15-819K: Logic Programming
Lecture 20
Bottom-Up Logic Programming

Frank Pfenning

November 7, 2006

In this lecture we return to the view that a logic program is defined by a
collection of inference rules for atomic propositions. But we now base the
operational semantics on reasoning forward from facts, which are initially
given as rules with no premisses. Every rule application potentially adds
new facts. Whenever no more new facts can be generated we say forward
reasoning saturates and we can answer questions about truth by examining
the saturated database of facts. We illustrate bottom-up logic program-
ming with several programs, including graph reachability, CKY parsing,
and liveness analysis.

20.1 Bottom-Up Inference

We now return the very origins of logic programming as an operational
interpretation of inference rules defining atomic predicates. As a reminder,
consider the definition of even.

even(N)
evz ———— evss
even(z) even(s(s(V)))

This works very well on queries such as even(s(s(s(s(z))))) (which succeeds)
and even(s(s(s(z)))) (which fails). In fact, the operational reading of this
program under goal-directed search constitutes a decision procedure for
ground queries even(n).

This specification makes little sense under an alternative interpretation
where we eagerly apply the inference rules in the forward direction, from
the premisses to the conclusion, until no new facts can be deduced. The

LECTURE NOTES NOVEMBER 7, 2006

L20.2 Bottom-Up Logic Programming

problem is that we start with even(z), then obtain even(s(s(z))), and so on,
but we never terminate.

It would be too early to give up on forward reasoning at this point. As
we have seen many times, even in backward reasoning a natural specifica-
tion of a predicate does not necessarily lead to a reasonable implementa-
tion. We can implement a test whether a number is even via reasoning by
contradication. We seed our database with the claim that n is not even and
derive consequences from that assumption. If we derive a contradictory
fact we know thate even(n) must be true. If not (and our rules are com-
plete), then even(n) must be false. We write odd(n) for the proposition that
n is not even. Then we obtain the following specification

odd(s(s(N)))
odd(IV)

to be used for forward reasoning. This single rule obviously saturates be-
cause the argument to odd becomes smaller in every rule application.

What is not formally represented in this program is how we initial-
ize our database (we assume odd(n)), and how we interpret the saturated
database (we check if odd(z) was deduced). In a later lecture we will see
that it is possible to combine forward and backward reasoning to makes
those aspects of an algorithm also part of its implementation.

The strategy of this example, proof by contradiction, does not always
work, but there are many cases where it does. One should check if the
predicate is decidable as a first test. We will see further examples later,
specifically the treatment of unification in the next lecture.

20.2 Graph Reachability

Assuming we have a specification of edge(z,y) whenever there is an edge
from node = to node y, we can specify reachability path(x,y) with the rules

edge(X,Y) edge(X,Y) path(Y,Z2)
path(X,Y") path(X, Z)

During bottom-up inference these rules will saturate when they have con-
structed the transitive closure of the edge relation. During backward rea-
soning these rules may not terminate (if there are cycles), or be very ineffi-
cient (if there are many paths compared to the number of nodes).

In the forward direction the rules will always saturate. We can also give,
just from the rules, a complexity analysis of the saturation algorithm.

LECTURE NOTES NOVEMBER 7, 2006

Bottom-Up Logic Programming L20.3

20.3 Complexity Analysis

McAllester [3] proved a so-called meta-complexity result which allows us
to analyze the structure of a bottom-up logic program and obtain a bound
for its asymptotic complexity. We do not review the result or its proof in full
detail here, but we sketch it so it can be applied to several of the programs
we consider here. Briefly, the result states that the complexity of a bottom-
up logic program is O(|R(D)| + |Pr(R(D))|), where R(D) is the saturated
database (writing here D for the initial database) and Pr(R(D)) is the set
of prefix firings of rules R in the saturated database.

The number prefix firings for a given rule is computed by analyzing the
premisses of the rule from left to right, counting in how many ways it could
match facts in the saturated database. Matching an earlier premiss will
fix its variables, which restricts the number of possible matches for later
premisses.

For example, in the case of the transitive closure program, assume we
have e edges and n vertices. Then in the completed database there can be
at most n? facts path(z,y), while there are always exactly e facts edge(z, y).
The first rule

edge(X,Y)
path(X,Y")

can therefore always match in e ways in the completed database. We ana-
lyze the premisses of the second rule

edge(X,Y) path(Y,2)
path(X, Z)

from left to right. First, edge(X,Y’) can match the database in O(e) ways,
as before. This match fixes Y, so there are now O(n) ways that the sec-
ond premiss could match a fact in the saturated database (each vertex is a
candidate for Z). This yields O(e - n) possible prefix firings.

The size of the saturated database is O(e+n?), and the number of prefix
firings of the two rules is O(e + e - n). Therefore the overall complexity is
O(e - n + n?). Since there are up to n? edges in the graph, we get a less
informative bound of O(n?) expressed entirely in the number of vertices n.

20.4 CKY Parsing

Another excellent example for bottom-up logic programming and com-
plexity analysis is a CKY parsing algorithm. This algorithm assumes that

LECTURE NOTES NOVEMBER 7, 2006

L20.4 Bottom-Up Logic Programming

the grammar is in Chomsky-normal form, where productions all have the

form
r = yz
T = a

where z, y, and z stand for non-terminals and a for terminal symbols. The
idea of the algorithm is to use the grammar production rules from right to
left to compute which sections of the input string can be parsed as which
non-terminals.

We initialize the database with facts rule(x, char(a)) for every grammar
production = a and rule(z, jux(y, z)) for every production z = yz. We
further represent the input string a; . . . a,, by assumptions string(i, a;). For
simplicity, we represent numbers in unary form.

Our rules will infer propositions parse(z, i, j) which we will deduce if
the substring a; ...a; can be parsed as an x. Then the program is repre-
sented by the following two rules, to be read in the forward direction:

rule(X, jux(Y, Z))

rule(X, char(A)) parse(Y,I,J)
string(7, A) parse(Z, s(J), K)
parse(X, I, 1) parse(X, I, K)

After saturating the database with these rules we can see if the whole string
is in the language generated by the start symbol s by checking if the fact
parse(s,s(z),n) is in the database.

Let g be the number of grammar productions and n the length of the
input string. In the completed database we have g grammar rules, n facts
string(i, a), and at most O(g - n?) facts parse(z,1, j).

Moving on to the rules, in the first rule there are O(g) ways to match
the grammar rule (which fixes A) and then n ways to match string(I, A),
so we have O(g - n). The second rule, again we have O(g) ways to match
the grammar rule (which fixes X, Y, and Z) and then O(n?) ways to match
parse(Y, I, J). In the third premiss now only K is unknown, giving us O(n)
way to match it, which means O(g - n®) prefix firings for the second rule.

These considerations give us an overall complexity of O(g - n?), which
is also the traditional complexity bound for CKY parsing.

20.5 Liveness Analysis

We consider an application of bottom-up logic programming in program
analysis. In this example we analyze code in a compiler’s intermediate

LECTURE NOTES NOVEMBER 7, 2006

Bottom-Up Logic Programming L20.5

language to find out which variables are live or dead at various points in
the program. We say a variable is live at a given program point [if its
value will be read before it is written when computation reaches [. This
information can be used for optimization and register allocation.

Every command in the language is labeled by an address, which we
assume to be a natural number. We use [and k for labels and w, z, v,
and z for variables, and op for binary operators. In this stripped-down
language we have the following kind of instructions. A representation of
the instruction as a logical term is given on the right, although we will
continue to use the concrete syntax to make the rules easier to read.

l x = op(y,z) inst(l,assign(z, op,y,z))
l if z gotok inst(l,if(z,k))

[goto k inst(l, goto(k))

l halt inst(l, halt)

We use the proposition = # y to check if two variables are distinct and write
s(!) for the successor location to ! which contains the next instruction to be
executed unless the usual control flow is interrupted.

We write live(w, l) if we have inferred that variable w is live at [. This is
an over-approximation in the sense that live(w, /) indicates that the variable
may be live at [, although it is not guaranteed to be read before it is written.
This means that any variable that is not live at a given program point is def-
initely dead, which is the information we want to exploit for optimization
and register allocation.

We begin with the rules for assignment = = op(y, z). The first two rules
just note the use of variables as arguments to an operator. The third one
propagates liveness information backwards through the assignment oper-
ator. This is sound for any variable, but we would like to achieve that x
is not seen as live before the instruction x = op(y, z), so we verify that
W # X.

L:X =0p,2)

live(W,s(L))
L:X = 0p(Y,2) L:X = 0p(Y,2) W £ X
live(Y, L) live(Z, L) live(W, L)

The rules for jumps propagate liveness information backwards. For uncon-
ditional jumps we look at the target; for conditional jumps we look both
at the target and the next statement, since we don’t analyze whether the

LECTURE NOTES NOVEMBER 7, 2006

L20.6 Bottom-Up Logic Programming

condition may be true or false.

L :goto K L :if X goto K L:if X goto K
live(W, K) live(W, K) live(W,s(L))
live(W, L) live(W, L) live(W, L)

Finally, the variable tested in a conditional is live.

L:if X goto K
live(X, L)

For the complexity analysis, let n be the number of instructions in the
program and v be the number of variables. The size of the saturated data-
base is O(v - n), since all derived facts have the form live(X, L) where X
is a variable and L is the label of an instruction. The prefix firings of all 7
rules are similarly bounded by O(v - n): there are n ways to match the first
instruction and then at most v ways to match the second premiss (if any).
Hence the overall complexity is bounded by O(v - n).

20.6 Functional Evaluation

As a last example in this lecture we present an algorithm for functional
call-by-value evaluation. Our language is defined by

ex=2x|Ar.e|e e

We assume that substitution on terms is a primitive so we can avoid im-
plementing it explicitly (see Exercise 20.4). Such an assumption is not un-
reasonable. For example, in the LolliMon language which provides both
top-down and bottom-up logic programming, substitution is indeed built-
in. Since we are only interested in evaluating closed terms, all values here
have the form A\z. e.

We use three predicates:

eval(e) evaluate e
e —* e’ ereducesto e
e —v e evaluates to v.

We seed the database with eval(e), saturate it, and then read off the value
as e — v. Of course, since this is the untyped A-calculus, saturation is not
guaranteed.

LECTURE NOTES NOVEMBER 7, 2006

Bottom-Up Logic Programming L20.7

The first rules propagate the information about which terms are to be

evaluated.
eval(Azx. e) eval(ej e2) eval(ey e2)

Az.e = Az.e eval(ey) eval(ez)

In case we had an application we have to gather the results, substitute the
argument into the body of the function, and recursively evaluate the re-
sult. This generates a reduction from which we need to initiate evaluation.
Finally, we need to compose reductions to obtain the final value.

eval(eg e9)

e — A\z.¢€]

€2 7 V2 €—>*€/ €—>*e/ e/f—>2}
e ea —* €] (va/x) eval(e’) e v

As an example, consider the following database saturation process.

eval((A\z.x) (\y.y))
eval(A\z. x)

eval(Ay.y)

AZ.x — AT 2

Ay y — Ay.y

(Az.7) (A\y.y) =" Ay.y
Az.z) (A\y.y) — A\y.y

This form of evaluation may seem a bit odd, compared to the usual
top-down formulation (again, assuming substitution as a primitive)

e1 = A\x.e] eg — vy €)(va/x) >

AL.e = Ax.e e1 ey — v

However, it does have some advantages. If we proved its completeness
(see Exercise 20.5), we would get some theorems for free. For example, it is
easy to see that eval((Az. z z) (Az. x z)) saturates without producing a value
for the application:

eval((Az.x z) (A\x.z x))
eval(A\z. x)
(M.zz) — (\x.zx)

M.zz)(Ar.xz) =% (Az.zx) (A\z. zx)

LECTURE NOTES NOVEMBER 7, 2006

L20.8 Bottom-Up Logic Programming

At this point the database is saturated. This proves that the evaluation of
(Az.zx) (Az. x z) fails. In the top-down semantics (that is, with backward
chaining as in Prolog), such a query would fail to terminate instead unless
we added some kind of loop detection.

Note that the bottom-up program for evaluation, which consists of six
rules, cannot be analyzed with McAllester’s technique, because in the con-
clusion of the rule for reduction a new term ¢ (v2/x) is created. We can
therefore not bound the size of the completed database. And, in fact, the
saturation may fail to terminate (see Exercise 20.7).

20.7 Variable Restrictions

Bottom-up logic programming, as considered by McAllester, requires that
every variable in the conclusion of a rule also appears in a premiss. This
means that every generated fact will be ground. This is important for sat-
uration and complexity analysis because a fact with a free variable could
stand for infinitely many instances.

Nonetheless, bottom-up logic programming can be generalized in the
presence of free variables and we will do this in a later lecture.

20.8 Historical Notes

The bottom-up interpretation of logic programs goes back to the early days
of logic programming. See, for example, the paper by Naughton and Ra-
makrishnan [4].

There are at least three areas were logic programming specification with
a bottom-up semantics has found significant applications: deductive data-
bases, decision procedures, and program analysis. Unification, as present
in the next lecture, is an example of a decision procedure for unifiability.
Liveness analysis is an example of program analysis due to McAllester [3],
who was particularly interested in describing program analysis algorithms
ata high level of abstraction so their complexity would be self-evident. This
was later refined by Ganzinger and McAllester [1, 2] by allowing deletions
in the database. We treat this in a later lecture where we generalize bottom-
up inference to linear logic.

20.9 Exercises

Exercise 20.1 Write a bottom-up logic program for addition (plus/3) on num-
bers in unary form and then extend it to multiplication (times/3).

LECTURE NOTES NOVEMBER 7, 2006

Bottom-Up Logic Programming L20.9

Exercise 20.2 Consider the following variant of graph reachability.
edge(X,Y) path(X,Y) path(Y,Z2)
path(X,Y") path(X, Z)

Perform a McAllester-style complexity analysis and compare the infered complex-
ity with the one given in lecture.

Exercise 20.3 The set of prefix firings depends on the order of the premisses. Give
an example to demonstrate this.

Exercise 20.4 Extend the bottom-up evaluation semantics for \-terms by adding
rules to compute the substitutions e(v/x). You may assume that v is closed, and
that the necessary tests on variable names can be performed.

Exercise 20.5 Relate the bottom-up and top-down version of evaluation of -
terms to each other by an appropriate pair of theorems.

Exercise 20.6 Add pairs to the evaluation semantics, together with first and sec-
ond projections. A pair should only be a value if both components are values, that
is, pairs are eagerly evaluated.

Exercise 20.7 Give an example which shows that saturation of evaluation for -
terms may fail to terminate.

20.10 References

[1] Harald Ganzinger and David A. McAllester. A new meta-complexity
theorem for bottom-up logic programs. In T.Nipkow R.Goré, A.Leitsch,
editor, Proceedings of the First International Joint Conference on ArAuto-
mated Reasoning (IJCAR’01), pages 514-528, Siena, Italy, June 2001.
Springer-Verlag LNCS 2083.

[2] Harald Ganzinger and David A. McAllester. Logical algorithms. In
P. Stuckey, editor, Proceedings of the 18th International Conference on
Logic Programming, pages 209-223, Copenhagen, Denmark, July 2002.
Springer-Verlag LNCS 2401.

[3] Dave McAllester. On the complexity analysis of static analyses. Journal
of the ACM, 49(4):512-537, 2002.

[4] Jeff Naughton and Raghu Ramakrishnan. Bottom-up evaluation of
logic programs. In J.-L. Lassez and G. Plotkin, editors, Computational
Logic. Essays in Honor of Alan Robinson, pages 640-700. MIT Press, Cam-
bridge, Massachusetts, 1991.

LECTURE NOTES NOVEMBER 7, 2006

