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In this lecture we lift the forward chaining calculus from the ground to
the free variable case. The form of lifting required is quite different from
the backward chaining calculus. For Horn logic, the result turns out to be
hyperresolution.

22.1 Variables in Forward Chaining

Variables in backward chaining in the style of Prolog are placeholders for
unknown terms. They are determined during unification, which occurs
when the head of a program clause is compared to the current goal.

The same strategy does not seem appropriate for forward chaining. As
a first example, consider

Vr.Q(x) F Q(a).

This violates the restrictions imposed for the last lecture, because = occurs
in the head of Vz. Q(z) but not its body (which is empty).

We cannot focus on the right-hand side since no Q(-) is in the context.
But we can focus on the assumption, Vz. Q(x). We have to guess a substi-
tution term for x (which we will leave as a variable for now) and then blur
focus.

V. (), Q(X) F Qa)
V. Q(z); Q(X) < Q(a) L
Vr. Q(z);Vr. Q(z) < Q(a)
focusL
Vr.Q(z) - Qa)

blurL
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L22.2 Hyperresolution

Nothing within this focusing sequence gives us a clue to what X should be.
If we now focus on the right, we can see in the second phase that X should
be a in order to complete the proof.

But is the set Vz.Q(x), Q(X) actually saturated, or can we focus on
Vz.Q(x) again? Since X is a placeholder, the proper interpretation of the
sequent Vz. Q(z), Q(X) F Q(a) should be:

There exists an X such that Vz.Q(z), Q(X) F Q(a).

Now it could be we need two instances of the universal quantifier, so we
might need to focus again on the left before anything else. An example of
this is

Vz.Q(x),Q(a) D Q(b) D Q'(c) F Q'(c)
So a priori there is no local consideration to rule out focusing again on
the left to obtain the context Vz. Q(x), Q(X), Q(Y'), which is not redundant
with Vz. Q(x), Q(X).

By extension of this argument we see that we cannot bound the num-
ber of times we need a universally quantified assumption. This means we
can never definitively saturate the context. The existential interpretation of
variables seems somehow incompatible with forward chaining and satura-
tion.

22.2 Parametric Assumptions

Looking again at the deduction steps

Vz.Q(z), Q(X) F Q(a)
V. Q(z); Q(X) < Q(a) .
Vr. Q(7);Vz. Q(z) < Q(a)
focusL
V. Q(z) F Q(a)

we see that we lost a lot of information when blurring focus. We have
actually obtain Q(X) from the context without any restriction on what X
is. In other words, we have really derived “For any X, Q(X)”. When we
added it back to the context, it became existentially quantified over the
sequent: “For some X, ..., Q(X) F ...".

It would make no sense to exploit this genericity of X by restoring the
universal quantifier: we already know Vz.Q(x). Moreover, we would be
introducing a connective during bottom-up reasoning which would violate
all principles of proof search we have followed so far.

blurL
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So we need to capture the fact that Q(X) holds for any X in the form
of a judgment. We write A - QQ where A is a context of variables. In a
typed setting, A records the types of all the variables, but we ignore this
slight generalization here. Now we have two forms of assumptions A and
A+ Q. We call the latter parametric hypotheses or assumptions parametric in
A. There is no need to allow general parametric assumptions A - 4, al-
though research on contextual modal type theory suggests that this would
be possible. The variables in A in a parametric assumption A+ @ should be
considered bound variables with scope Q.

Parametric hypotheses are introduced in the blurring step.

LAFrQFQ A=FV(Q)
<@

We assume here that the sequent does not contain any free variables other
than those in ). Because for the moment we are only interested in forward
chaining, this is a reasonable assumption. We discuss the issue of saturation
below.

Now we consider the other rules of the focusing system, one by one, to
see how to accomodate parametric hypotheses. We are restricting attention
to the Horn fragment with only synchronous atoms.

We now rule out (non-parametric) assumptions ) and just allow (ArQ).
Closed assumptions @ are silently interpreted as (- - Q).

The focusL rule is as before: we can focus on any non-parametric A. By
the syntactic restriction, this cannot be a ), so we elide the side condition.

Ael ThAKQ
TtQ

blurL

focusL

The implies rule also remains the same.
I'>Q THA<Q
501 DA < Q

For the VL rule we have to guess the substitution term ¢ for x. This term ¢
may contain some free variables that are abstracted in the blur step.

At z) € Q
V. A< Q
In the implementation ¢ will be determined by unification, and we then

abstract over the remaining free variables.
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Focusing on the right is as before; the change appears in the identity
rule
r>Q (Ar@Q) el Q6=Q dom(h)=A

reo focusR > Q idL

Right focus on @ still fails if there is no appropriate (A + Q') and 6.

22.3 Unification and Generalization

As a next step, we make the unification that happens during forward chain-
ing fully explicit. This is the natural extension of matching during ground
forward chaining discussed in the last lecture.

Acl ThAKQ

o focusL
I'>Q|0 I';A0<Q . DAX/z)<Q X ¢FV(I,AQ)
D VL
QDA< Q Ve, A Q

p renaming on A

(ArQ)el Qp=Q|0

no rule if nosuch A+ @Q’, 0

I'>Q|6 idl r>aqQ|o
r>qQ|() AR FQ A=FV(Q) Blurl
“Tro 0 focusR r Q<0 ur

We do not permit free variables in () for a global goal I" - ). This may be
reasonable at least on the Horn fragment if the renaming p always chooses
fresh variables, since during forward chaining we never focus on the right
except to complete the proof.

Reconsider an earlier example to see this system in action.

V. Q(x),Q(a) O Q(b) > Q'(c) - Q'(c)
We must focus on Vz. Q(x), which adds y - Q(y) to the context.
V. Q(x),Q(a) O Q(b) > Q'(c), (y - Qy)) F Q'(c)

Now we can focus on the second assumption, using substitutions a/y and
b/y for the two premisses and adding - - Q’(c) to the context. Now we can
focus on the right to prove Q’'(c).
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22.4 Saturation via Subsumption

In the ground forward chaining system of the last lecture we characterized
saturation by enforcing that a blur step must add something new to the

context I
IOFQy Q¢r
Q< Qo

We must update this to account for parametric hypotheses A - Q. One
should think of this as standing for an infinite number of ground assump-
tions, QO where dom(f) = A and cod() = 0.

We can say that (ArQ) adds nothing new to the context if every instance
Q0 is already an instance of a parametric assumption @)'. That is, for every
0 there exists (A’'+ Q') € T and ¢’ such that Q'0" = Q6. A tractable criterion
for this is subsumption. We way that (A’+Q’) subsumes (ArQ) if there exists a
substitution ¢’ with dom(#') = A’ and cod(#') C A such that Q'¢' = Q. Then
every instance Q6 is also an instance of @’ since Q0 = (Q'0")0 = Q' (0'9).

The new blur rule then is

ILAFQ)F Qo no (A'+Q') € T subsumes (A+ Q)
IQ < Qo

blurl’

blurL’

As an example, if we have a theory such as

V. pos(s(x)), Vy. pos(y) D pos(s(y))

where, in fact, the second clause is redundant, we will saturate quickly.
After one step we assume (w + pos(s(w))). Now focusing on the first as-
sumption will fail by subsumption, and focusing on the second will also
fail by subsumption. After unification during forward chaining we have to
ask if (u + pos(s(s(u)))) is subsumed before adding it to the context. But it
is by the previous assumption, instantiating s(u)/w. Therefore the above
theory saturates correctly after one step.

Under this definition of saturation it is possible to represent a number of
decision procedures as saturating forward chaining search with subsump-
tion. In general, however, we are straying more from logic programming
into general theorem proving

22.5 Beyond Saturation

In many applications saturation may be possible, but suboptimal in the
sense that we would like to short-circuit and succeed as soon as possible.
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L22.6 Hyperresolution

An example is the program for unification in the previous lecture. As soon
as we have a contradiction to the assumption that two terms are unifiable,
we would like to stop forward-chaining. We can achieve this by adding
another synchronous connective to the logic: falsehood (L).

As a conclusion, if we are focused on L we fail. So, just as in backward
search, | as a goal represents failure.

As an assumption it is asynchronous, so we can succeed when we en-
counter it.

— 1L
IlxC

There is an implicit phase transition here, from focusing on L to asyn-
chronously decomposing L (which immediately succeeds).

In the unification example, the uses of contra can be replaced by L,
which sometimes permits early success when a contradiction has been de-
rived.

This device is also used in theorem proving where we don’t expect to
saturate, but hope to derive L from the negation of a conjecture. At this
point we have left logic programming and are firmly in the real of general
purpose theorem proving: we no longer try to implement algorithms, but
try to search for a proof in a general way.

If we restrict ourselves to the Horn fragment (though allowing 1), and
every atom is synchronous then the strategy of forward chaining with free
variables presented here is also known as hyperresolution in the theorem
proving literature.

Once we have the possibility to succeed by creating a contradiction, it
is no longer necessary to have a relevant right-hand side. For example, in-
stead of proving I' - @Q we can prove I', @ D L F L entirely by forward
chaining on the left, without ever considering the right-hand side. Most
of the classical resolution literature and even early presentations of logic
programming use this style of presentation. The proof is entirely by con-
tradiction, and there is not even a “right-hand side” as such, just a database
of facts and rules I'.

22.6 Splitting

If we also allow disjunction in the heads of clauses, but continue to force
all atoms to be synchronous, we can represent what is known in the the-
orem proving literature as splitting. Since disjunction is asynchronous on
the left, we need a new judgment form I'; A - C' where A is broken down
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asynchronously. We transition into it when A is left asynchrounous, that is,
Q, L, or Ay vV Ay. We give here the ground version.

TAFC A=Q,1,A VA,

lurL
Ak C blur
AEC T7AFC
—— 1L VL
I'1+C Ay vVAEC

IAFC A#1,A1V A
AREC

Unfortunately, this extension interacts poorly with free variables and para-
metric hypotheses. If there is a variable shared between A; and A in the
VL rule, then it must be consistently instantiated on both sides and may not
be abstracted. In the theorem proving context the rule is therefore restricted
to cases where A; and A, share no free variables, which leaves the calculus
complete for classical logic. Here, in intuitionistic logic, such a restriction
would be incomplete.

When we move a formula A into I during decomposition of left asyn-
chronous operators, we need to be able to abstract over its free variables
even when the formula A is not atomic, further complicating the system.

To handle such situations we might allow existentially interpreted free
variables in the context, and abstract only over those that are not free else-
where in the sequent. However, then both subsumption and saturation
become questionable again. It seems more research is required to design a
larger fragment of intuitionistic logic that is amenable to a forward chaining
operational semantics with reasonable saturation and subsumption behav-
ior.

22.7 Historical Notes

Endowing assumptions with local contexts is a characteristic of contextual
modal type theory [3] and the proof theory of the Nabla quantifier (V) [2].
The former matches the use here, but is somewhat more general. The latter
interprets the locally quantified variables as names subject to o conversion
but cannot be instantiated by arbitrary terms.

There are a number of papers about using saturating hyperresolution
as a decision procedure. A tutorial exposition and further references can be
found in a chapter in the Handbook of Automated Reasoning [1].
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