15-819K: Logic Programming
Lecture 23
Linear Monadic Logic Programming

Frank Pfenning

November 16, 2006

In this lecture we extend the observations about forward and backward
chaining from Horn logic to a rich set of linear connectives. In order to
control the interaction between forward and backward chaining we use a
monad to separate asynchronous from synchronous connectives. The re-
sult is the logic programming language LolliMon, which we illustrate with
some examples.

23.1 Separating Asynchronous and Synchronous Connectives

The observations we have made about focusing, forward chaining, and
backward chaining apply to various logics, including linear logic, which
was indeed the origin of the notion of focusing. But it is difficult to com-
bine forward and backward chaining and obtain a satisfactory operational
semantics.

The problem can be broadly described as follows. First, if all connec-
tives are asynchronous we obtain a clear and non-deterministically com-
plete backward chaining semantics. Second, on the Horn fragment with
only synchronous atoms we obtain a satisfactory forward chaining seman-
tics with saturation. However, adding more synchronous connectives, or
mixing synchronous with asynchronous connectives introduces a lot of un-
controlled non-determinism into the operational reading of programs. We
approach general theorem proving, leaving the predictable operational be-
havior of Prolog behind.

We do not rule out that it may be possible to obtain a satisfactory se-
mantics, but in this lecture we pursue a different path. We can control
the interaction between asynchronous and synchronous connectives and

LECTURE NOTES NOVEMBER 16, 2006

L23.2 Linear Monadic Logic Programming

therefore between backward and forward chaining by creating a firewall
between them called a monad. From the logical point of view a monad is a
so-called lax modal operator. We will explain its laws below. For now we just
note that we write {—} for the modal operator.

In a complex linear logic proposition we can identify the places where
we change from asynchronous to synchronous connectives or vice versa.
At the first transition we require the explicit monadic firewall; the second
transition is simply an inclusion. There is one exception, namely in a linear
implication we switch sides (if the implication appears on the right the an-
tecedent appears on the left), so we have to switch from asynchronous to
synchronous propositions to remain in the same phase of decomposition.

Asynch A = P|A1&A2|T|51—OA2|A1:)A2|VZL'A|{S}
Synch S QS ®5:|0[S ®S|1]14[3z.5]A

Recall that P stands for asynchronous atoms and () for synchronous
atoms. We observe that the exponential modality of linear logic, !, has a spe-
cial status: ! A is synchronous but the subformula does not continue the syn-
chronous phase, but is asynchronous. Similarly, A; D A, is asynchronous,
but A; in the antecedent which we might expect to be synchronous is in
fact asynchronous. We will briefly explain this phenomenon later in the
lecture.

We have been inclusive here, omitting only S; ®! A and s = t which
were necessary for residuation. The first is easy to add or define. Explicit
equality is omitted here because in this lecture we concentrate on proposi-
tional and modal aspects of computation (see Exercise 23.2).

23.2 The Lax Modality

In order for the lax modality to have the right effect in separating the for-
ward and backward chaining phases, we need to give it a proper logical
foundation. In this section we just present this logical meaning; later we
justify its role in the operational semantics. Since the semantics here is fully
general, and does not depend on the division into asynchronous and syn-
chronous operators, we just use B and C' to stand for arbitrary proposition
in linear logic, augmented by the lax modality.

In addition to the usual judgment B true we have a new judgment on
propositions, B laz. This can given be many different readings. Let us think
of it for now as “B is true subject to some (abstract) constraint”. This means

LECTURE NOTES NOVEMBER 16, 2006

Linear Monadic Logic Programming L23.3

that B laz is a weaker judgment then B true.

A I+ B true

AF Bl XX

This is a rule concerned only with the judgment, not with the proposition
which remains unchanged. Of course, this rule is not invertible, or truth
and lax truth would coincide. As in the prior sections on linear logic we
omit the unrestricted context from the rules since it is generally just propa-
gated from conclusion to premisses.

The second property is a form of the cut principle: if we can derive B laz
we are allowed to assume B true, but only if we are deriving a lax conclu-
sion. This is so because deriving a lax conclusion permits a constraint.

If Ap = B lax and Ac, B true = C lax then Ac, Ap = C' lax.

This should always hold, which means it is admissible when formulated
as a rule of inference. This is not the case if we changed the conclusion to
C true since then we could derive the converse of the first rule, and truth
and lax truth collapse.

The right and left rules for the lax modality are now straightforward.

AW B larx A, B true = C lax
At {B} true A,{B} true - C lax

Again, the conclusion of the {—}L rule is restricted to the form C laz; al-
lowing C' true here would be incorrect.

However, the other left rules in the sequent calculus must now per-
mit an arbitrary judgment J on the right-hand side, which could be either
C true or C laz where previously in could only be C' true. The prior proof
of the admissibility of cut and the identity principle can be easily extended
to this fragment.

In terms of focusing, the modal operator looks at first a bit odd. In a
deduction (read bottom-up), we go from {B} true to B lax and from there
to B true.

On the right, the first transition is asynchronous: we can always strip
the modal operator. The second transition is synchronous: we may have to
wait for a left rule to be applied (specifically: to go from {C'} true to C true
for some C') before we can prove B true.

On the left, the first transition is synchronous: we cannot remove the
modal operator until the right-hand side has the form C laz. The second

LECTURE NOTES NOVEMBER 16, 2006

L23.4 Linear Monadic Logic Programming

one, however, is asynchronous, because B true is a stronger assumption
than B laz.
We can also see this from the proof of the identity principle.

B true = B true
B true t+ B lax
{B} true &= B laz

{B} true &= {B} true

{—}L

There is a “silent” transition on the left-hand side from B lax to B true. Be-
cause the lax judgment is asynchronous as an assumption, we never need
to consider it on the left-hand side.

23.3 The Exponential Modality Revisited

Above we have seen that the lax modality internalizes the judgment of lax
truth, which is weaker than truth. Conversely, the exponential modality
!B of linear logic internalizes necessary truth (written B valid), which is
stronger than truth. Recall first the judgmental rule, given here with a more
general right hand-side J which could be C' true or C' laz.

I, Buvalid; A, B true = J .
', Bualid; A = J

opy

The cut-like principle encodes that B is valid if it is true, without using any
any truth assumptions.

IfT; - B true and I', B valid; A & J then I'; A |- J.

When we internalize validity as a modal connective we obtain the follow-
ing right and left rules.

I'; - B true | F,Bvalid;AH—J'
— R L
I';- 1B true ;A Btrue = J

We see that the left rule expresses that if !B true then Bwvalid. On the
right-hand side, however, we have a silent transition from !B true, through
B wvalid to B true.

From this we can easily derive the focusing behavior. !B is synchronous
on the right, but the judgment B valid is asynchronous. We therefore never
need to explicitly consider B valid as a conclusion.

LECTURE NOTES NOVEMBER 16, 2006

Linear Monadic Logic Programming L23.5

Conversely, as an assumption !B is asynchronous and can be decom-
posed eagerly to B valid. However, the assumption B valid is synchronous
(no matter what B is), so we need keep it as as assumption that we can
focus on later.

This can also be seen from the proof of the identity principle.

Balid; B true = B true
B walid; - = B true
'R
Bwalid; - !B true

'L
1B true = !B true

copy

In summary, the judgment forms B laz and B valid interact with focus-
ing in the sense that B laz is synchronous as a conclusion (no matter what
B is) and B walid is asynchronous as a conclusion (again, no matter what
B is). This means B valid need never explicitly be considered as a conclu-
sion (it immediately becomes B true). Conversely B valid is synchronous
as an assumption and B laz is asynchronous as an assumption. This emans
B lax need never explicitly be considered as an assumption (it immediately
morphs into B true).

The asynchronous behaviors are only correct because of the modal re-
strictions: B valid would only appear on the right if the linear context is
empty, and B laz would only appear on the left if the conclusion is C lax
for some C.

23.4 The Lax Modality and Search

We now preview the operational behavior of LolliMon, which can be di-
vided into multiple phases derived from focusing. We will mostly build
on the intuition for forward and backward chaining from the preceding
lectures, except that linear forward chaining is more complex than just sat-
uration.

Asynchronous goal decomposition. Starting with an asynchronous goal
Atrue, we decompose it eagerly until we we come to either {S} true or
P true.

Backward chaining. If the goal is now of the form P true, we can focus
on an assumption and decompose it. However, the ultimate head that we
focus on must match P; if we reach {S} instead we must fail because the

LECTURE NOTES NOVEMBER 16, 2006

L23.6 Linear Monadic Logic Programming

left rule for {—} is not applicable when the conclusion is P true. This turns
out to be a crucial advantage of having the lax modality, because if the
head were an unprotected S we could not fail, but would now have to
asynchronously decompose S.

Subgoals created during backward chaining are then solved in turn, as
usual for backward chaining.

Forward chaining. If the goal on the right is {S'} true we exploit the fact
that the lax modality is asynchronous and reduce it to S laz. At this point
we could either focus on the left or focus on the right.

The operational semantics now prescribes a forward chaining phase. In
the presence of linearity, this is intentially not complete (see the discussion
of concurrency below). Nevertheless, we focus on an assumption and break
it down until the head is either P true or {S’} true. In the first case we fail,
because we are focusing on P true and it does not match the conclusion
(which is lax). In the case {S’} true we reduce it to S’ true which is then
asynchronously decomposed until we can focus on a new assumption. The
left rule for the lax modality is applicable here since the right-hand side is
of the form S lax.

We continue forward chaining until we reach both saturation and qui-
escence. Saturation means that any forward step will not add any new
assumption to I' or A. Quiescence means we cannot focus on any linear
assumption.

Once we have reached saturation and quiescence, focusing on the left
is no longer possible, so we focus on the right, S laz, which becomes S true
under focus and is decomposed until we reach an asynchronous goal A to
restart a new phase.

We now consider each phase in turn, writing out the relevant judgments
and formal definition.

23.5 Asynchronous Goal Decomposition

We write this judgment as I'; A; ¥ = A true. Here, I is a context of unre-
stricted assumptions A valid, A is a context of linear assumptions A true,
and V is a context of ordered assumptions S true. Both A in the conclusion
and the propositions S in ¥ are the ones that are decomposed. The context
VU is ordered so we can restrict rules to operate on a unique proposition,
removing any non-determinism from the rules.

LECTURE NOTES NOVEMBER 16, 2006

Linear Monadic Logic Programming L23.7

A Ar T A -1+ Ay
— T
VA - A & Ay LR AT r
F;A;SlH_AQ F,Al;A;-H_AQ
—o D)
;A5 1 S] — Ay R A 1A D Ay

R

A A ¢ FV(T,A)

VR
A Ve A
A S, 9P ThA; S, Ui=P
GeL —— 0L
A0S @Sy, ¥ P A0, 0 P
IA; 51,5,V - P AU P
®L — 1L
A S ® 8,9 =P AL, P
LA AU P DA S, +P x¢ FV(I[L,A,P)
'L L
A TA U - P LA dz. S,V = P
A QY- P I NAA UK P
AQ V=P NAA UK P
AR P AR S lax
= " (PR R S
LyA;- =P ;A5 {S}

The last two rules transition to new judgments which represent so-
called neutral sequents discussed in the next section.

23.6 Neutral Sequents

After an asynchronous decomposition has finished, we arrive at a neutral
sequent. In LolliMon, there are two forms of neutral sequent, depending
on whether the conclusion is true or lax. While the asynchronous decom-
position is deterministic and can never fail, we now must make a choice
about on which proposition to focus.

First, the case where the conclusion is P true. The possibilities for fo-
cusing initiate a backward chaining step.

LA AP Ael LA AP
copy T T tocusl no focusR rule

AP AAEP ;AP

LECTURE NOTES NOVEMBER 16, 2006

L23.8 Linear Monadic Logic Programming

There is no way to focus on the right on an asynchronous atom since we
only focus on synchronous propositions. Note that all propositions in I'
will be of the form A and therefore synchronous on the left. Similar, A
consists of propositions that are synchronous on the left except for (), which
is analogous to allowing P on the right, and which may not be focused on.

When the conclusion is S laxz we can focus either on the left or on the
right. Focusing on the left initiates a forward chaining step, focusing on the
right terminates a sequence of forward chaining steps.

A A< S lax Aercop F;A;A<<Slamf
T:A K S laz Y TAARS g ousE
A > S true ;
AR S lax ocusft

We can see that a right-hand side S laz means we are forward chaining,
which we transition out of when when we focus in S true.

In a lower-level operational semantic specification we would add the
precondition to the focusR rule that no copy or focusL rule is possible,
indicating saturation and quiescence.

23.7 Backward Chaining

Backward chaining occurs when the right-hand side is P true and we are
focused on a proposition on the left. We refer to the right focus judgment
for implications.

A A <P X A Ay <P no TL rule

&
A A & Ay < P A A & Ay < P ? LA TP

A AL < P T A9 > 59 . AA <P Th-> A
AL, Ag; Sy — A < P - A A DA K P
LA A(t/x) < P v no {—}L rule
AV, A P A {S}< P
(P)L not (P)L ruleif P' # P
;AP P A PP« P

Critical is the absence of the {—}L rule: all forward chaining rules are dis-
allowed during backward chaining. The logical rules for the lax modality

LECTURE NOTES NOVEMBER 16, 2006

Linear Monadic Logic Programming L23.9

anticipate this: the right-hand side would have to have to be a lax judg-
ment, but here it is truth. Without the monadic protection, this could not
be done in a logically justified and complete way.

The rules for right focus also belong under this heading since they are
invoked to terminate forward chaining or as a subgoal in backward chain-
ing. When the right-hand side becomes asynchronous we transition back
to the asynchronous decomposition judgment.

A S A > S

®R; ® Ry no OR rule
A> S 685, A> S 65, IA>0
AL >S5 T A >S5 B R
®
[A1,A2 > 51 @5 r;->1
;- -+ A R A > S(t/x) R A -+ A ()R
;>4 A>3z S LA>A
(Q)R no rule for A # @

IQ>Q A > Q

Focusing has strong failure conditions which are important to obtain
predictable behavior. These are contained in the “missing rules” for the
situations

;A {S} < P true
;A PP < Ptrue forP' #P
LA>Q for A # Q

all of which fail. The first is justified via the modal laws of lax logic, the sec-
ond and third by properties of focusing on synchronous and asynchronous
atoms. It is also important that we cannot focus on P on the right or) on
the left, which is again due to properties of focusing.

23.8 Forward Chaining

Forward chaining takes place when we focus on the left while the right-
hand side is a lax judgment S laz. We can forward chain only if the ultimate
head of the clause is a lax modality, which provides for a clean separation of
the two phases with a logical foundation, and could not be easily justified
otherwise as far as I can see.

The rules are mostly carbon copies of the left rules applied for forward
chaining, except in the order of the premisses in the implication rules and,

LECTURE NOTES NOVEMBER 16, 2006

L23.10 Linear Monadic Logic Programming

of course, the rules for P and {S}.

A A < S lax A Ay <« S lax
&Ly , no TLrule
A A & Ay < S lax A A & Ay <« S lax AT < S lax

AL >S5 Th AL Ay < S lax I I'i> A A Ay < S lax
T:AL, Ay S —o Ay < S lax T:A: AL > Ay < S lax

[A A(t/z) < S lax L no (P)L rule
A Ve, AL S laz A P < S lax
;A8 S lax

A {9} < S lax

Wesee I'; A; P < S lax as an additional failure mode, due to focusing.

The rules for asynchronous decomposition of S’ on the left once the
focusing phase has been completed, are carbon copies of the rules when
the conclusion is P true.

A8, Slax T A5,V S lax

L oL
A8 ® 8,0 S lax © I;A;0,9 S lax
A0S, 9, =S lax A0 S lax
®L 1L

A8 ® 5,V =S lax A1, 1 S lax

[LA; AU S lax ;A; 8 Ut Slax ¢ FV(I,A,S)
L L

DyANA O = S lax ;A 32, 8", U i+ S lax

A QU i+ S lax 0L A AU K S lax

A QU =S lax A AU K S lax

23.9 Backtracking and Committed Choice

The system from the previous sections is sound and complete when com-
pared to intuitionistic linear logic with an added lax modality. This can be
proved by a cut elimination argument as for other focusing systems.

Now we consider some lower-level aspects of the operational seman-
tics. For backchaining with judgments I'; A; ¥ = A, I''A; A < P and
I'; A > S, we solve subgoals from left to right, try alternatives from first-
to-last, and backtrack upon failure. Moreoever, choices of terms ¢ are post-

LECTURE NOTES NOVEMBER 16, 2006

Linear Monadic Logic Programming L23.11

poned and determined by unification. So the backchaining fragment of Lol-
liMon is fully consistent with pure Prolog and Lolli, that is, logic program-
ming in the asynchronous fragment of linear logic. It is weakly complete
which means that failure implies that a proof does not exist, but not all true
propositions can be proven due to potentially non-terminating depth-first
search.

For forward chaining, as defined by the judgments I'; A; A < S lax and
I'; A; S" 1= S laz we use committed choice selection of the assumption to fo-
cus on. Moreoever, we continue to forward chain until we reach saturation
and quiescence before we focus on the lax goal on the right. At present,
we would consider it an error if we encounter a free logic variable during
forward chaining because the semantics of this has not been satisfactorily
settled.

If the program does not use the linear context in an essential way (that
is, we are simulating unrestricted forward chaining in the linear setting),
then due to the monotonicity of the unrestricted assumptions we still have
non-deterministic completeness.

If the program does use the linear context then the system is complete in
only a very weak sense: if we can always happen to make the right choice
we can find a proof if it exists, but even if computation fails a proof might
still exist because we do not backtrack.

I believe that this is actually the desired behavior because linear for-
ward chaining was designed to model concurrency. The operational se-
mantics of forward chaining corresponds exactly to the operational seman-
tics of concurrent languages such as CCS or the w-calculus: if a transition
is possible it may be taken without any chance for backtracking over this
choice. This means programs are correct only if all legal computations be-
have correctly, such as, for example, avoiding deadlock. A corresponding
correctness criteria applies to LolliMon program that use linear forward
chaining: we must write the program in such a way that if multiple choices
can be made, each one will give a correct answer in the end. The example
in the next section illustrates this point.

As a programming language the logical fragment we have identified
here is quite rich, since it allows backward chaining, saturating forward
chaining, and linear forward chaining to capture many different sorts of
operational behavior. We have to guard against viewing it as a general pur-
pose inference engine. For example, it is often easy to write down a con-
current system as a linear LolliMon specification, but LolliMon presently
provides little help in analyzing such a specification beyond simulating in-
dividual runs. This is an interesting area of further research.

LECTURE NOTES NOVEMBER 16, 2006

L23.12 Linear Monadic Logic Programming

23.10 Checking Bipartiteness on Graphs

The literature contains some examples of LolliMon programs, as does the
LolliMon distribution. Many of the examples for forward chaining previ-
ously given in these notes such as CKY parsing or unification, can easily be
expressed in LolliMon. We give here one more example, checking whether
a given graph is bipartite, which illustrates a program that requires multi-
ple saturating phases of forward chaining, and combines linear and non-
linear forward chaining.

A graph is bipartite if there is a division of its nodes into just two sets
such that no two nodes in a set are connected to each other. Here is a high-
level description of algorithm to check if a graph is bipartite. We use two
colors, a and b to represent the two sets. We start with a graph where all
nodes are unlabeled.

1. If all nodes are labeled, stop. The graph is bipartite.
2. Otherwise, pick an unlabeled node and color it a.
3. Propagate until no further changes occur to the graph:

(a) If node u has color a and u is connected to w, color w with b.

(b) If node u has color b and u is connected to w, color w with a.

4. If there is a node with both colors a and b the graph is not bipartite.
Stop.

5. Otherwise, go to Step 1.

In the representation we have the following predicates, together with
their intended usage.

edge(u, w) unrestricted; true if there is an edge from u to w
unlabeled(u) linear; true of node w if it has not yet been labeled
label(u, ¢) unrestricted; true if node u has color ¢

notbip linear; true if graph is not bipartite

We start with the database initialized with unrestricted edge(u, w) and
linear unlabeled(u) facts.

notbip o— 3U. llabel(U, a) ® !label(U,b) ® T.
notbip o— unlabeled(U) ® (label(U, a) D {notbip}).

The first rule checks if there is a node with both colors and succeeds if that
is the case. The second consumes an unlabeled node U, assigns it color a,

LECTURE NOTES NOVEMBER 16, 2006

Linear Monadic Logic Programming L23.13

saturates by forward chaining, and then recurses, starting the next itera-
tion of the algorithm. notbip fails if there is no two-colored node and no
unlabeled node, in which case the graph is indeed bipartite.

The first two forward chaining rules are straightforward.

llabel(U, a) @ ledge(U, W) —o {!label(U, b)}.
llabel(U, b) ® ledge(U, W) —o {llabel(U,a)}.

The third rule contains the interaction between linear and unrestricted as-
sumptions: if a previously unlabeled node has been labeled, remove the
assumption that it is unlabeled.

llabel(U, C') ® unlabeled(U) — {1}.

Finally, a rule to take the symmetric closure of the edge relation, needed if
we do not want to assume the relation is symmetric to start with.

ledge(U, W) —o {ledge(W,U)}.

Syntactically, edge(u, w), label(u, c), and notbip must be asynchronous
atoms. Atoms unlabeled(u) could be either synchronous or asynchronous,
and both posibilities execute correctly. A synchronous interpretation is
most natural. There is a version of this program where label is also linear, in
which case it would also be most naturally interpreted synchronously (see
Exercise 23.4).

23.11 Historical Notes

The presentation of the lax modality in the form presented here originates
with [3]; see that paper for further references on modal logic and monads.

LolliMon'! [2] is a relatively recent development. The language sup-
ported by the implementation and described in the paper is slightly differ-
ent from what we discussed here. In particular, all atoms are asynchronous,
and nested implications in forward chaining are processed in reverse or-
der to what we show here. Moreover, the implementation does not fully
support @ and 0, but its term language is a simply-typed A-calculus with
prefix polymorphism solved by pattern unification. One aspect of this is
discussed in the next lecture.

An example applying LolliMon in computer security is given by Po-
lakow and Skalka [4].

!Distribution available at http://www.cs.cmu.edu/~fp/lollimon/

LECTURE NOTES NOVEMBER 16, 2006

L23.14 Linear Monadic Logic Programming

LolliMon originated in the work on the Concurrent Logical Framework
(CLF) [6, 1]. CLF is a type theory for formalizing deductive systems sup-
porting state (through linearity) and concurrency (through a lax modality).
Its original formulation lacks disjunction (®) and falsehood (0), but per-
mits dependent types and a rich term language. The most recent and most
complete work on the foundation of CLF is by Watkins [5].

23.12 Exercises

Exercise 23.1 Extend the LolliMon language from this lecture, adding equality
s = tand S ®! A, both of which are synchronous as goals and asynchronous as
assumptions.

Exercise 23.2 Some compound connectives in LolliMon are redundant and could
be eliminated. For example, A1 O As is equivalently expressed by (1A;) —o As.
Consider which connectives are redundant in this sense in the language.

Exercise 23.3 We have hinted in a prior lecture on resource management that,
though logically equivalent, certain connectives may still be important for opera-
tional reasons. For example, S ®! A and S ® (!A) have different resource manage-
ment behavior. Reconsider the redundant operators you identified in response to
the Exercise 23.2 and determine which ones also have identical resource manage-
ment properties and which do not.

Exercise 23.4 Rewrite the program to check whether graphs are bipartite, making
the label predicate linear.

On this program, consider the assignment where both unlabeled and label are
synchronous and the one where both are asynchronous. Explain differences in
operational behavior, if any. Discuss which is more natural or potentially more

efficient.

23.13 References

[1] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A
concurrent logical framework II: Examples and applications. Technical
Report CMU-CS-02-102, Department of Computer Science, Carnegie
Mellon University, 2002. Revised May 2003.

[2] Pablo Lépez, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Mon-
adic concurrent linear logic programming. In A.Felty, editor, Proceed-
ings of the 7th International Symposium on Principles and Practice of Declar-

LECTURE NOTES NOVEMBER 16, 2006

Linear Monadic Logic Programming L23.15

ative Programming (PPDP’05), pages 3546, Lisbon, Portugal, July 2005.
ACM Press.

[3] Frank Pfenning and Rowan Davies. A judgmental reconstruction of
modal logic. Mathematical Structures in Computer Science, 11:511-540,
2001. Notes to an invited talk at the Workshop on Intuitionistic Modal
Logics and Applications (IMLA’99), Trento, Italy, July 1999.

[4] Jeff Polakow and Christian Skalka. Specifying distributed trust man-
agement in LolliMon. In S.Zdancewic and V.R.Sreedhar, editors, Pro-
ceedings of the Workshop on Programming Languages and Security, Ottawa,
Canada, June 2006. ACM.

[5] Kevin Watkins. CLF: A logical framework for concurrent systems. The-
sis Proposal, May 2003.

[6] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A
concurrent logical framework I: Judgments and properties. Technical
Report CMU-CS-02-101, Department of Computer Science, Carnegie
Mellon University, 2002. Revised May 2003.

LECTURE NOTES NOVEMBER 16, 2006

