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Abstract

Representing images with layers has many important ap-
plications, such as video compression, motion analysis, and
3D scene analysis. This paper presents an approach to re-
liably extracting layers from images by taking advantages
of the fact that homographies induced by planar patches in
the scene form a low dimensional linear subspace. Layers
in the input images will be mapped in the subspace, where
it is proven that they form well-defined clusters and can be
reliably identified by a simple mean-shift based clustering
algorithm. Global optimality is achieved since all valid re-
gions are simultaneously taken into account, and noise can
be effectively reduced by enforcing the subspace constraint.
Good layer descriptions are shown to be extracted in the
experimental results.

1. Introduction
Decomposing an image sequence into layers has been

proposed as an efficient video representation for coding,
motion and scene analysis, and 3D scene representation [23,
14, 2]. There are two types of layers: 2D layer and 3D
layer. A 2D layer consists of 2D sub-images such that
pixels within the same layer share common 2D parametric
transformation (or non-parametric model defined by dense
smooth flow field [24]). A 3D layer consists of a 3D plane
equation, the texture of that plane, a per-pixel opacity map
and depth-offset [2]. Extracting 3D layers usually requires
the knowledge of camera motion, which is essentially a
structure from motion (SFM) task, a non-trivial task for
computer vision, and may not be necessary for some appli-
cations such as video coding, where 2D layers are usually
sufficient. This paper focuses on 2D layer extraction from
uncalibrated images.

The three major issues of layer extraction are: (1) deter-
mination of the number of layers; (2) the model-based mo-
tion of each layer; and (3) the assignment of pixels to layers.
Various approaches have been proposed for layer extraction
based on motion, such as mixture model estimation with
Expectation-Maximization (EM) algorithm [13, 1, 25, 24,

21], and pixel or region grouping based on a certain affinity
criterion usingk-means algorithm [23] or normalized graph
cut [18].

Initialization (the number of models and the motion for
each model) is an important but difficult step for EM ap-
proach [18, 21]. Without good initialization, EM algorithm
may not converge to desired optimal solutions. A typical
initialization method [1] is to divide the image into a fixed
number of tiles, and use them as the initial layers for the EM
algorithm. Followed by each EM iteration is the applica-
tion of MDL principle to determine the number of models,
which is realized as an exhaustive search in [1]. However,
the initial regular tiling does not guarantee the existence of
dominant motion inside each initial or intermediate layer1,
which is required for the robust motion estimation of each
intermediate layer in the M-step [1]. Moreover, if one real
layer is divided into different tiles, and if those tiles have
different dominant motions (or without any dominant mo-
tion at all), then such an unlucky layer becomes hard to be
extracted.

Grouping pixels based on local measurement does not
have the similar initialization difficulty. However, grouping
based on pure local measurement ignores the global con-
straints. Moreover, grouping in high dimensional space is
often unreliable given noisy local measurements.

In this paper, we present a low dimensional linear
subspace approach which can exploit the global spatial-
temporal constraints. We formulate the layer extraction
problem as clustering in the low dimensional subspace,
where clusters become denser, better-defined, and thus
more reliably identifiable.

Linear subspace constraints have been successfully used
in computer vision. Tomasi and Kanade [20] used the
rank-3 constraint in SFM. Shashua and Avidan [17] de-
rived the linear subspace of planar homographies induced
by multiple planes between a pairs of views. Zelnik-Manor
and Irani [26, 27] extended the results to multiple planes
across multiple views, and applied such constraints to esti-
mate the homographies of small regions.

1The presence of dominant motion of the whole image is not required.



The subspace constraints to be exploited in this paper are
derived from the relative affine transformations collected
from homogeneous color regions. Our algorithm assumes
that each homogeneous color region is a planar patch. Such
assumption is generally valid for images of natural scenes,
and has been extensively used in motion analysis and stereo
[4, 25, 9, 19].

Our subspace approach has the following advantages:
(1) clusters in the subspace become denser and better-
defined; and (2) global optimality is achieved by simulta-
neously taking into account all valid regions; and (3) noise
in estimated motion is reduced by subspace projection, and
global geometry constraint is enforced.

2. Subspace of planar homographies
This section shows that the homographies induced by 3D

planar patches in a static scene, each one as a column vector
in the parameter space, reside in a low dimensional linear
subspace. Such subspace comes from the fact that multiple
planar patches in the scene share the common global camera
geometry. The redundancy is high since there exists a large
number of homogeneous color regions in real images, most
of which can be approximated as planar patches.

2.1. Subspace of projective homographies

Given two projective views of a static scene, any homog-
raphy induce by a 3D plane in the scene can be described
by [11]:

H3×3
∼= A3×3 + e′vT (1)

Herev = (v1, v2, v3)T defines the 3D plane2. [e′]×A = F
is any decomposition of the fundamental matrixF, where
A is a homography matrix induced bysomeplane ([11],
pp.316).

Givenk planes in the scene, we havek homography ma-
tricesHi, i = 1, 2, ..., k. Suppose we construct a matrix
W9×k by considering eachHi as a column vector. The
rank of W is known to be at mostfour [17]. In other
words, all homographies between two projective views span
a four dimensional linear subspace of<9. This result was
extended to the case of multiple projective views, and has
been used to accurately estimate the homographies for small
planar patches [26].

2.2. Subspace of relative affine homographies

Affine camera [15] is an important model usable in prac-
tice. One advantage of affine camera is that it does not
require calibration. Moreover, when perspective effect is
small or diminishes, using affine camera model can avoid
computing parameters that are inherently ill-conditioned
[16, 10].

2We ignore the degenerate case where a plane is projected into a line in
the image.

Eq.(1) holds for affine camera as well ([11], pp.350).
Given uncalibrated cameras, it is known that the projec-
tive homography can only be determined up to an unknown
scale. This is not the case for affine cameras. In affine
camera, the 2D affine transformation can beuniquelyde-
termined, and we can rewrite Eq.(1) as (see the proof in
appendix):

m2×3 = mr + e′vT . (2)

Heremr is the affine transformation induced by the refer-
ence plane.e′ = (e1, e2)T , where(e1, e2, 0) is the direction
of epipolar lines in homogeneous coordinate in the second
camera.v is a 3-vector, and is independent of the second
affine camera.

Notice an important difference between Eq.(1) and (2).
Eq.(1) has an unknown scale while Eq.(2) does not. There-
fore, we can definerelative affine transformationas:

∆m = m−mr. (3)

wheremr is the affine transformation induced by the refer-
ence plane. The reference plane can be either a real plane
or a virtual plane.

We will show that the collection of all relative affine
transformations across more than two views resides in a
three dimensional linear subspace of<6:

Proposition 1 Given a static scene withk planar patches,
a reference viewψr and anotherF (F ≥ 1) views{ψf |f =
1, ..., F} of this scene, the collection of all relative affine
transformations induced by thesek planar patches between
the reference viewψr and any other viewψf resides in a
three dimensional linear subspace of<6.

Proof: Denote thek affine transformations between refer-
ence view and viewf asm1, ...,mk. From Eq.(2) we have
∆mi = mi −mr = e′vT

i , wherevi = [v1,i, v2,i, v3,i]
T .

Reshape each∆mi into a6 × 1 column vector, and stack
them into a matrixWf

6×k. The following factorization is
obvious [17]:

Wf
6×k =


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ef
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whereV is common to all views. Therefore, we have:
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Figure 1.Results on synthetic sequence, where both cam-
era and objects are moving independently: (a) and (b) two
frames of the synthetic sequence; (c) the layer map by clus-
tering in the 2-D subspace; (d) the eigenvalues of matrix
W6×31.

The matrix dimension on the right-hand side of Eq.(4)
implies that the rank ofW is at most 3.¦

From Eq.(4) we can see that the subspace comes from
the fact that multiple planes share the common camera ge-
ometry, i.e., the direction of parallel epipolar lines. The ma-
trix W is built from the motions of planar patches. We can
exploit high redundancy by using subspace since there ex-
ists a large number of homogeneous color regions in real
images, many of which are planar patches. Multiple views
have more redundancy. For the specialinstantaneousho-
mography, there is a similar definition of relative projective
homography and its subspace [27].

2.3. Dimensionality of subspace

The actual dimension of the subspace, i.e., the rank of
W in Eq.(4), depends on the scene planes and the camera
geometry, and could belower than three. For example, if
all planes are parallel to each other (not necessary front-
parallel), or if there is only one plane in the scene, then the
subspace dimension isoneinstead of three.

Another important fact is that the assumption of static
scenes is a sufficient condition butnot a necessaryone. This
means that even with moving objects in the scene, we may
still have a low dimensional linear subspace.

To verify the above observation, let us consider the fol-
lowing situations. A 3D scene consists of three planes3,
with the table plane stationary and foreground and back-
ground planes moving upward and downward indepen-
dently. At the same time, a pinhole camera is zooming out,
translating horizontally, and rotating about its optical axis.
Under such camera motion, each plane in the scene will
induce an affine transformation. Fig.(1) shows the two ren-
dered frames. WithF = 1, andk = 31 patches (1 on fore-
ground plane, 15 on background plane, 15 on table plane),
the eigenvalues ofW6×31, shown in Fig.(1d), clearly show
that the dimension of subspace istwo. In the next section
we will describe in details how to derive the subspace.

3Each plane is made of many color patches.
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Figure 2.Overview of layer extraction algorithm.

3. Layer extraction algorithm
Fig.(2) shows the steps of layer extraction algorithm.

The input is two or more images, with one of them selected
as the reference view frame. The reference image is seg-
mented based on static color information. It is in general
safer to over-segment, so that each segment corresponds to
a single planar patch. Then an affine or translational mo-
tion is estimated with respect to each other frame for each
color segment. Then the region sampling algorithm will se-
lect valid color segments, and the affine motions from these
selected color segments are used to compute the linear sub-
space. Data points in the subspace are then generated by
projecting the affine motion into the subspace. We use the
mean-shift based clustering technique [5, 7] to derive the
initial layers. Finally, the un-selected color segments are
assigned to layers in the layer refinement step.

3.1. Color segmentation and motion estimation

Our layer extraction algorithm assumes that pixels in-
side each color segment belong to the same layer, and the
motion of each color segment can be described by a 2D
parametric model, such as affine or projective homogra-
phy4. We use the color segmentation algorithm proposed
by [6]. Since color segmentation is not our final goal, over-
segmentation has been used here in order to assure the va-
lidity of the above assumption to the largest extend. Such
assumption is generally valid for over-segmented images of
natural scenes, and has been successfully used in motion
analysis and stereo [4, 25, 19].

For every color segment in the reference frame, we di-
rectly estimate a parametric motion using a simple hierar-
chical model-based approach with robust estimation [3, 1,

4Note that color segmentation is applied only on the reference image.
We directly estimate the motion of each region without doing region cor-
respondence between reference image and other images.



4]. In our experiment, translational or affine model is esti-
mated depending on the area support of each color segment.

Large color segments usually still have enough intensity
variation to estimate affine motions. For a segment with
little intensity variation, a translational motion can still be
reliably estimated from the boundaries of color segment, if
there is not occlusion.

3.2. Two-pass region sampling
To derive the subspace, we must select regions to be used

to build the matrixW in Eq.(4). Those regions must be the
ones for which affine motions are estimated, and in general,
they should uniformly distribute over the reference frame,
so that each layer in the image domain will have enough
samples and form a dense cluster in the feature space where
clustering is performed.

A straightforward region sampling method is to divide
the reference frame into smalln×n blocks, and then select
the blocks where an affine motion can be estimated [23].
Since affine motions are usually not available or erroneous
in small textureless blocks, a layer containing large homo-
geneous color regions will not have enough number of sam-
ples to become a single dense cluster in the feature space.
On the other hand, a layer with rich texture may have much
more samples and the clustering algorithm may bias toward
such layer.

To deal with the above problems while at the same time
uniformly sample the reference image, we design a two-
pass sampling approach based on color segmentation, as
illustrated in Fig.(3). In the first pass, color segments for
which affine motions have been estimated are selected as
region samples5. The remaining un-selected areas are used
in the second pass. Such remaining areas usually have rich
texture and contain many small color segments where only
translational motions are available. In the second pass, the
reference image is divided inton×n blocks (n = 20 in our
experiments). For each block containing more than 80%
of un-selected pixels, we re-estimate an affine motion using
the un-selected pixels inside this block. If the intensity
residual of such estimated motion is small, the un-selected
color segments inside such block are chosen as region sam-
ples.

3.3. Computing subspace
Computing the subspace of homographies involves

building and factorizing the matrixW in Eq.(4), which has
been constructed from the affine transformations of thek
selected region samples:mi, i = 1, 2, ..., k.

There are three important implementation details in
buildingW:

• We can choose one color region with large area sup-
port and good motion estimation as the reference

5A simple outliers detection is applied here. Regions with large regis-
tration error are considered as outliers.
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Figure 3.Two-pass sampling. Solid lines in the figures
show the boundaries of color segments. In the first pass,
color segmentsA, B, C are selected. The remaining color
segments are small. In the second pass, the image is di-
vided inton × n blocks. BlocksD-H are selected since
they contain more than 80% of un-selected pixels. Affine
motion for each selected block is estimated based only on
the unselected pixels inside it.

plane. In practice, we found the average transforma-
tionm = 1

k

∑k
i=1 mi serves as a good reference affine

transformation induced by some “virtual” plane6.

• The area of each selected color segment is to be taken
into account. For a selected color segmentmi contain-
ing n pixels, we reshape∆mi into a6×1 column vec-
tor, and then putn columns of∆mi into W7. In other
words, regions with larger area have larger weights.
Obviously adding such weight does not change the
rank ofW.

• We scale the different components in the affine trans-
formation, such that a unit distance along any com-
ponent in the parameter space corresponds to ap-
proximately a unit displace at the image boundaries
[23]. Such scaling makes the subspace approximately
isotropic. We use the image width as the scale factor.
Specifically, the matrixW6×k is left-multiplied by the
following scale matrix:

S =




w 0 0 0 0 0
0 w 0 0 0 0
0 0 1 0 0 0
0 0 0 w 0 0
0 0 0 0 w 0
0 0 0 0 0 1




Again, such linear transformation does not change the
rank ofW, or the dimension of the subspace. Let us
denoteW̃ = SW. In practice, we found thatS is not
a sensitive parameter. The final results do not change
for a wide range of thew in matrixS.

We use SVD algorithm to factorize the matrix̃W:

W̃6×k = U6×6Σ6×6VT
6×k (5)

6Notice thatm is induced by some world plane (either real or virtual)
if and only if there existsF = [e′]×m, whereF is the fundamental
matrix[11].

7If we do not use the average transformationm as reference, we need
to subtract mean from each column.



The diagonal ofΣ contains the eigenvaluesαi of W̃ in de-
creasing order. The actual rank of̃W depends on the cam-
era and the planes in the scene, and is detected by [12]:

sqrt(
∑d

i=0 α2
i∑6

i=0 α2
i

) > t (6)

whered is the rank ofW̃ , andt determines the noise level
we want to tolerate.

The linear subspace is defined by the firstd columns
of U , which are the bases of the subspace. The motions
of the region samples are projected into this subspace as
Σd×dV

T
d×k, where each column becomes a feature point in

thed-dimensional subspace.

3.4. Layer initialization by subspace clustering
We now apply a clustering algorithm to the data points

in thed-dimensional subspace for initial layers. The mean-
shift based clustering algorithm, proposed by Commaniciu
and Meer [6, 7], has been successfully applied to color seg-
mentation and non-rigid object tracking [6, 8]. We adopt
this algorithm because: (1) it is non-parametric and robust;
(2) it can automatically derive the number of clusters and
the cluster centers. Refer to [6, 7] for a clear description
and details on this algorithm.

A critical parameter in this clustering algorithm is the
window radiusr of mean shift. This parameter determines
the resolution of segmentation. We will show results over a
range ofr.

3.5. Layer refinement & post-processing
Once we have the initial layers given by subspace clus-

tering, we re-estimate an affine motion for each initial layer
by using all of the region samples inside that layer. Then
we re-assign every color segment8 to the layer that predicts
its motion best. This layer refinement is similar to one EM
iteration in its goal, but without the probabilistic notion.

There are some spurious small regions, largely due to
outliers. We have an optional post-processing step to re-
move such regions, by assigning them to their neighbors
with similar motions. Such post-processing is desirable
since a small number of compact layers are preferable for
applications such as video compression.

4. Experimental results
This section presents the experimental results of two real

image sequences:flower gardenandmobile & calendar.
There are two parameters that need to be specified. One

is the noise level parametert in Eq.(6) for determining the
dimension of the subspace. In the following experiments,
both sequences were found to have a two-dimensional sub-
space witht = 95%. The other parameter is the win-
dow radiusr. It is a critical parameter in the mean-shift

8Including the color segments that are not selected in the two-pass re-
gion sampling step.

based clustering algorithm. The value of this parameter can
be derived from the covariance matrix of̃W. According
to [6], in our experiments it is to be set proportional to

σ =
√

trace(cov(W̃)). We have found by experiments
that r = 0.3σ produces the desired results. We will also
show different layer extraction results by varyingr over a
wide range of[0.3σ, 1.3σ].

4.1.flower gardensequence

Fig.(4a) and Fig.(4b) show two frames of theflower gar-
densequence, where the scene is static and the camera is
translating approximately horizontally.

Fig.(4c) shows the color segmentation result on the ref-
erence image by applying the color segmentation algorithm
with over-segmentation class proposed in [6]. Fig.(4d)
shows the region samples selected by the two-pass sampling
algorithm, and the initial layers via mean-shift clustering in
the subspace. The black regions are un-selected regions.
Notice that most of the occlusion regions are not selected,
perhaps due to the two-pass sampling algorithm. Four lay-
ers (which roughly correspond to tree, branch, house, and
flower bed) have been identified by the clustering algorithm,
with window radiusr = 0.3σgarden, whereσgarden = 4.5.
The tree layer and the branch layer contain large color seg-
ments and are easier to extract. Notice that the flower bed
and the house consist of mostly small regions. The subspace
clustering successfully identifies them as two separate lay-
ers.

Fig.(4e) shows the four layers after the layer refinement
step but without post processing. Every initially unselected
color segments has been assigned to one of the layers.

Fig.(4g-j) shows the four layers where the small spurious
regions are assigned to neighbor regions based on motion
affinity by the post processing step.

4.2.mobisequence

The mobile & calendarsequence is used to show that
static scene assumption in the analysis of Section 2 is a suf-
ficient condition butnot a necessary one. In this sequence,
the train is pushing a rotating ball leftwards, and the calen-
dar is pulled upwards, while camera is panning and tracking
the train.

Fig.(5d) shows the region samples and initial layers
by mean shift clustering withr = 0.3σmobi, where
σmobi = 3.2. Again we notice that most of the occlusion
regions are in the un-selected black regions. Fig.(5e) shows
the result of layer refinement but without post processing.
Note that the ball (in the lower middle) is extracted suc-
cessfully. Although its area support is small, its motion is
distinct and it forms a separate cluster in the subspace. In
previous work of layer extraction on this sequence, for ex-
ample in [1], the ball layer tends to be missed since its mo-
tion is not dominant in any initial or intermediate layer.
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Figure 4.Results offlower gardensequence. (a) and (b)
Two frames of the sequence; (c) Color segmentation map;
(d) Selected regions and initial layer map by clustering in
the 2D subspace, where black indicates un-selected regions;
(e) Layers after refinement; (f) Noisy layers extracted using
the original six dimensional parameter space instead of sub-
space; (g)-(j) Four layers extracted after post-processing;
(k) & (m) Layer maps by increasing the window radius of
mean-shift algorithm.

4.3. Increasing window radius
In this experiment, we vary the window radiusr to see

how the segmentations of different resolutions are derived.
Fig.(4k) and (4m) show the layer maps obtained when in-
creasing the window radius to0.7σgarden and1.3σgarden

respectively9. Notice that in Fig.(4m), part of the branch
layer is erroneously merged into the background layer.
Fig.(5k) and (5m) are formobisequence.

The functionality of parameterr is similar to the “coding
length” of MDL [1]. However,r is easier to understand and
is more natural to set, in a way similar to the variance of
Gaussian in [25].

4.4. Comparison with clustering without using sub-
space

To demonstrate the advantages of using subspace, we
also show the results of layer extraction without using sub-
space. To make the window radius comparable in both
cases, we have scaled them by the following factor:

s =
sqrt(α2

0 + α2
1 + ... + α2

5)
sqrt(α2

0 + α2
1)

(7)

whereαi’s are the eigenvalues of̃W.
Fig.(4f) and Fig.(5f) are the results of clustering in the

original six-dimensional affine parameter space, withr =
s × 0.3σ. Some layers are split into two or more layers,
possibly due to the fact that in the high dimensional space,
the data are sparser and the cluster are not as well defined
as in the low dimensional space. Also some regions are
assigned to wrong layers.

5. Conclusion
We have presented a subspace approach to extracting 2D

layers from image sequence. The low dimensional subspace
makes the cluster better-defined and easier to extract. It also
effectively reduces noise introduced in the step of motion
estimation. The local spatial coherence is also exploited
by assigning color segments to layers, instead of assigning
individual pixels. Together with the mean-shift based clus-
tering algorithm, we have demonstrated that the use of low
dimensional subspace leads to good layer descriptions on
real images.

The results shown in this paper are based only on two
views. For multiple views, the algorithm presented in this
paper can be readily applied without any change. The only
difference between two-view and multiple-view cases is the
format of matrixW̃. The multi-view algorithm will pro-
duce better results, as long as for each color segment in the
reference view, its motions to other views can be estimated.
We are currently experimenting with the case of multiple
views.

9Further increasingr will eventually results in a layer map with only
one layer in it.



(a) input I0 (b) input I1
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(e) 4 layers extracted (f) without subspace
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(i) Layer 3 (j) Layer 4
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Figure 5.Results ofmobile & calendarsequence. (a) and
(b) Two frames of the sequence; (c) Color segmentation
map; (d) Selected regions and initial layer map by cluster-
ing in the 2D subspace, where black indicates un-selected
regions; (e) Layers after refinement; (f) Noisy layers ex-
tracted using the original six dimensional parameter space
instead of subspace; (g)-(j) Four layers extracted after post-
processing; (k) & (m) Layer maps by increasing the window
radius of mean-shift algorithm.

In this paper, we used SVD to compute the subspace.
Given Gaussian noise, SVD achieves global optimality in
the sense of least square error. If the data contain outliers,
robust algorithm can be used for deriving the subspace [22].
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Appendix
Parametric representation of affine transformation: Given

a pair of affine camerasψr, ψ
′, and a reference planeπr, we

can represent any other affine transformationm2×3 induced by
a planeπm by:

m = mr + e′vT ,

wheremr is the affine transformation induced by reference plane
πr, e′ = (e1, e2)

T , and the homogeneous coordinates(e1, e2, 0)
is the direction of epipolar lines in cameraψ′. vT = (v1, v2, v3)
is a 3-vector independent of cameraψ′.

Proof: Without loss of generality, let us choose three non-
collinear points[P0, P1, P2] on 3D planeπr. We ignore the degen-
erate case where a plane projects onto a line in the camera imag-
ing plane. [P0, P1, P2] projects onto three non-collinear points
[p0, p1, p2] in cameraψr, and [p′0, p

′
1, p

′
2] in cameraψ′, where

pi = (x, y)T andp′i = (x′, y′)T are 2D image coordinates. There
exist three non-collinear points[P ′0, P

′
1, P

′
2] on planeπm that will

also project onto[p0, p1, p2] in cameraψr. Denote the image
points of [P ′0, P

′
1, P

′
2] in cameraψ′ as [p′′0 , p′′1 , p′′2 ], as shown in

Fig.(6).
Since an affine transformation is uniquely determined by three

pairs of non-collinear corresponding points, we have:
[

p′0 p′1 p′2
1 1 1

]
=

[
mr

0 0 1

]
∗

[
p0 p1 p2

1 1 1

]
(8)

[
p′′0 p′′1 p′′2
1 1 1

]
=

[
m2×3

0 0 1

]
∗

[
p0 p1 p2

1 1 1

]
(9)
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P0
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P’1
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ψ’

πr

πm

ψ r

Figure 6.The relationship between 3D planes and affine
cameras.

Since affine camera has parallel projection,[
P0P ′0, P1P ′1, P2P ′2

]
are three parallel line segments. Parallelism

is preserved by affine camera. Therefore,
[
P0P ′0, P1P ′1, P2P ′2

]
will project onto parallel line segments

[
p′0p

′′
0 , p′1p

′′
1 , p′2p

′′
2

]
(epipolar lines) in affine cameraψ′ whose projection matrix is
{M′

2×3,T
′}. Denotepipj = pj − pi. We have:

[
p′0p

′′
0 , p′1p

′′
1 , p′2p

′′
2

]
= M′ ∗

[
P0P ′0, P1P ′1, P2P ′2

]

= M′ ∗D ∗ [k0, k1, k2] , (10)

whereD (unit 3-vector) denotes the direction of parallel lines
P0P ′0, P1P ′1, P2P ′2, and

[
P0P ′0, P1P ′1, P2P ′2

]
= D ∗ [k0, k1, k2],

with ki denoting the length of line segmentPiP ′i . [k0, k1, k2] is
independent of cameraψ′.

Denotee′ = [e1, e2]
T = M′∗D (It is obvious that[e1, e2, 0]T

is the direction of epipolar lines in homogeneous coordinates in
cameraψ′). From Eq.(10) we have:

[
p′′0 , p′′1 , p′′2

]
=

[
p′0, p

′
1, p

′
2

]
+

[
p′0p

′′
0 , p′1p

′′
1 , p′2p

′′
2

]

=
[
p′0, p

′
1, p

′
2

]
+ e′ ∗ [k0, k1, k2] (11)

Substitute Eq.(11) and Eq.(8) into Eq.(9), we have:
[

m2×3

0 0 1

]
∗

[
p0 p1 p2

1 1 1

]

=

[
mr

0 0 1

]
∗

[
p0 p1 p2

1 1 1

]
+

[
e′

0

]
∗ [k0, k1, k2]

(12)

Since [p0, p1, p2] are non-collinear points, the matrix

P3×3 =

[
p0 p1 p2

1 1 1

]
is non-singular andP−1

3×3 exists.

Therefore, from Eq.(12), we have:

m = mr + e′ ∗ [v0, v1, v2] (13)

Here
[
e′T , 0

]
is the direction of epipolar lines

in homogeneous coordinate in cameraψ′, and
vT = [v0, v1, v2] = [k0, k1, k2] ∗ P−1

3×3. It is obvious that
the 3-vectorvT is independent of the second cameraψ′. ¦


