15-819K: Logic Programming
Lecture 24
Metavariables

Frank Pfenning

November 28, 2006

In this lecture we return to the treatment of logic variables. In Prolog and
some extensions we have considered, logic variables are global, and equa-
tions involving logic variables are solved by unification. However, when
universal goals Vx. A are allowed in backward chaining, or existential as-
sumptions 3z. A in forward chaining, new parameters may be introduced
into the proof search process. Ordinary unification on logic variables is
now unsound, even with the occurs-check. We generalize logic variables
to metavariables, a terminology borrowed from proof assistants and logical
frameworks, and describe unification in this extended setting.

24.1 Parameters

When proving a universally quantified proposition we demand that proof
to be parametric. In the rule this is enforced by requiring that x be new.

AFA ¢ FV(ILA)
AR Vz A

The condition on x can always be satisfied by renaming the bound vari-
able. Operationally, this means that we introduce a new parameter into the
derivation when solving a goal Vz. A.

We already exploited the parametricity of the derivation for the admis-
sibility of cut by substituting a term ¢ for x in the subderivation. The ad-
missibility of cut, rewritten here for lax linear logic, has the following form,
with J standing for either C true or C laz:

D & F
IfF;ADH—AandF;AE,AH—JthenF;AE,ADH—J.

LECTURE NOTES NOVEMBER 28, 2006



L24.2 Metavariables

Putting aside some issues related to the validity and lax judgments, this is
proved by a nested induction, first on the structure of the formula A, then
the two derivations D and £. One of the critical cases for quantification:

D,
Ap A FV(, A
Case: D = D 1 @ ¢ FV( D) v R Where A =Vz. A; and
P;AD H—Vw.Al
&
AR, Ar(t/x) = J
&= VL.

F;AE,Vx.Al = J
[ Ap = Aq(t/x) By D, (t/x), noting x ¢ FV(I', Ap)
P;AE,AD = J Bymdhyp on Al(t/w), Dl(t/w), 51

The induction hypothesis applies in (first-order) lax linear logic because
A, (t/x) may be considered a subformula of Vx. A; since it contains fewer
quantifiers and connectives. The condition = ¢ FV(I', Ap) is critical to
guarantee that D; (¢/x) is a valid proof of I'; Ap = A, (t/x).

Parameters behave quite differently from logic variables in that during
unification they may not be instantiated. Indeed, carrying out such a sub-
stitution would violate parametricity. But parameters interact with logic
variables, which means that simply treating parameters as constants dur-
ing unifications is unsound.

24.2 Parameter Dependency

We consider two examples, Vz. 3y. z = y, which should obviously be true
(pick z for y), and Jy.Vz.z = y, which should obviously be false (in gen-
eral, there is not a single y equal to all z).

We consider the proof search behavior in these two examples. First, the
successful proof.

=R
=2
— dJR
=3y x=y
o - . VR
Ve dy.x =y

With logic variables and unification, this becomes the following, assuming

LECTURE NOTES NOVEMBER 28, 2006



Metavariables L24.3

we do not actually care to return the substitution.
=Y |(z/Y)
bezy _

=3y x=y

Ve dy.x =y

R
VR

Applying the substitution (2/Y") in the derivation leads to the first proof,
which is indeed valid.

Second, the unsuccessful proof. In the calculus without logic variables
we fail either because in the IR step the substitution is capture-avoiding
(so we cannot use x/y), or in the VR step where we cannot rename x to y.

fails
ax=y
— VR
t-Ve.z =y
— 3JR
dy.Ve.x =y

In the presence of free variables we can apparently succeed:
PV [ (@Y)
Fe=Y

=Vr.x =Y

-3y Ve.x =y

VR
iR

However, applying the substitution (x/Y’) into the derivation does not
work, because Y occurs in the scope of a quantifier on x.

In order to prevent the second, erroneous solution, we need to prevent
(z/Y) as a valid result of unification.

24.3 Skolemization

At a high level, there are essentially three methods for avoiding the above-
mentioned unsoundness. The first, traditionally used in classical logics in a
pre-processing phase, is Skolemization. In classical logic we usually negate
the theorem and then try to derive a contradiction, in which case Skolem-
ization has a natural interpretation. Given an assumption Vy.3xz. A(x,y),
for every y there exists an x such that A(z,y) is true. This means that there
must be a function f such that Vy. A(f(y),y) because f can simply select
the appropriate z for every given y.

LECTURE NOTES NOVEMBER 28, 2006



L24.4 Metavariables

I don’t know how to explain Skolemization in the direct, positive form
except as a syntactic trick. If we replace universal quantifiers by a Skolem
function of the existentials in whose scope it lies, then Jy. Vz. x = y is trans-
formed to Jy. f(y) = y. Now if we pick an existential variable Y for y, then
f(Y) and Y are not unifiable due to the occurs-check.

Unfortunately, Skolemization is suspect for several reasons. In Prolog,
there is no occurs-check, so it will not work directly. In logics with higher-
order term languages, Skolemization creates a new function symbol f for
every universal quantifier, which could be used incorrectly in other places.
Finally, in intuitionistic logics, Skolemization can no longer be done in a
preprocessing phase, although it can still be employed.

24.4 Raising

Raising is the idea that existential variables should never be allowed to de-
pend on parameters. When confronted with an unsolvable problem such
as Jy.Vx.x = y this is perfect.

However, when a solution does exist, as in Vz.dy.x = y we need to
somehow permit y to depend on x. We accomplish this by rotating the
quantifier outward and turning it into an explicit function variable, as in
Jdy.Vz.x = y(z). Now y can be instantiated with the identity function Az. z
to solve the equation. Note that y is does not contain any parameters as
specified.

Raising works better than Skolemization, but it does require a term lan-
guage allowing function variables. While this seems to raise difficult issues
regarding unification, we can make the functional feature so weak that uni-
fication remains decidable and most general unifiers continue to exist. This
restriction to so-called higher-order patterns stipulates that function variables
be applied only to a list of distinct bound variables. In the example above
this is the case: y is applies only to z. We briefly discuss this further in the
section on higher-order abstract syntax below.

24.5 Contextual Metavariables

A third possibility is to record with every logic variable (that is, metavari-
able) the parameters it may depend on. We write ¥ +- X if the substitution
term for X may depend on all the parameters in . As we introduce param-
eters into a deduction we collect them in X. As we create metavariables, we
collect them into another different context ©, together with their contexts.
We write ©; £;I'; A = A. No variable may be declared more than once. The

LECTURE NOTES NOVEMBER 28, 2006



Metavariables L24.5

right rules for existential and universal quantifiers are:

;3 m; AR A O,XrX); 5 TA - AX /)
@;E;F;AH—WE.AVR 0:; T A-Ix. A A

By the convention that variables can be declared only once, we now omit
the condition and use renaming to achieve freshness of X and z. Unifica-
tion now also depends on © and X so we write O; X s =1t | 6.

Let us revisit the two examples above. First, the successful proof.

(zrY)zboz=Y|(2/Y) .
(zrY)zha=Y

iR
VR

sy dyr =y

sV dy.x =y

The substitution in the last step is valid because Y is allowed to depend on
x due to its declaration x + Y.
In the failing example we have

fails
(FY)zbao=Y|._
o —R
(YY) a=Y
— VR
(FY); s EVe.xa =Y
IR

sy Ve.x =y

Now unification in the last step fails because the parameter = on the left-
hand side is not allowed to occur in the substitution term for Y.

We call metavariables X X contextual metavariables because they carry
the context in which they were created.

24.6 Unification with Contextual Metavariables

The unification algorithm changes somewhat to account for the presence of
parameters. The first idea is relatively straightforward: if (X x - X') and we
unify X = ¢, then we fail if there is a parameter in ¢ notin X x.

But unification is a bit more subtle. Consider, for example, (z + X) and
(z,y+Y) and the problem X = f(Y). In this case the substitution term for
X may only depend on z, but not on y. But Y is allowed to depend on y,
so just substituting f(Y")/X would be unsound if later Y were instantiated

LECTURE NOTES NOVEMBER 28, 2006



L24.6 Metavariables

with y. So we need to restrict Y to depend only on z. In general, for a
problem X = ¢, we need to restrict any metavariable in ¢ by intersecting its
context with X x.

Unfortunately, this means that unification must return a new ©’ as well
as a substitution 6 such that every free variable in the codomain of ¢ is
declared in ©. We write

O;XkHt=s]|(0'F0)
for this unification judgment, and similarly for term sequences.

t=s|(0'+0) ESDY
;X f(t) = f(s) | (©'+6) Xk z=z]|(0+)

@;E"ti8|(@1F91) @1;E|—t91i591|(®2F92)
@;2 [ (t,t) = (S,S) ’ (@2 |—9192)

X)) =0 [(©OF)

Second, the cases for metavariables. We fold the occurs-check into the re-
striction operation.

;XX =X1(0;)

OFtlx >0 t=f(t) OFtlx >0
;XX =t](0+t/X) ;X kHt=X|(0+t/X)

Finally, the restriction operator:

(Exl—X)Ge T E Xy

noruleforXx+ X,z ¢ Xx

OFzlx >0 OFxlx >0
@l—t‘X>@/ @l—t|X>@1 @1|—t|X>@2
OF f(t)|x >0 OF()|x >0 OF (t,t)|x > O,
X#Y;(Ex+-X) €0 no rule for
@,(EyI—Y)l—Y‘X>@,(Eyﬁ2)(I—Y) @"X‘X>_

LECTURE NOTES NOVEMBER 28, 2006



Metavariables L24.7

As indicated before, restriction can fail in two ways: in z|x if z ¢ ¥ x and
when trying X|x. The first we call a parameter dependency failure, the
second an occurs-check failure. Overall, we also call restriction an extended
occurs-check.

24.7 Types

One of the reasons to be so pedantic in the judgments above is the now
straightforward generalization to the typed setting. The parameter con-
text ¥ contains the type declarations for all the variables, and declaration
Yx F X : 7 contains all the types for the parameters that may occur in the
substitution term for X. We can take this quite far to a dependent and poly-
morphic type theory and metavariables will continue to make sense. We
only mention this here; details can be found in the literature cited below.

24.8 Higher-Order Abstract Syntax

It has been my goal in this class to present logic programming as a gen-
eral paradigm of computation. It is my view that logic programming arises
from the study of the structure of proofs (since computation is proof search)
and that model-theoretic considerations are secondary. The liberation from
the usual concerns about Herbrand models and classical reasoning has
opened up a rich variety of new possibilities, including, for example, linear
logic programming for stateful and concurrent systems.

At the same time I have been careful to keep my own interests in appli-
cations of logic programming in the background, and have drawn exam-
ples from a variety of domains such as simple list manipulation, algorithms
on graphs, solitaire puzzles, decision procedures, dataflow analysis, etc. In
the remainder of this lecture and the next one I will go into some examples
of the use of logic programming in a logical framework, where the applica-
tion domain itself also consists of logics and programming languages.

One of the pervasive notions in this setting is variable binding. The
names of bound variables should not matter, and we should be able to sub-
stitute for them in a way that avoids capture. For example, in a proposition
Jy.Vx.x = y we cannot substitute x for y because the binder on x would
incorrectly capture the substitution term for y. Substitution into a quantified
proposition is then subject to some conditions:

(Vz. A)(t/y) = Va. A(t/y) provided x # y and = ¢ FV(t).

LECTURE NOTES NOVEMBER 28, 2006



L24.8 Metavariables

These conditions can always be satisfied by (usually silently) renaming
bound variables, here x.

If we want to represent objects with variable binders (such as such as
quantified propositions) as terms in a metalanguage, the question arises on
how to represent bound variables. By far the most elegant means of accom-
plishing this is to represent them by corresponding bound variables in the
metalanguage. This means, for example, that substitution in the object lan-
guage is modeled accurately by substitution in the metalanguage without
any additional overhead. This is the basic idea behind higher-order abstract
syntax. A simple grammar decomposes terms into either abstractions or ap-
plications.

Abstractions b = z.b|t
Applications t = h(b1,...,by)
Heads h == z|f

An abstraction z. b binds the variable x with scope b. An application is just
the term structure from first-order logic we have considered so far, except
that the head of the term may be a variable as well as a function symbol,
and the arguments are again abstractions.

These kinds of terms with abstractions are often written as A-terms, us-
ing the notation Az. M. However, here we do not use abstraction to form
functions in the sense of functional programming, but simply to indicate
variable binding. We therefore prefer to think of Az. M as A(z. M) and Vz. A
as V(z. A), clearly representing variable binding in each case and thinking
of A and V as simple constructors.

We we substitute an abstraction for a variable, we may have to hered-
itarily perform substitution in order to obtain a term satisfying the above
grammar. For example, if we have a term lam(z. E(x)) and we substitute
(y.y)/E then we could not return (y.y) (z) (which is not legal, according to
our syntax), but substitute x for y in the body of the abstraction to obtain
lam(z. ).

Since one form of substitution may engender another substitution on em-
bedded terms we call it hereditary substitution.

A more detailed analysis of higher-order abstract syntax, hereditary
substitution, and the interaction of these notions with typing is beyond the

LECTURE NOTES NOVEMBER 28, 2006



Metavariables L24.9

scope of this course. We will use it in the next lecture in order to specify the
operational semantics of a programming language.

249 Historical Notes

Traditionally, first-order theorem provers have used Skolemization, either
statically (in classical logic), or dynamically (in non-classical logics) [13].
A clear presentation and solution of many issues connected to quantifier
dependencies and unification has been given by Miller [5].

The idea of higher-order abstract syntax goes back to Church’s type the-
ory [1] in which all variable binding was reduced to A-abstraction. Martin-
Lof’s system of arities (mostly unpublished) was a system of simple types
including variable binding. Its important role in logical frameworks was
identified by several groups in 1986 and 1987, largely independently, and
with different applications: theorem proving [8], logic programming [6],
and logical frameworks [2].

In programming languages, the idea of mapping bound variables in an
object language to bound variables in a metalanguage is due to Huet and
Lang [3]. Its use in programming environments was advocated and further
analyzed by Elliott and myself [11]. This paper also coined the term “higher-
order abstract syntax” and is therefore sometimes falsely credited with the
invention of concept.

There are many operational issues raised by variable dependencies and
higher-order abstract syntax, most immediately unification which is impor-
tant in all three types of applications (theorem proving, logic programming,
and logical frameworks). The key step is Miller’s discovery of higher-order
patterns [4] for which most general unifiers still exist. I generalized this
latter to various type theories [9, 10].

The most recent development in this area is contextual modal type the-
ory [7] which gives metavariables first-class status within a type theory,
rather than consider them a purely operational artifact. A presentation of
unification in a slighly simpler version of this type theory can be found in
Pientka’s thesis [12].

2410 Exercises

Exercise 24.1 Show an example that leads to unsoundness if parameter depen-
dency is not respected during unification using only hereditary Harrop formulas,
that it, the asynchronous fragment of intuitionistic logic.

LECTURE NOTES NOVEMBER 28, 2006



L24.10 Metavariables

24.11 References

[1] Alonzo Church. A formulation of the simple theory of types. Journal
of Symbolic Logic, 5:56-68, 1940.

[2] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. In Symposium on Logic in Computer Science, pages 194—
204. IEEE Computer Society Press, June 1987.

[3] Gérard Huet and Bernard Lang. Proving and applying program trans-
formations expressed with second-order patterns. Acta Informatica,
11:31-55, 1978.

[4] Dale Miller. A logic programming language with lambda-abstraction,
function variables, and simple unification. Journal of Logic and Compu-
tation, 1(4):497-536, 1991.

[5] Dale Miller. Unification under a mixed prefix. Journal of Symbolic Com-
putation, 14:321-358, 1992.

[6] Dale Miller, Gopalan Nadathur, and Andre Scedrov. Hereditary Har-
rop formulas and uniform proof systems. In David Gries, editor, Sym-
posium on Logic in Computer Science, pages 98-105, Ithaca, NY, June
1987.

[7] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contex-
tual modal type theory. Submitted, September 2005.

[8] Lawrence C. Paulson. Natural deduction as higher-order resolution.
Journal of Logic Programming, 3:237-258, 1986.

[9] Frank Pfenning. Logic programming in the LF logical framework. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
149-181. Cambridge University Press, 1991.

[10] Frank Pfenning. Unification and anti-unification in the Calculus of
Constructions. In Sixth Annual IEEE Symposium on Logic in Computer
Science, pages 74-85, Amsterdam, The Netherlands, July 1991.

[11] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In
Proceedings of the ACM SIGPLAN '88 Symposium on Language Design
and Implementation, pages 199-208, Atlanta, Georgia, June 1988.

[12] Brigitte Pientka. Tabled Higher-Order Logic Programming. PhD thesis,
Department of Computer Science, Carnegie Mellon University, De-
cember 2003. Available as Technical Report CMU-CS-03-185.

LECTURE NOTES NOVEMBER 28, 2006



Metavariables L24.11

[13] N. Shankar. Proof search in the intuitionistic sequent calculus. In
D. Kapur, editor, Proceedings of the 11th International Conference on Au-
tomated Deduction (CADE-11), pages 522-536, Saratoga Springs, New
York, June 1992. Springer-Verlag LNCS 607.

LECTURE NOTES NOVEMBER 28, 2006



