plus predicate, with the first two arguments consid-
ered as inputs.

plus(z, N,N).
plus(s(M),N, s(P )) ← plus(M,N,P ).

By the preceding remark, in order to show that input coverage holds, it is
sufficient to show that

x1:nat, x2:nat ` Γplus > (x1, x2).

Clearly, immediate coverage does not hold, because x1 is not an instance of
either z or s(M). On the other hand, x2 is an instance of N .

At this point we need to exploit the assumption x1:nat by applying an
appropriate left rule. This is acceptable because we move from the usual
open world assumption (any predicate and type is inherently open-ended)
to the closed world assumption (all predicates and types are given com-
pletely by their definition). The closed world assumption is necessary be-
cause progress (and coverage) can only be establish with respect to a fixed
set of types and clauses and could immediately be violated by new decla-
rations (e.g., the additional declaration ω : nat causes input coverage for
plus to fail).

To see what the left rules would look like, we can take a short detour
through type predicates. The declarations

z : nat.
s : nat→ nat.

correspond to
nat(z).
nat(s(N))← nat(N).

The iff-completion yields

nat(N) ↔ N
.
= z ∨ ∃N ′.N

.
= s(N ′) ∧ nat(N ′).

LECTURE NOTES NOVEMBER 2, 2006



Verifying Progress L19.5

The left rule for nat(x) (which is not the most general case, but sufficient for
our purposes) for an arbitrary judgment J on the right-hand side can then
be derived as

` J(z/x)

x
.
= z ` J

nat(x′) ` J(s(x′)/x)

x
.
= s(x′) ∧ nat(x′) ` J

∃N ′. x
.
= s(N ′) ∧ nat(N ′) ` J

x
.
= z ∨ ∃N ′. x

.
= s(N ′) ∧ nat(N ′) ` J

nat(x) ` J

or, in summary:
` J(z/x) nat(x′) ` J(s(x′)/x)

nat(x) ` J

Translated back to types:

∆ ` J(z/x) ∆, x′:nat ` J(s(x′)/x)

∆, x:nat ` J

Using this rule, we can now prove our goal:

x2:nat ` Γplus > (z, x2) x′

1
:nat, x2:nat ` Γplus > (s(x′

1
), x2)

x1:nat, x2:nat ` Γplus > (x1, x2)

Both of the premisses now follow by immediate coverage, using the first
clause for the first premiss and the second clause for the second premiss,
using the critical rule

∆ ` Γp � t

∆ ` Γp > t

For immediate coverage, there is but one rule.

(∀x:τ ′. p(t′, s′)← G) ∈ Γp t
′θ = t for ∆ ` θ : (x:τ ′)

∆ ` Γp � t

We do not write out the left rules, but it should be clear how to derive them
from the type declarations, at least for simple types. We call this process
splitting of a variable x:τ .

An interesting aspect of the left rules is that they are asynchronous.
However, always applying them leads to non-termination, so we have to
follow some terminating strategy. This strategy can be summarized infor-
mally as follows, given a goal ∆ ` Γp > t.

LECTURE NOTES NOVEMBER 2, 2006



L19.6 Verifying Progress

1. Check if ∆ ` Γp � t. If so, succeed.

2. If not, pick a variable x:τ in ∆ and apply inversion as sketched above.
This yields a collection of subgoals ∆i ` Γp � ti. Solve each subgoal.

Picking the right variable to split is crucial for termination. Briefly, we pick
a variable x that was involved in a clash f(t′′)

.
= x when attempting imme-

diate coverage, where f(t′′) is a subterm of t
′. Now one of the possibilities

for x will have f as it top-level function symbol, reducing the clash the next
time around. Thus the splitting process is bounded by the total size of the
input terms in Γp. See the reference below for further discussion and proof
of this fact.

19.5 Output Coverage

Output coverage is to ensure that for every goal p(t, s) encountered while
executing a program, the output positions s

′ of the relevant clause head
p(t′, s′) are an instance of s (if t and t

′ unify). The problem is that ordinary
mode checking does not tell us anything about s: we do not know whether
it will be ground or partially ground or consist of all free variables. How-
ever, if we knew that s consisted of pairwise distinct free variables when
the goal p(t, s) arose, then output coverage would be satisfied since the
variables in s cannot occur in a clause head and therefore the unification
process must succeed.

So we can guarantee output coverage with a sharpened mode-checking
process where an output arguments must be distinct free variables when
a predicate is invoked. Moreover, they must become ground by the time
the predicate suceeds. This is actually very easy: just change the abstract
domain of the mode analysis from u > g (unknown and ground) to f > g

(free and ground). If we also have bidirectional arguments in addition to
input and output we three abstract values with f > u > g. The remainder
of the development is just as in a previous lecture (see Exercise 19.1). The
only slightly tricky aspect is that the output arguments must be distinct free
variables, otherwise the individual substitutions may not compose to one
for all output arguments simultaneously.

Returning to our example,

plus(z, N,N).
plus(s(M),N, s(P )) ← plus(M,N,P ).

the only output argument is P , which is indeed a free variable when that
subgoal is executed.

LECTURE NOTES NOVEMBER 2, 2006



Verifying Progress L19.7

We show a couple of cases for failure of output coverage, to illustrate
some points. Assume we have already checked progress for plus. The pro-
gram

test← plus(z, z, s(P )).

trivially satisfies input coverage, but yet fails (and hence cannot satisfy
progress). This is because the output argument in the only call is s(P ),
which is not a free variable. This will be noted by the sharpened mode
checker.

Similarly, the program

test←
plus(z, s(z), P ),
plus(s(z), s(z), P ).

trivially satisfies input coverage but it does not pass the sharpened mode
checker because the second occurrence of P will be ground (from the first
call) rather than free when the second subgoal is executed. And, indeed,
plus will fail and hence cannot satisfy progress.

Finally, a the predicate nexttwo(+,−,−)

nexttwo(N, s(N), s(s(N))).

satisfies progress, but

test← nexttwo(s(z), P, P ).

does not, because the two occurrences of P would have to be s(s(z)) and
s(s(s(z))) simultaneously.

19.6 Historical Notes

Progress and coverage do not appear to have received much attention in
the logic programming literature, possibly because they requires types to
be interesting, and their main application lies in verifying proofs of meta-
theorems which is a recent development. An algorithm for coverage in the
richer setting with dependent types is given by Schürmann and myself [1],
which also contains some pointers to earlier literature in functional pro-
gramming.

LECTURE NOTES NOVEMBER 2, 2006



L19.8 Verifying Progress

19.7 Exercises

Exercise 19.1 Write out the rules for a sharpened mode checker with only input
and output arguments where output arguments must be distinct free variables
when a predicate is invoked.

19.8 References

[1] Carsten Schürmann and Frank Pfenning. A coverage checking algo-
rithm for LF. In D. Basin and B. Wolff, editors, Proceedings of the 16th In-
ternational Conference on Theorem Proving in Higher Order Logics (TPHOLs
2003), pages 120–135, Rome, Italy, September 2003. Springer-Verlag
LNCS 2758.

LECTURE NOTES NOVEMBER 2, 2006


