
15-819K: Logic Programming

Lecture 25

Substructural Operational Semantics

Frank Pfenning

November 30, 2006

In this lecture we combine ideas from the previous two lectures, linear
monadic logic programming and higher-order abstract syntax, to present
a specification technique for programming languages we call substructural
operational semantics. The main aim of this style of presentation is semantic
modularity: we can add new language features without having to rewrite
prior definitions for smaller language fragments. We determine that this is
mostly the case, although structural properties of the specification such as
weakening or contraction might change.

25.1 A Big-Step Natural Semantics

As a warm-up exercise, and also to understand the lack of modularity in
traditional specifications, we present the semantics for functional abstrac-
tion and application in a call-by-value language. This is called natural se-
mantics because of an analogy to natural deduction. The representation of
terms employs higher-order abstract syntax, as sketched in the last lecture.

Expressions e ::= x | lam(x. e) | app(e1, e2)

In the expression lam(x. e) the variable x is bound with scope e.

The main judgment is e ↪→ v, where e and v are expressions. This is a
big-step semantics, so the judgment directly relates e to its final value v.

lam(x. e) ↪→ lam(x. e)

e1 ↪→ lam(x. e′
1
) e2 ↪→ v2 e′

1
(v2/x) ↪→ v

app(e1, e2) ↪→ v

LECTURE NOTES NOVEMBER 30, 2006

L25.2 Substructural Operational Semantics

We represent e ↪→ v as neval(e, v). In the translation into a logic program-
ming notation using higher order abstract syntax we have to be careful
about variable binding. It would be incorrect to write the first rule as

neval(lam(x.E), lam(x.E))

because E is (implicitly) quantified on the outside, so we could not instan-
tiate with a term that contains x. Instead we must make any dependency
explicit with the technique of raising from last lecture.

neval(lam(x.E(x)), lam(x.E(x))).

Here, E(x) is a term whose head is a variable. For the second rule we see
how substitution is represented as application in the meta-language. E′

1

will be bound to an abstraction x. e′
1
, and E′

1
(V2) will carry out the substi-

tution of e′
1
(V2/x).

neval(app(E1, E2), V)←
neval(E1, lam(x.E′

1
(x))),

neval(E1, V2),
neval(E′

1
(V2), V).

25.2 Substructural Operational Semantics

In a judgment e ↪→ v the whole state of execution must be present in the
components of the judgment. This means, for example, when we add mu-
table store, we have to rewrite the judgment as 〈s, e〉 ↪→ 〈s′, v〉, where s
is the store before evaluation and s′ after. Now all rules (including those
for functions which should not be concerned with the store) have to be
updated to account for the store. Similar considerations hold for continua-
tions, exceptions, and other enrichments of the language.

Substructural operational semantics has an explicit goal to achieve a
more modular presentation, where earlier rules may not have to be revis-
ited. We achieve this through a combination of various ideas. One is the
that logical rules that permit contexts are parametric in those contexts. For
example, a left rule for conjunction

∆, A1 `̀ C true

∆, A1 & A2 `̀ C true

remains valid even if new connectives or new judgments are added. The
second idea is to evaluate expressions with explicit destinations whose na-
ture remains abstract. Destinations are implemented as parameters.

LECTURE NOTES NOVEMBER 30, 2006

Substructural Operational Semantics L25.3

Substructural operational semantics employs linear and unrestricted
assumptions, although I have also considered ordered and affine assump-
tions. The conclusion on the right-hand is generally only relevant when
we tie the semantics into a larger framework, so we omit it in an abstract
presentation of the rules.

There are three basic propositions:

eval(e, d) Evaluate e with destination d
comp(f, d) Compute frame f with destination d
value(d, v) Value of destination d is v

Evaluation takes place asynchronously, following the structure of e. Frames
are suspended computations waiting for a value to arrive at some destina-
tion before they are reawakened. Values of destinations, once computed,
are like messages send to suspended frames.

In this first, pure call-by-value language, evaluations, computations,
and values are all linear. All the rules are left rules, although we do not
specify the right-hand side. A complete evaluation has the form

∆, value(d, v) `̀
....

∆, eval(e, d) `̀

where v is the value of e. We begin with expressions lam(x.E(x)) which are
values and returned immediately to the destination D.

∆, value(D, lam(x.E(x))) `̀

∆, eval(lam(x.E(x)),D) `̀

In applications we evaluate the function part, creating a frame that remem-
bers to evaluate the argument, once the function has been computed. For
this, we need to create a new destination d1. The derivation of the premiss
must be parametric in d1. We indicate this by labeling the rule itself with
[d1].

∆, comp(app1(d1, E2),D), eval(E1, d1) `̀

∆, eval(app(E1, E2),D) `̀
[d1]

When the expression E1 has been evaluated, we have to switch to evalu-
ating the argument E2 with a new destination d2., keeping in mind that
eventually we have to perform the function call.

∆, comp(app2(V1, d2),D), eval(E2, d2) `̀

∆, comp(app(D1, E2),D), value(D1, V1) `̀
[d2]

LECTURE NOTES NOVEMBER 30, 2006

L25.4 Substructural Operational Semantics

It may be possible to reuse the destination D1, but we are not interested
here in this kind of optimization. It might also interfere negatively with
extensibility later on if destinations are reused in this manner.

Finally, the β-reduction when both function and argument are known.

∆, eval(E′

1
(V2),D) `̀

∆, comp(app2(lam(x.E′

1
(x)),D2),D), value(D2, V2) `̀

25.3 Substructural Operational Semantics in LolliMon

It is easy to take the four rules of our substructural specification and imple-
ment them in LolliMon. We need here linear forward chaining and existen-
tial quantification to introduce new destinations. LolliMon’s term language
permits abstraction, so we can use this to implement higher-order abstract
syntax.

eval(lam(x.E(x)),D) ({value(D, lam(x.E(x)))}.

eval(app(E1, E2),D) ({∃d1. eval(E1, d1)⊗ comp(app1(d1, E2),D)}.

value(D1, V1)⊗ comp(app1(D1, E2),D)
({∃d2. eval(E2, d2)⊗ comp(app2(V1, d2),D)}.

value(D2, V2)⊗ comp(app2(lam(x.E′

1
(x)),D2),D) ({eval(E′

1
(V2),D)}.

The only change we have made to the earlier specification is to exchange
the order of eval, comp, and value propositions for a more natural threading
of destinations.

LolliMon combines forward and backward chaining, so we can also
write the top-level judgment to obtain the final value.

evaluate(E,V) ◦− (∀d0. eval(E, d0) ({value(d0, V)}).

25.4 Adding Mutable Store

We would now like to add mutable store to the operational semantics. We
have three new kinds of expressions to create, read, and assign to a cell of
mutable storage.

Expressions e ::= . . . | ref(e) | deref(e) | assign(e1, e2) | cell(c)

There is also a new kind of value cell(c) where c is a destination which
serves as a name for a cell of storage. Note that cell(c) cannot appear in the

LECTURE NOTES NOVEMBER 30, 2006

Substructural Operational Semantics L25.5

source. In order to enforce this syntactically we would distinguish a type of
values from the type of expressions, something we avoid here for the sake
of brevity.

First, the rules for creating a new cell. I suggest reading these rules
from last to first, in the way they will be used in a computation. We write
the destinations that model cells at the left-hand side of the context. This is
only a visual aid and has no logical significance.

value(c1, V1),∆, value(D, cell(c1)) `̀

∆, comp(ref1(D1),D), value(D1, V1) `̀
[c1]

∆, comp(ref1(d1),D), eval(E1, d1) `̀

∆, eval(ref(E1),D) `̀
[d1]

We keep track of the value of in a storage cell with an assumption value(c, v)
where c is a destination and v is a value. While destinations to be used
as cells are modeled here as linear, they are in reality affine, that is, they
may be used at most once. The store, which is represented by the set of
assumptions value(ci, vi) will remain until the end of the computation.

Next, reading the value of a cell. Again, read the rules from the bottom
up, and the last rule first.

value(C1, V1),∆, value(D,V1) `̀

value(C1, V1),∆, comp(deref1(D1),D), value(D1, cell(C1)) `̀

∆, comp(deref1(d1),D), eval(E1, d1) `̀

∆, eval(deref(E1),D) `̀
[d1]

Next, assigning a value to a cell. The assignment assign(e1, e2) returns the
value of e2.

value(C1, V2), value(D,V2) `̀

value(C1, V1),∆, comp(assign2(cell(C1),D2),D), value(D2, V2) `̀

∆, comp(assign2(V1, d2),D), eval(E2, d2) `̀

∆, comp(assign1(D1, E2),D), value(D1, V1) `̀
[d2]

∆, comp(assign1(d1, E2),D), eval(E1, d1) `̀

∆, eval(assign(E1, E2),D) `̀
[d1]

LECTURE NOTES NOVEMBER 30, 2006

L25.6 Substructural Operational Semantics

Because values are included in expressions, we need one more rule for cells
(which are treated as values). Even if they do not occur in expressions
initially, the arise from substitutions of values into expressions.

∆, value(D, cell(C)) `̀

∆, eval(cell(C),D) `̀

All of these rules are just added to the previous rules for functions. We
have achieved semantic modularity, at least for functions and store.

Again, it is easy to turn these rules into a LolliMon program.

eval(ref(E1),D)
({∃d1. eval(E1, d1)⊗ comp(ref1(d1),D)}.

value(D1, V1)⊗ comp(ref1(D1),D)
({∃c1. value(c1, V1)⊗ value(D, cell(c1))}.

eval(deref(E1),D)
({∃d1. eval(E1, d1)⊗ comp(deref1(d1),D)}.

value(D1, cell(C1))⊗ value(C1, V1)⊗ comp(deref1(D1),D)
({value(C1, V1)⊗ value(D,V1)}.

eval(assign(E1, E2),D)
({∃d1. eval(E1, d1)⊗ comp(assign1(d1, E2),D)}.

value(D1, V1)⊗ comp(assign1(D1, E2),D)
({∃d2. eval(E2, d2)⊗ comp(assign2(V1, d2),D)}.

value(D2, V2)⊗ comp(assign2(cell(C1),D2),D)⊗ value(C1, V1)
({value(C1, V2)⊗ value(D,V2)}.

eval(cell(C),D)
({value(D, cell(C))}.

Written in SSOS form, the program evaluates e with some initial desti-
nation d0 as

∆, value(d0, v) `̀
....

eval(e, d0) `̀

where v is the value of e and

∆ = value(c1, v1), . . . , value(cn, vn)

LECTURE NOTES NOVEMBER 30, 2006

Substructural Operational Semantics L25.7

for cells c1, . . . , cn. The matter is complicated further by the fact that ci, pa-
rameters introduced during the deduction, may appear in v. So we would
have to traverse v to eliminate references to ci, or we could just print it, or
we could create some form of closure over the store ∆. In either case, we
need to be sure to comsume ∆ to retain linearity overall. If we just want to
check termination, the top-level program would be

terminates(E) ◦− ∀d0. eval(E, d0) ({∃V. value(d0, V)⊗>}.

Here, the existential quantifier will be instantiated after forward chaining
reaches quiescence, so it is allowed to depend on all the parameters intro-
duced during forward chaining.

25.5 Adding Continuations

We now add callcc to capture the current continuation and throw to invoke
a continuation as an example of an advanced control-flow construct.

Expressions e ::= . . . | callcc(x. e) | throw(e1, e2) | cont(d)

The intuitive meaning is that callcc(x. e) captures the current continuation
(represented as the value cont(d)) and substitutes it for x in e, and that
throw(e1, e2) evaluates e1 to v1, e2 to a continuation k and then invokes k on
v1.

In linear destination-passing style, we use a destination d to stand for
a continuation. We invoke a continuation d on a value v simply by setting
value(d, v). Any frame waiting to receive a value can be activated in this
manner.

But this creates several problems in the semantics. To illustrate them,
we add z and s(e) for zero and successor, and a new frame s1(d) which
waits to increment the value returned to destination d. See Exercise 25.2 for
the rules.

Then an expression

s(callcc(k. s(throw(z, k))))

evaluates to s(z), never returning anything to the inner frame waiting to
calculate a successor. This means frames are no longer linear—they may be
ignored and therefore be left over at the end.

But the problems do not end there. Consider, for example,

app(callcc(k. lam(x. throw(lam(y. y), k))), z).

LECTURE NOTES NOVEMBER 30, 2006

L25.8 Substructural Operational Semantics

Because any λ-expression is a value, the callcc returns immediately and
applies the function lam(x. . . .) to z. This causes the embedded throw to
take place, this time applying lam(y. y) to z, yielding z as the final value. In
this computation, the continuation in place when the first argument to app

is evaluated is invoked twice: first, because we return to it, and then again
when we throw to it. This means frames may not only be ignored, but also
duplicated.

The solution is to make all frames comp(f, d) unrestricted throughout.
At the same time the other predicates must remain linear: eval(e, d) so that
there is only one thread of computation, and value(d, v) so that at any given
time there is at most one value v at any given destination d.

We present the semantics for callcc and related constructs directly in
LolliMon, which is more compact than the inference rule presentation.

eval(callcc(k.E(k)),D)
({eval(E(cont(D)),D)}.

eval(throw(E1, E2),D)
({∃d1. eval(E1, d1)⊗ !comp(throw1(d1, E2),D)}.

value(D1, V1)⊗ !comp(throw1(D1, E2),D)
({∃d2. eval(E2, d2)⊗ !comp(throw2(V1, d2),D)}.

value(D2, cont(D′

2
))⊗ !comp(throw2(V1,D2),D)

({value(D′

2
, V1)}.

eval(cont(D′),D)
({value(D, cont(D′))}.

Of course, all other rules so far must be modified to make the suspended
computations (which we now recognize as continuations) unrestricted by
prefixing each occurrence of comp(f, d) with ‘!’. The semantics is not quite
modular in this sense.

With this change we have functions, mutable store, and continuations
in the same semantics, specified in the form of a substructural operational
semantics.

25.6 Substructural Properties Revisited

The only aspect of our specification we had to revise was the substructural
property of suspended computations. If we step back we see that we can
use substructural properties of various language features for a kind of tax-
onomy.

LECTURE NOTES NOVEMBER 30, 2006

Substructural Operational Semantics L25.9

Our first observation is that for functions alone it would have been suf-
ficient to keep the suspended computations next to each other and in or-
der. In such an ordered specification we would not even have needed the
destinations, because adjacency guarantees that values arrive at proper lo-
cations. We will leave this observation informal, rather than introducing a
version of LolliMon with an ordered context, although this would clearly
be possible.

If we add mutable store, then propositions value(d, v) remain linear,
while propositions value(c, v) for destinations d that act as cells are affine.
Continuations comp(f, d) are still linear, as are propositions eval(e, d).

If we further add a means to capture the continuation, then suspended
computations comp(f, d) must become unrestricted because we may either
ignore a continuation or return to it more than once. Values value(d, v) must
remain linear, as must evaluations eval(e, d). Storage cells remain affine.

With sufficient foresight we could have made suspended computations
comp(f, d) unrestricted to begin with. Nothing in the early semantics relies
on their linearity. On other hand, it is more interesting to see what struc-
tural properties would and would not work for various languages, and also
more natural to assume only the properties that are necessary.

25.7 Historical Notes

The presentation of a big-step operational semantics relating an expression
to its value by inference rules is due to Kahn [2] under the name natural
semantics. Earlier, Plotkin [6] developed a presentation of operational se-
mantics using rewrite rules following the structure of expressions under
the name structural operational semantics (SOS). I view substructural opera-
tional semantics as a further development and extension of SOS. Another
generalization to achieve modularity is Mosses’ modular structural opera-
tional semantics [4] which uses top-down logic programming and a form
of row polymorphism for extensibility.

To my knowledge, the first presentation of an operational semantics
in linear destination-passing style appeared as an example for the use of
the Concurrent Logical Framework (CLF) [1]. The formulation there was
intrinsically of higher order, which made reasoning about the rules more
difficult. The approach was formulated as an independent technique for
modular language specification in an invited talk [5], but only an abstract
was published. Further examples of substructural operational semantics
were given in the paper that introduced LolliMon [3].

LECTURE NOTES NOVEMBER 30, 2006

L25.10 Substructural Operational Semantics

Using ordered assumptions in logical frameworks and logic program-
ming was proposed by Polakow and myself [8, 7], although this work did
not anticipate monadic forward chaining as a computational mechanism.

25.8 Exercises

Exercise 25.1 Prove that the natural semantics and substructural semantics for
the functional fragment coincide in a suitable sense.

Exercise 25.2 Add natural number constants z and s(e) to our language specifi-
cation to permit more examples for callcc. Give formulations both in substructural
operational semantics and in LolliMon.

Exercise 25.3 Extend the functional language with unit, pairs, sums, void, and
recursive types as well as recursion at the level of expressions. Give a substructural
operational semantics directly in LolliMon.

Exercise 25.4 Think of other interesting control constructs, for example, for par-
allel or concurrent computation, and represent them in substructural operational
semantics.

Exercise 25.5 Give a specification of a call-by-value language where we do not
substitute a complete value for a term, but only the name for the destination which
holds the (immutable) value. Which is the proper substructural property for such
destinations?

Further extend this idea to capture a call-by-need semantics where arguments
are evaluated the first time they are needed and then memoized. This is the seman-
tics underlying lazy functional languages such as Haskell.

25.9 References

[1] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A
concurrent logical framework II: Examples and applications. Technical
Report CMU-CS-02-102, Department of Computer Science, Carnegie
Mellon University, 2002. Revised May 2003.

[2] Gilles Kahn. Natural semantics. In Proceedings of the Symposium on The-
oretical Aspects of Computer Science, pages 22–39. Springer-Verlag LNCS
247, 1987.

LECTURE NOTES NOVEMBER 30, 2006

Substructural Operational Semantics L25.11

[3] Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Mon-
adic concurrent linear logic programming. In A.Felty, editor, Proceed-
ings of the 7th International Symposium on Principles and Practice of Declar-
ative Programming (PPDP’05), pages 35–46, Lisbon, Portugal, July 2005.
ACM Press.

[4] Peter D. Mosses. Foundations of modular SOS. In Proceedings of the
24th International Symposium on Mathematical Foundations of Computer
Science (MFCS’99), pages 70–80, Szklarska Poreba, Poland, September
1999. Springer-Verlag LNCS 1672. Extended version available as BRICS
Research Series RS-99-54, University of Aarhus.

[5] Frank Pfenning. Substructural operational semantics and linear dest-
ination-passing style. In Wei-Ngan Chin, editor, Proceedings of the 2nd
Asian Symposium on Programming Languages and Systems (APLAS’04),
page 196, Taipei, Taiwan, November 2004. Springer-Verlag LNCS 3302.

[6] Gordon D. Plotkin. A structural approach to operational seman-
tics. Technical Report DAIMI FN-19, Computer Science Department,
Aarhus University, Aarhus, Denmark, September 1981.

[7] Jeff Polakow. Ordered Linear Logic and Applications. PhD thesis, Depart-
ment of Computer Science, Carnegie Mellon University, August 2001.

[8] Jeff Polakow and Frank Pfenning. Relating natural deduction and se-
quent calculus for intuitionistic non-commutative linear logic. In An-
dre Scedrov and Achim Jung, editors, Proceedings of the 15th Conference
on Mathematical Foundations of Programming Semantics, New Orleans,
Louisiana, April 1999. Electronic Notes in Theoretical Computer Sci-
ence, Volume 20.

LECTURE NOTES NOVEMBER 30, 2006

