
15-819K: Logic Programming

Lecture 21

Forward Chaining

Frank Pfenning

November 9, 2006

In this lecture we go from the view of logic programming as derived from
inference rules for atomic propositions to one with explicit logical connec-
tives. We have made this step before in order to describe the backward-
chaining semantics of top-down logic programming as in Prolog. Here we
instead describe the forward-chaining semantics of bottom-up logic pro-
gramming. We use this to prove the correctness of an earlier example, and
introduce an algorithm for unification as another example.

21.1 The Database as Context

When we try to formalize the semantics of bottom-up logic programming
and saturation, one of the first questions to answer is how to represent the
database from a logical point of view. Perhaps surprisingly at first, it ends
up as a context of assumptions. We interpret a rule

P1 true . . . Pn true

P true

as license to add the assumption P true if we already have assumption
P1 true through Pn true . This means we actually have to turn the rule
upside down to obtain the left rule

Γ, P1 true, . . . , Pn true, P true ` C true

Γ, P1 true, . . . , Pn true ` C true

Since in the case of (non-linear) intuitionistic logic, the context permits
weakening and contraction, this step only represents progress if P is not

LECTURE NOTES NOVEMBER 9, 2006

L21.2 Forward Chaining

already in Γ or among the Pi. We therefore stop forward chaining if none
of the inferences would make progress and say the database, represented
as the context of assumptions, is saturated.

For now we will view logical deduction as ground deduction and return
to the treatment of free variables in the next lecture. However, the inference
rules to infer ground facts may still contain free variables. If we reify infer-
ence rules as logical implications and collect them in a fixed context Γ0 we
obtain the next version of the above rule (omitting ‘true’):

(∀x. P ′

1
∧ . . . ∧ P ′

n ⊃ P ′) ∈ Γ0

P ′

i
θ = Pi for all 1 ≤ i ≤ n

dom(θ) = x

cod(θ) = ∅ Γ, P1, . . . , Pn, P ′θ ` C

Γ, P1, . . . , Pn ` C

To model saturation, we would restrict the rule to the case where P ′θ /∈
Γ, P1, . . . , Pn. Moreover, the set of free variables in P ′ should be a subset of
the variables in P1, . . . , Pn so that P ′θ is ground without having to guess a
substitution term.

Note that the right-hand side C remains unchanged and unreferenced
in the process of forward chaining. Later, when we are interested in com-
bining forward and backward chaining we will have to pay some attention
to the right-hand side. For now we leave the processes of creating the initial
database and reading off an answer from the saturated database informal
and concentrate on the forward chaining itself.

21.2 Even and Odd, Revisited

We revisit the two programs for checking if an given number is even in
order to see how we can reason about the correctness of forward chaining
programs. Recall first the definition of even, which has a natural backward
chaining interpretation.

even(z)
evz

even(N)

even(s(s(N)))
evss

Next, the rule for odd, which is our notation of the property of not being
even.

odd(s(s(N)))

odd(N)

To see if even(n) we seed the database with odd(n), forward chain to satu-
ration and then check if we have derived a contradiction, namely odd(z).

The correctness of the forward chaining program can be formulated as:

LECTURE NOTES NOVEMBER 9, 2006

Forward Chaining L21.3

even(n) true iff odd(n) true ` odd(z) true

The intent is that we only use forward chaining rules for the second judg-
ment, that is, we work entirely on the left except for an initial sequent to
close off the derivation.

Theorem 21.1 If even(n) true then odd(n) true ` odd(z) true .

Proof: By induction on the deduction D of even(n) true

Case: D =
even(z)

where n = z.

odd(z) ` odd(z) By hypothesis rule

Case: D =

D′

even(n′)

even(s(s(n′)))
where n = s(s(n′)).

odd(n′) ` odd(z) By ind. hyp. on D′

odd(s(s(n′))), odd(n′) ` odd(z) By weakening
odd(s(s(n′))) ` odd(z) By forward chaining

2

The last step in the second case of this proof is critical. We are trying
to show that odd(s(s(n′))) ` odd(z). Applying the forward chaining rule
reduces this to showing odd(s(s(n′))), odd(n′) ` odd(z). But this follows by
induction hypothesis plus weakening.

This establishes a weak form of completeness of the forward chaining
program in the sense that if it saturates, then odd(z) must be present in
the saturated database. A second argument shows that the database must
always saturate (see Exercise 21.1), and therefore the forward chaining im-
plementation is complete in the stronger sense of terminating and yielding
a contradiction whenever n is even.

For the soundness direction we need to generalize the induction hy-
pothesis, because odd(n) true ` odd(z) true will not match the situation
even after a single step on the left. The problem is that a database such as
odd(n), odd(s(n)) will saturate and derive odd(z), but only one of the two
numbers is even. Fortunately, it is sufficient to know that there exists some
even number in the context, because we seed it with a singleton.1

1I am grateful to Deepak Garg for making this observation during lecture.

LECTURE NOTES NOVEMBER 9, 2006

L21.4 Forward Chaining

Lemma 21.2 If Γ ` odd(z) where Γ consists of assumptions of the form odd(),
then there exists an odd(m) ∈ Γ such that even(m).

Proof: By induction on the structure of the given derivation E .

Case: E =
Γ′, odd(z) ` odd(z)

where Γ = (Γ′, odd(z)).

even(z) By rule
Choose m = z odd(z) ∈ Γ

Case: E =

E ′

Γ′, odd(s(s(n))), odd(n) ` odd(z)

Γ′, odd(s(s(n))) ` odd(z)
where Γ = (Γ′, odd(s(s(n)))).

even(m′) for some odd(m′) ∈ (Γ′, odd(s(s(n))), odd(n))
By ind. hyp. on E ′

odd(m′) ∈ (Γ′, odd(s(s(n)))) Subcase
Choose m = m′ Since odd(m′) ∈ Γ

odd(m′) = odd(n) Subcase
even(n) By equality reasoning
even(s(s(n))) By rule
Choose m = s(s(n)) Since odd(s(s(n))) ∈ Γ

2

21.3 Synchronous Atoms

When studying goal-directed search as the foundation of logic program-
ming, we found that the notion of focusing gave us the right model for the
search behavior of the connectives. Search is goal-directed if all the con-
nectives are asynchronous so they can be decomposed eagerly as goals until
an atomic goal is reached. Then we focus on one assumption and break
this down until it matches the conclusion. The asynchronous fragment of
intuitionistic logic is defined as follows.

A ::= P | A1 ∧ A2 | > | A2 ⊃ A1 | ∀x.A

We summarize the rules of the focusing system in Figure 1. So far, has been
the basis of backward chaining.

LECTURE NOTES NOVEMBER 9, 2006

Forward Chaining L21.5

A ∈ Γ Γ;A � P

Γ ` P
focusL

Γ;P � P
idR

no rule for P ′ 6= P

Γ;P ′ � P

Γ, A ` B

Γ ` A ⊃ B
⊃R

Γ;B � P Γ ` A

Γ;A ⊃ B � P
⊃L

Γ ` A Γ ` B

Γ ` A ∧ B
∧R

Γ;A � P

Γ;A ∧ B � P
∧L1

∆;B � P

Γ;A ∧ B � P
∧L2

Γ ` >
>R

no >L rule

Γ ` A x /∈ FV(Γ)

Γ ` ∀x.A
∀R

∆;A(t/x) � P

Γ;∀x.A � P
∀L

Figure 1: Focused Intuitionistic Logic; Asynchronous Fragment

Forward chaining violates the goal-directed nature of search, so we
need to depart from the purely asynchronous fragment. Our change is min-
imalistic: we introduce only synchronous atomic propositions Q. For the sake
of economy we also interpret inference rules

C1 true . . . Cn true

Q true

without conjunction, writing them with iterated implication

∀x. C1 ⊃ (C2 ⊃ . . . (Cn ⊃ Q))

instead. Here, Ci are all atoms, be they asynchronous (P) or synchronous
(Q).

Since a goal can now be synchronous, we have the opportunity to focus
on the right, if the right-hand side is a synchronous proposition (so far only
Q). When a synchronous atomic proposition is in right focus, we succeed
if the same proposition is in Γ; otherwise we fail.

Γ � Q

Γ ` Q
focusR

Q ∈ Γ

Γ � Q
idL

no rule for Q /∈ Γ
Γ � Q

LECTURE NOTES NOVEMBER 9, 2006

L21.6 Forward Chaining

We also have to re-evaluate the left rule for implication.

Γ;B � P Γ ` A

Γ;A ⊃ B � P
⊃L

Strictly speaking, the focus should continue on both subformulas. How-
ever, when all propositions are asynchronous, we immediately lose right
focus, so we short-circuited the step from Γ � A to Γ ` A. Now that we
have synchronous proposition, the rule needs to change to

Γ;B � P Γ � A

Γ;A ⊃ B � P
⊃L

and we add a rule
Γ ` A A 6= Q

Γ � A
blurR

A similar phenomenon arises on the left: when focused on a proposition
that is asynchronous on the right (and not asynchronous on the left), we
lose focus but we cannot fail as in the case of P .

Γ, Q ` P

Γ;Q � A
blurL

Furthermore, all rules need to be generalized to allow either synchronous
or asynchronous atoms on the right, which we write as C .

These considerations lead to the following rules, where have omitted
the rules for conjunction, truth, and universal quantification. They are only
changed in that the conclusion in the left rules can now be an arbitrary C ,
that is, a P or Q.

A ∈ Γ, A 6= Q Γ;A � C

Γ ` C
focusL

Γ;P � P
idR

no rule for P 6= C
Γ;P � C

Γ, A1 ` A2

Γ ` A1 ⊃ A2

⊃R
Γ;A1 � C Γ � A2

Γ;A2 ⊃ A1 � C
⊃L

Γ � Q

Γ ` Q
focusR

Q ∈ Γ

Γ � Q
idL

no rule for Q /∈ Γ
Γ � Q

Γ ` A A 6= Q

Γ � A
blurR

Γ, Q ` C

Γ;Q � C
blurL

LECTURE NOTES NOVEMBER 9, 2006

Forward Chaining L21.7

This system is sound and complete with respect to ordinary intuition-
istic logic, no matter which predicates are designated as synchronous and
asynchronous. As before, this can be proved via a theorem showing the
admissibility of various forms of cut for focused derivations. However, it
is important that all occurrences of a predicate have the same status, other-
wise the system may become incomplete.

21.4 Pure Forward Chaining

In pure forward chaining all atomic predicates are considered synchronous.
What kind of operational semantics can we assign to this system? In a
situation Γ ` A we first break down A (which, after all, is asynchronous)
until we arrive at Q. At this point we have to prove Γ ` Q. There are
two potentially applicable rules, focusR and focusL. Let us consider these
possibilities.

The focusR rule will always be immediately preceded by idL, which
would complete the derivation. So it comes down to a check if Q is in Γ.

The focusL rule focuses on a program clause or fact in Γ. Consider the
case of a propositional Horn clause Q1 ⊃ . . . ⊃ Qn ⊃ Q′. We apply ⊃L
rule, with premisses Γ;Q2 ⊃ . . . ⊃ Qn ⊃ Q′ � C and Γ � Q1. The only
rule applicable to the second premiss is idL, so Q1 must be in the database
Γ. We continue this process and note that Q2, . . . , Qn must all be in the
database Γ already. In the last step the first premiss is Γ;Q′ � Q which
transitions to Γ, Q′ ` Q.

In summary, applying a left focus rule to a clause Q1 ⊃ . . . ⊃ Qn ⊃ Q′

reduces the sequent Γ ` Q to Γ, Q′ ` Q if Qi ∈ Γ for 1 ≤ i ≤ n. This is
exactly the forward chaining step from before.

Overall, we can either right focus to see if the goal Q has already been
proved, or apply a forward chaining step. A reasonable strategy is to sat-
urate (repeated applying left focus until we make no more progress) and
then apply right focus to see if Q has been deduced. The failure of left
focus can be enforced by replacing the blurL rule by

Γ, Q ` C Q /∈ Γ

Γ;Q � C
blurL′.

This remains complete due to the admissibility of contraction, that is, if
Γ, A,A ` C then Γ, A ` C . This analysis also suggests that the left rule for
implication is more perspicuous if written with the premisses reversed in

LECTURE NOTES NOVEMBER 9, 2006

L21.8 Forward Chaining

case the goal on the right-hand side is synchronous.

Γ � A1 Γ;A2 � Q

Γ;A1 ⊃ A2 � Q
⊃L

In the case of a Horn clause this means we first check if A1 = Q1 is in Γ and
then proceed to analyze the rest of the clause.

21.5 Matching and Ground Bottom-Up Logic Programming

The analysis of forward chaining becomes only slightly more complicated
if we allow the Horn clauses ∀x. Q1 ⊃ . . . ⊃ Qn ⊃ Q′ to be quantified as
long as we restrict the variables in the head Q′ of the clause to be a subset of
the variables in Q1, . . . , Qn. Then right focusing must return a substitution
θ and we have the following rules, specialized to the Horn fragment with
only synchronous atoms.

A ∈ Γ, A 6= Q′ Γ;A � Q

Γ ` Q
focusL

Γ � Q1 | θ Γ;A2θ � Q

Γ;Q1 ⊃ A2 � Q
⊃L

Γ;A(X/x) � Q X /∈ FV(Γ, A,Q)

Γ;∀x.A � Q
∀L

Γ � Q | (·)

Γ ` Q
focusR

Q′ ∈ Γ Q′ = Qθ

Γ � Q | θ
idL

no rule if no such Q′, θ

Γ � Q | θ

Γ, Q′ ` Q Q′ /∈ Γ

Γ;Q′ � Q
blurL′

By the restriction on free variables, the Q′ in the blurL cannot contain any
free variables. The blurR rule cannot apply in the Horn fragment. We also
assumed for simplicity that the overall goal Q in Γ ` Q is closed.

So on the Horn fragment under the common restriction that all vari-
ables in the head of a clause must appear in its body, bottom-up logic pro-
gramming corresponds exactly to treating all atomic propositions as syn-
chronous. The operational semantics requires matching, instead of full uni-
fication, because the database Γ consists only of ground facts.

21.6 Combining Forward and Backward Chaining

The focusing rules for the language given ealier (that is, all asynchronous
connectives plus synchronous atoms) are sound and complete with respect

LECTURE NOTES NOVEMBER 9, 2006

Forward Chaining L21.9

to the truth judgment and therefore a potential basis for combining for-
ward and backward chaining. Backward chaining applies to asynchronous
atoms and forward chaining to synchronous atoms. For the propositional
case this is straightforward, but in the case of quantifiers it becomes diffi-
cult. We consider quantifiers in the next lecture and the propositional case
briefly here, by example.

We look at the behavior of

C1, C1 ⊃ C2, C2 ⊃ C3 ` C3

for various assignment of C1, C2, and C3 as synchronous or asynchronous.
Interestingly, no matter what we do, in the focusing system there is exactly
one proof of this sequent.

If all predicates are asynchronous,

P1, P1 ⊃ P2, P2 ⊃ P3 ` P3,

we must focus on P2 ⊃ P3. One step of backward chaining generates the
subgoal

P1, P1 ⊃ P2, P2 ⊃ P3 ` P2.

Now we must focus on P1 ⊃ P2 and obtain the subgoal

P1, P1 ⊃ P2, P2 ⊃ P3 ` P1

which succeeds by focusing on P1 on the left. No other proof paths are
possible.

If all predicates are synchronous,

Q1, Q1 ⊃ Q2, Q2 ⊃ Q3 ` Q3,

we must focus on Q1 ⊃ Q2 because only Q1 is directly available in the
context. Focusing on Q1 is prohibited because it is synchronous on the
right, and therefore asynchronous on the left. We obtain the subgoal

Q1, Q2, Q1 ⊃ Q2, Q2 ⊃ Q3 ` Q3.

Now we must focus on Q2 ⊃ Q3. Focusing on Q1 ⊃ Q2 would fail since
Q2 is already in the context, and focusing on Q3 on the right would fail
since Q3 is not yet in the context. This second forward chaining step now
generates

Q1, Q2, Q3, Q1 ⊃ Q2, Q2 ⊃ Q3 ` Q3.

LECTURE NOTES NOVEMBER 9, 2006

L21.10 Forward Chaining

At this point we can only focus on the right, which completes the proof.

Now consider a mixed situation

Q1, Q1 ⊃ P2, P2 ⊃ Q3 ` Q3.

Focusing on Q1 ⊃ P2 will fail, because the right-hand side does not match
P2. The only successful option is to focus on P2 ⊃ Q3 which generates two
subgoals

Q1, Q1 ⊃ P2, P2 ⊃ Q3 ` P2

and

Q1, Q3, Q1 ⊃ P2, P2 ⊃ Q3 ` Q3.

For the first we focus on Q1 ⊃ P2 and finish, for the second we focus on the
right and complete the proof.

You are asked to consider other mixed situations in Exercise 21.2.

21.7 Beyond the Horn Fragment

The focusing rules are more general than the Horn fragment, but there is
no particular difficulty in adopting the operational semantics as presented
here, as long as we exclude the difficulties that arise due to quantification.
In a later lecture we will consider adding other synchronous connectives
(falsehood, disjunction, and existential quantification).

Here, we make only one remark about conjunction and truth. In case
of intuitionistic logic they can safely be considered to be synchronous and
asynchronous. This means we can add the rules

Γ � A1 Γ � A2

Γ � A1 ∧ A2 Γ � >

This allows us to write Horn clauses as ∀x. Q1 ∧ . . . ∧Qn ⊃ Q′ without any
change in the operational behavior compared with ∀x. Q1 ⊃ . . . ⊃ Qn ⊃ Q′.

We could similarly add some left rules, but this would require an addi-
tional judgment form to break down connectives that are asynchronous on
the left, which we postpone to a later lecture.

21.8 Unification via Bottom-Up Logic Programming

We close this lecture with another example of bottom-up logic program-
ming, namely and implementation of unification.

LECTURE NOTES NOVEMBER 9, 2006

Forward Chaining L21.11

The implementation of unification by bottom-up logic programming il-
lustrates a common type of program where saturation can be employed
to great advantage. This is similar to the even example where we reason
by contradication for a decidable predicate. Here, the predicate is non-
unifiability of two terms s and t, as well as non-unifiability of sequences
of terms s and t as an auxiliary predicate. In order to show that two terms
are non-unifiable we assume they are unifiable, saturate, and then test the
resulting saturated database for inconsistent information. We write s

.
= t

and s
.
= t for the two equality relations.

Since there are a number of ways a contradiction can arise, we also in-
troduce an explicit proposition contra to indicate a contradiction. In a later
lecture we will see that we can in fact use ⊥ with a sound logical interpre-
tation, but that would requires us to go beyond the current setting.

The way to think about the rules is via the laws governing equality. We
start with symmetry, transitivity, and reflexivity. Reflexivity actually gives
us no new information (we already know the two terms are equal), so there
is no forward rule for it.

s
.
= t

t
.
= s

s
.
= t t

.
= r

s
.
= r

Not all instances of transitivity are actually required (see Exercise 21.3); re-
stricting it can lead to an improvement in the running time of the algorithm.
Next, the congruence rules for constructors and sequences.

f(s)
.
= f(t)

s
.
= t

(s, s)
.
= (t, t)

s
.
= t

(s, s)
.
= (t, t)

s
.
= t

(·)
.
= (·)

no rule

There is no rule for (·)
.
= (·) since this fact does not yield any new infor-

mation. However, we have rules that note contradictory information by
concluding contra.

f(s)
.
= g(t) f 6= g

contra

(·)
.
= (t, t)

contra

(s, s)
.
= (·)

contra

Even in the presence of variables, the rules so far will saturate, closing a
given equality under its consequences. We consider f(x, g(b))

.
= f(a, g(x))

as an example and show the generated consequences, omitting any identi-

LECTURE NOTES NOVEMBER 9, 2006

L21.12 Forward Chaining

ties t
.
= t and intermediate steps relating a sequences to their elements.

f(x, g(b))
.
= f(a, g(x)) Assumption

f(a, g(x))
.
= f(x, g(b)) Symmetry

x
.
= a Congruence

g(b)
.
= g(x) Congruence

a
.
= x Symmetry

g(x)
.
= g(b) Symmetry

b
.
= x Congruence

x
.
= b Symmetry

b
.
= a Transitivity

a
.
= b Symmetry

contra Clash b 6= a

The only point missing from the overall strategy to is to generate a con-
tradiction due to a failure of the occurs-check. For this we have two new
forms of propositions, x /∈ t and x /∈ t which we use to propagate occur-
rence information.

x
.
= f(t)

x /∈ t

x /∈ (t, t)

x /∈ t

x /∈ (t, t)

x /∈ t

x /∈ (·)

no rule

x /∈ f(t)

x /∈ t

x /∈ x

contra

x /∈ y, x 6= y

no rule

x /∈ t t
.
= s

x /∈ s

The last rule is necessary so that, for example, the set x
.
= f(y), y

.
= f(x)

can be recognized as contradictory.

Let us apply the McAllester meta-complexity result. In the completed
database, any two subterms of the original unification problem may be set
equal, so we have O(n2) possibilities. Transitivity has O(n3) prefix firings,
so a cursory analysis yields O(n3) complexity. This is better than the ex-
ponential complexity of Robinson’s algorithm, but still far worse then the

LECTURE NOTES NOVEMBER 9, 2006

Forward Chaining L21.13

linear time lower bound. Both the algorithm and the analysis can be re-
fined in a number of ways. For example, we can restrict the uses of sym-
metry and transitivity to obtain better bounds, and we can postpone the
use of non-occurrence to a second pass over a database saturated by the
other rules.

This form of presentation of unification has become standard practice.
It does not explicitly compute a unifier, but for unifiable terms it computes
a kind of graph where the nodes in the original term (when viewed as a
dag) are the nodes, and nodes are related by explicit equalities. From this a
unifier can be read off by looking up the equivalence classes of the variables
in the original unification problem.

Another nice property of unification, shared by many other saturation-
based algorithms, is that it is incremental. This means that equations can
be added one by one, and the database saturated every time, starting from
the previously saturated one. If the equations ever become contradictory,
contra is derived.

Here is a sketch how this might be used in the implementation of a logic
programming engine. We have a constraint store, initially empty. When-
ever logic programming search would call unification to obtain a unifier,
we instead assume the equation into the database and saturate it. If we
obtain a contradiction, unification fails and we have to backtrack. If not,
we continue with the resulting constraint store. A neat thing about this im-
plementation is that we never explicitly need to compute and apply a most
general unifier: any goal we consider is always with respect to a saturated
(and therefore consistent) set of equations.

21.9 Historical Notes

Although the notion that atoms may be synchronous or asynchronous, at
the programmer’s discretion, is relatively old [1], I believe that the obser-
vation connecting forward chaining to synchronous atoms is relatively re-
cent [2], and was made in the setting of general theorem proving. An al-
ternative approach to combining forward and backward chaining in logic
programming using a monad [5] will be the subject of a later lecture.

The view of unification as a forward reasoning process similar to the
one described here is due to Huet [3], although he maintained equivalence
classes of terms much more efficiently than our naive specification, using
the well-known union-find algorithm to arrive at an almost linear algo-
rithm. Huet’s basic idea was later refined by Martelli and Montanari [6]
and in a different way by Paterson and Wegman [7] to obtain linear time

LECTURE NOTES NOVEMBER 9, 2006

L21.14 Forward Chaining

algorithms for unification.
The idea to handle unification problems via a store of constraints, to

be updated and queried during computation, goes back to constraint logic
programming [4]. It was elevated to logical status by Saraswat [8], although
the connection to focusing, forward and backward chaining was not recog-
nized at the time.

21.10 Exercises

Exercise 21.1 Prove that the database initialized with odd(n) for some n and
closed under forward application of the rule

odd(s(s(N)))

odd(N)

will always saturate in a finite number of steps.

Exercise 21.2 Consider two other ways to assign atoms to be synchronous or
asynchronous for the sequent

C1, C1 ⊃ C2, C2 ⊃ C3 ` C3

from Section 21.6 and show that there exists a unique proof in each case.

Exercise 21.3 Improve the bottom-up unification algorithm by analyzing more
carefully which instances of symmetry and transitivity are really needed. You may
ignore the occurs-check, which we assume could be done in a second pass after the
other rules saturate. What kind of McAllester complexity does your analysis yield?

21.11 References

[1] Jean-Marc Andreoli. Logic programming with focusing proofs in linear
logic. Journal of Logic and Computation, 2(3):297–347, 1992.

[2] Kaustuv Chaudhuri, Frank Pfenning, and Greg Price. A logical charac-
terization of forward and backward chaining in the inverse method. In
U. Furbach and N. Shnakar, editors, Proceedings of the 3rd International
Joint Conference on Automated Reasoning (IJCAR’06), pages 97–111, Seat-
tle, Washington, August 2006. Springer LNCS 4130.

[3] Gérard Huet. Résolution d’équations dans des langages d’ordre 1, 2, . . . , ω.
PhD thesis, Université Paris VII, September 1976.

LECTURE NOTES NOVEMBER 9, 2006

Forward Chaining L21.15

[4] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In
Proceedings of the Fourteenth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 111–119, Munich, Germany, January 1987.
ACM Press.

[5] Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Mon-
adic concurrent linear logic programming. In A.Felty, editor, Proceed-
ings of the 7th International Symposium on Principles and Practice of Declar-
ative Programming (PPDP’05), pages 35–46, Lisbon, Portugal, July 2005.
ACM Press.

[6] Alberto Martelli and Ugo Montanari. An efficient unification al-
gorithm. ACM Transactions on Programming Languages and Systems,
4(2):258–282, April 1982.

[7] M. S. Paterson and M. N. Wegman. Linear unification. Journal of Com-
puter and System Sciences, 16(2):158–167, April 1978.

[8] Vijay Saraswat. Concurrent Constraint Programming. MIT Press, 1991.
ACM Doctoral Dissertation Award Series.

LECTURE NOTES NOVEMBER 9, 2006

