
Single- and Dual-Arm Motion Planning with Heuristic Search

Benjamin Cohen Sachin Chitta Maxim Likhachev

Abstract—Heuristic searches such as A* search are a popular
means of finding least-cost plans due to their generality, strong
theoretical guarantees on completeness and optimality, simplic-
ity in implementation and consistent behavior. In planning for
robotic manipulation, however, these techniques are commonly
thought of as impractical due to the high-dimensionality of
the planning problem. In this paper, we present a heuristic
search-based approach to motion planning for manipulation
that does deal effectively with the high-dimensionality of the
problem. Our approach achieves the necessary efficiency by
exploiting the following three key principles: (a) representation
of the planning problem with what we call a manipulation lattice
graph; (b) use of ARA* search which is an anytime heuristic
search with provable bounds on solution sub-optimality; and
(c) use of informative yet fast-to-compute heuristics. The paper
presents the approach together with its theoretical properties
and shows how to apply it to single-arm and dual-arm motion
planning with upright constraints on a PR2 robot operating in
non-trivial cluttered spaces. An extensive experimental analysis
in both simulation and on a physical PR2 shows that, in terms
of runtime, our approach is on par with other most common
sampling-based approaches despite the high-dimensionality of
the problems. In addition, the experimental analysis shows
that due to its deterministic cost-minimization, the approach
generates motions that are of good quality and are consistent,
i.e. the resulting plans tend to be similar for similar tasks.
For many problems, the consistency of the generated motions
is important as it helps make the actions of the robot more
predictable for a human controlling or interacting with the
robot.

I. INTRODUCTION

Many planning problems in robotics can be represented

as finding a least-cost (or close to least-cost) trajectory

in a graph. Heuristic searches such as A* search [11]

have often been used to find such trajectories. There are a

number of reasons for the popularity of heuristic searches.

First, most of them typically come with strong theoretical

guarantees such as completeness and optimality or bounds

on suboptimality [19]. Second, the generality of heuristic

searches allows one to incorporate complex cost functions

and complex constraints and to represent easily arbitrarily

shaped obstacles with grid-like data structures [8], [17].

Finally, heuristic searches provide good cost minimization

and consistency in the solutions. Consequently, heuristic

search-based planning has been used successfully to solve

a wide variety of planning problems in robotics.

B. Cohen is with the Grasp Laboratory, University of Pennsylvania,
Philadelphia, PA 19104 bcohen@seas.upenn.edu

S. Chitta is with Willow Garage Inc., Menlo Park, CA 94025
sachinc@willowgarage.com

M. Likhachev is with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213 maxim@cs.cmu.edu

Despite the wide popularity of heuristic searches, they

typically have not been used for motion planning for high-

DOF robotic manipulators. The main reason for this is the

high-dimensionality of the planning problem. In this paper,

we present a heuristic search-based planner for manipula-

tion that combats effectively this high dimensionality by

exploiting the following three observations. First, we use a

manipulation lattice graph to represent the planning problem.

A manipulation lattice graph is a sparse representation in

which the states correspond to the configuration of the

robot while the edges represent short motion primitives. Any

path in the graph is kinematically feasible for the robot.

This representation was designed to specifically handle the

complexities of manipulation through the use of static and

adaptive motion primitives and by decoupling the problem

when appropriate by varying the dimensionality of the lattice.

Second, while finding a solution that is provably optimal

is expensive, finding a solution of bounded suboptimality

can often be drastically faster. To this end, we employ an

anytime heuristic search, ARA* [18], that finds solutions

with provable bounds on suboptimality and improves these

solutions until allotted time for planning expires. Third, the

solutions found in a low-dimensional simplification of the

workspace can serve as highly informative heuristics and can

therefore efficiently guide the search despite the kinematic

constraints that are inherent to manipulation.

This paper presents our approach and then explains how

to apply it to single-arm and dual-arm planning while effec-

tively handling the complex constraints that arise in each

domain. We motivate and describe in detail the different

components of the manipulation lattice graph and the heuris-

tics used for each problem. Our experimental results help to

demonstrate the effective cost minimization and competitive

planning times for our approach . We also show, through

an additional set of experiments and multiple trajectory

similarity measures, that in addition to being deterministic,

our approach generates consistent solutions. Consistency

here implies that given similar input, our approach produces

similar output. Consistency helps in making the robot’s

motions more predictable. Predictability in a robot’s motions

is required if a human is expected to operate it safely or be

safe while working in close range of it.

The paper is organized as follows. In Section II, we

first briefly discuss other types of approaches to motion

planning. We present an overview of heuristic search-based

planning for manipulation in Section III. We describe how

our approach is applied to single-arm and dual-arm plan-

ning in Section IV and V. Next, we present extensions

to our planners that naturally arise from the fact that we



employ a heuristic search-based approach. Section VII and

Section VIII present the results of experiments performed on

the PR2 robot both in simulation and on the actual robot. Our

results include comparisons to sampling-based approaches in

terms of solution quality, performance and consistency of the

resulting paths.

II. RELATED WORK

Sampling-based motion planners [15], [16], [2] have

gained tremendous popularity in the last decade. They

have been shown to consistently solve impressive high-

dimensional motion planning problems. In addition, these

methods are simple, fast and general enough to solve a

variety of them. Sampling-based methods have also been

extended to support motion constraints through rejection

sampling [23].

Our approach to motion planning differs from these al-

gorithms in several aspects. First, sampling-based motion

planners are mainly concerned with finding any feasible path

rather than minimizing the cost of the solution. By sacrificing

cost minimization, these approaches gain very fast planning

speeds. Searching for a feasible path however may often

result in the solutions of unpredictable length with super-

fluous motions, motions that graze the obstacles, and jerky

trajectories that may potentially be hard for the manipulator

to follow. To compensate for this, various shortcutting [12]

and smoothing techniques have been introduced. While often

helpful, they may fail to help in cluttered environments. Sec-

ond, sampling-based approaches provide no guarantees on

the sub-optimality of the solution and provide completeness

only in the limits of samples. In contrast, heuristic search-

based planning tries to find solutions with minimal costs

and provides guarantees on solution suboptimality w.r.t. the

constructed graph. These aspects are valuable when solving

motion planning problems for which the minimization of an

objective function is important and when consistent behavior

is expected.

A recently proposed incremental sampling based planner

based on RRT∗ [9] additionally provides guarantees on

solution optimality and completeness. This is an important

step in the field of sampling-based motion planning towards

a good cost minimization. However, as our experimental

analysis confirms, the random nature of sampling-based

planners including RRT∗ makes it difficult to generate good

quality solutions fast and to generate consistent motions

across similar runs.

Several motion planning algorithms have also been de-

veloped that can optimize cost functions such as obstacle

costs or path smoothness [13], [22], [14]. CHOMP [22]

works by creating a naive initial trajectory from the start

position to the goal, and then running a modified version

of gradient descent on the cost function. CHOMP offers

numerous advantages over sampling-based approaches such

as the ability to optimize trajectories for smoothness and

to stay away from obstacles when possible. However like

sampling-based planning, CHOMP relies on randomization

via random restarts throughout the algorithm to help deal

with environmental complexities. STOMP [14] offers the

ability to optimize general cost functions and has been

shown to work well for manipulation problems. Similarly,

our approach offers the ability to minimize more general

cost functions and, in addition, provides bounds on global

solution suboptimality with respect to the constructed graph.

Our approach in this paper builds on earlier work in [4],

[5], [6] where we presented approaches to particular prob-

lems involving motion planning for single-arm and dual-

arm manipulation tasks. In this work, we present a more

general unified search-based planning framework for manip-

ulation which encompasses all the earlier approaches. The

application to single-arm and dual-arm planning can thus be

considered as specific instances of our general approach. We

also present more informative statistics based on a series of

comparative tests that attempt to quantify the performance

of our planning vis-a-vis other planning approaches.

III. HEURISTIC SEARCH-BASED PLANNING FOR

MANIPULATION

Heuristic search-based planning has four major compo-

nents - graph construction, an informative heuristic, the cost

function and the actual search itself. The design of these core

components directly determines several important factors

including the planning time, memory footprint, smoothness

of the trajectory, and whether or not a motion that the planner

generates is kinematically and dynamically feasible for the

robot to execute. In the example of motion planning for

manipulation, we define the goal of the graph search itself

as the search for the least cost path in the constructed graph

from a state that corresponds to the initial configuration

of the manipulator to a state for which the pose of the

end-effector satisfies a goal constraint in work space. Here

the goal constraint essentially determines a region in space

within which we want the end-effector of the robot to lie

once it completes its planned motion. In Section VI, we will

show that this notion of a goal can be extended easily to

incorporate more general constraints.

Despite the wide popularity of heuristic searches in the

path planning community, especially for navigation, they

have yet to be seriously considered for motion planning for

manipulation. The obvious reason why heuristic searches

have not extended from navigation to manipulation is the

high-dimensionality of the motion planning problem for

manipulation. While the high dimensional state-space is a

difficult problem in its own right, we have also observed a

set of nuances specific to manipulation that greatly add to

the complexity of the search. Here are three of them:

1) While the goal constraint is defined in the workspace

of the end-effector, the feasibility check for a given

state is performed in joint space.

2) The goal constraint is comprised of positional and

rotational elements, which at times during the search

can be perceived as two different problems entirely.

3) For successful grasping and manipulation to occur,

minimal to zero tolerance around the goal constraint



may be allowed, suggesting the need for a fine dis-

cretization of the state space.

To overcome these issues, we rely on three critical features

of our approach that together make the application of search-

based planning to motion planning for manipulation more

tractable: (1) A manipulation lattice graph representation, (2)

Anytime search algorithms and (3) Informative heuristics.

We will now describe these three features in more detail

in addition to describing the core features of our algorithm

itself.

A. Manipulation Lattice Graph Representation

The first novel feature of our approach is to employ a

non-uniform resolution lattice search space with non-uniform

dimensionality whose edges correspond to a predefined set of

actions, static motion primitives, as well as adaptive motion

primitives, or actions that are generated at runtime. We call

this novel approach, a manipulation lattice graph. Unlike a

standard lattice graph representation, our approach is capable

of decoupling the search space when appropriate and permits

the use of a coarser discretization without sacrificing the

ability to satisfy an arbitrary goal constraint. Our approach

remains true to standard lattices, in that it is a sparse

representation where every path in the lattice represents a

kinematically feasible motion.

The manipulation lattice graph, was inspired by the suc-

cess of lattice-based planners in planning dynamically fea-

sible trajectories for navigation [17]. A lattice-based repre-

sentation is a discretization of the configuration space into

a set of states, and connections between these states, where

every connection represents a feasible path [20]. As such,

lattices provide a method for motion planning problems

to be formulated as graph searches. However, in contrast

to many graph-based representations (such as 4-connected

or 8-connected grids), the feasibility requirement of lattice

connections guarantees that any solutions found using a

lattice will also be feasible. This makes them very well

suited to planning for non-holonomic and highly-constrained

robotic systems.

Let us use the notation G = (S,E) to denote the graph G

we construct, where S denotes the set of states of the graph

and E is the set of transitions between the states. The states

in S are the set of possible (discretized) joint configurations

of the joints in the manipulator we are planning for. The

transitions in E correspond to two types of short, atomic, 100

ms duration actions we call motion primitives1, static and

adaptive. We define a state s as an n-tuple (θ0, θ1, θ2, ..., θn)
for a manipulator with n joints. It is important to note that

the graph is constructed dynamically by the graph search as it

expands states since pre-allocation of memory for the entire

graph would be infeasible for an n DOF manipulator with

any reasonable n. Each motion primitive is a single vector of

joint velocities, (v0, v1, v2, ..., vn) for all of the joints in the

1The term “motion primitive” is sometimes used in planning literature to
represent a higher level action such as opening a door, swinging a tennis
racket, or pushing a button. This is different from our use of the term: we
use “motion primitive” to denote a basic (atomic) feasible motion.

manipulator. The set of primitives is the set of the smallest

possible motions that can be performed at any given state.

Therefore, a primitive is the difference in the global joint

positions of neighboring states.

We refer to the pre-defined set of actions that can be

performed at any given state, as static motion primitives.

These actions are chosen before the search begins and their

purpose is to uniformly explore the space for a valid path.

Given that this set is the majority of all motion primitives

used, it has a major impact on the branching factor of

the graph search. When designing the set of static motion

primitives, a fine balance must be found between the speed

of the search and the density of the exploration. We briefly

discuss selecting motion primitives further in Section IX.

We will now present the techniques used by the manipu-

lation lattice to combat the high dimensional statespace and

the complications specific to manipulation.

Adaptive Motion Primitives. Many problems in manip-

ulation may require the robot’s end effector to achieve a

very specific goal configuration, e.g. if the goal of a motion

is to ultimately grasp an object. Such precise positioning

may be difficult to achieve on a lattice that is derived with

discretization. A fine discretization will make the search

more computationally expensive but a coarse discretization

may make it difficult to achieve any arbitrary goal constraint.

To that end, we limit the effects of discretization through

the use of continuous solvers that compute the edges to

connect any given state to the goal state. We call these

motions a type of adaptive motion primitives, or primitives

that are dynamically generated on-the-fly. Adaptive motion

primitives are actions that don’t belong to the static set and

that are created as needed during a state expansion, given

that the state meets a certain set of pre-defined criteria. In

the motivating example of an adaptive motion to reach the

goal, we say that when the state, s, that is being expanded

represents an end effector position that is close to the goal,

a motion primitive is generated connecting s to sgoal. By

snapping to the goal pose, the search is shortened and it is

capable of satisfying any arbitrary goal constraint in spite

of the discretization of the state space. It is important that

the adaptive motions are used in conjunction with the static

set so that a systematic search is still being performed. It is

obvious that adaptive motion primitives play a major role in

compacting the graph for a high dimensional domain such

as manipulation. Another appropriate name for these motions

would be runtime motion primitives.

One example of a continuous solver-based adaptive mo-

tion primitive, or amp, that we use is inverse kinematics-

based. When a state s is expanded whose end-effector

position, efxyz(s), is within a pre-defined distance to the

goal end-effector position, dik, we use an inverse kinemat-

ics (IK) solver to generate an additional motion primitive,

ampik(s, sgoal) for state s. Let succs(s) denote the set of

successors in the graph for a state s. Formally we state,

that for any state s with dist(efxyz(s), efxyz(sgoal)) <

dik , succs(s) = (succs(s) ∪ sgoal) if ampik(s, sgoal) exists
and is collision free. If IK succeeds, we then construct



ampik(s, sgoal) as an interpolated path (in the configuration

space) from s to the solution returned by IK and also check

it for collisions. If it is collision-free, then ampik(s, sgoal)
is valid and sgoal is added to the set of successors of s.

Non-uniform Dimensionality. Planning in a high dimen-

sional lattice is computationally expensive and can require

a lot of system resources. An important observation, how-

ever, is that when planning for manipulation with a high

dimensional manipulator, not all of the available degrees

of freedom may be needed to find a safe path to the goal

region or even to the goal position itself. Frequently, using a

subset of the joints is fully adequate in computing a feasible

path to the vicinity of the desired end-effector pose. Once

it does get close to the desired end-effector pose, changing

additional joints may become necessary in order to satisfy

orientation constraints and to maneuver the end-effector in

cluttered spaces.

This observation motivated us to generate a set of static

motion primitives that varies in its dimensionality. A subset

of this full set of motion primitives can be used to quickly

search for a path to the goal region. These motion primitives

are chosen such as to result in a lower-dimensional state-

space. Once the search enters a potentially cluttered goal

region, the planner uses the complete set of full dimensional

primitives to search for a path to the goal pose in a full-

dimensional state-space. The end result is a more efficient

search through a multi-dimensional lattice.

We define MPlowD to be a subset of the predefined set

of primitives that can change only a subset of joints. This

means that in the regions where only the motion primitives

from MPlowD are used, the state-space is lower-dimensional

(its dimensionality is the number of joints that are in the

subset).

MPfullD is the complete set of primitives that are ca-

pable of changing all of the joints, creating a full di-

mensional state-space. We apply motion primitives from

MPfullD only to those states s whose end-effector is

within dfullD distance from the goal end-effector posi-

tion. Mathematically, we say that for any state s in the

graph: if dist(efxyz(s), efxyz(sgoal)) > dfullD , then the

set succs(s) = (θ1(s), θ2(s), ..., θn(s)) +mp for all motion

primitives mp ∈ MPlowD, otherwise the set succs(s) =
(θ1(s), θ2(s), ..., θn(s))+mp for all motion primitivesmp ∈

MPfullD . We compute dist(efxyz(s), efxyz(sgoal)) for all

states s by running a single 3D breadth first search starting

from efxyz(sgoal) (as described later in the section on

heuristics), thus accounting for obstacles in the environment

as well.

Non-uniform Resolution. The motion primitives we used

are multi-resolution as well as multi-dimensional. All mp ∈

MPlowD are larger motions, allowing the search to get to

the general goal region quicker. MPfullD contains shorter

motion primitives to allow the search to find a motion to the

goal more precisely. Thus, MPlowD and MPfullD are two

different sets. To provide the connections between regions

of different resolutions in the graph, it is important that

each joint change for each motion primitive in MPlowD

is of a magnitude that is a multiple of the magnitude by

which the joint is changed by motion primitives inMPfullD .

Otherwise, the full and low-dimensional regions of the graph

may not be well connected. If there are no states in the lowD

portion of the graph that coincide with fullD states, then the

two regions of the graph may not be connected at all. Even

if they are connected, there may not be a path from start to

goal between them. Thus, setting the graph resolutions to be

multiples of each other ensures that there are plenty of paths

to choose from.

B. Anytime Search

Any standard graph search algorithm can be used to search

the graph G that we construct. Given its size, however, opti-

mal graph search algorithms such as A* [11] are infeasible

to use. While finding a solution that is provably optimal

is expensive, finding a solution of bounded suboptimality

can often be drastically faster. To this end, we employ

an anytime heuristic search, ARA* [18], that quickly finds

an initial and possibly sub-optimal solution and repairs it

while deliberation time allows, efficiently reusing its previous

efforts. Despite its anytime capabilities and its adept reuse

of previous work, the efficiency of each particular iteration

is heavily dependent on the quality of the heuristic guiding

it. Also, the graph representation used to characterize the

planning problem is a major factor in determining how

many expansions are necessary to reach the goal state. The

algorithm guarantees completeness for a given graph G and

provides a bound ǫ on the sub-optimality of the solution at

any point of time during the search. In the context of our

problem, the algorithmic guarantees on completeness and

optimality are w.r.t. to the set of motion primitives used and

the resolution of the configuration space.

ARA* is capable of finding a solution of bounded sub-

optimality quicker than finding the optimal one by multiply-

ing the heuristic by an inflation factor ǫ > 1. The cost of

the solution generated will be at most ǫ times the cost of the

optimal solution. If the heuristic is a good approximation

of the problem we are solving then it will serve as an

informative guide, finding the solution quicker by expanding

fewer states. If the inflation factor ǫ is large and the heuristic

is very informative then a solution can be found rather

quickly. However, if the ǫ is large and the heuristic is a

poor approximation of the problem, then misplaced trust has

been put in the heuristic, allowing it to guide the search into

deep local minima. In Figure 1, the left image shows the area

searched by a standard A* search (ǫ = 1) in yellow from the

start on the left to the goal on the right. In the image on the

right, the informative heuristic is weighted by some ǫ > 1
causing the search to rush towards the goal with fewer state

expansions (smaller yellow area).

If a path is found using the initial epsilon within the time

allotted, then a follow up search is executed with a lower ǫ

weight applied to the heuristic. The search is continuously

repeated while decrementing the epsilon with every iteration,

until either the search time is up or ǫ has reached a value of

1. ARA* gains an additional efficiency by not re-computing



Fig. 1: An A* search is performed on the left (ǫ = 1).
The area in yellow represents all of the states that were

expanded to find the optimal path. In the A* search with

inflated heuristics shown on the right, fewer expansions were

required to reach the goal.

the states that it already computed in its previous search

iterations. Figure 2 contains a series of weighted A* searches

with decreasing ǫ from left to right. It requires a total of 48

states to be expanded to find the optimal path. For the same

problem, ARA* is used in Figure 3, and a total of 23 state

expansions across all runs to find the optimal solution.

(a) ǫ = 2.5
13 expansions

(b) ǫ = 1.5
15 expansions

(c) ǫ = 1.0
20 expansions

Fig. 2: Weighted A*: Optimal solution is found after 48 states

are expanded.

(a) ǫ = 2.5
13 expansions

(b) ǫ = 1.5
1 expansion

(c) ǫ = 1.0
9 expansions

Fig. 3: ARA*: Optimal solution is found after only 23 state

expansions because previous efforts are reused.

As in any heuristic search, any arbitrary cost function

can be used here. In manipulation it is conceivable that one

might want to minimize the path length in joint space, the

path length of the end effector, the power consumed by the

arm, or a combination of any number of these. The cost

function we used is designed to minimize the path length

while maximizing the distance between the manipulator and

nearby obstacles along the path. The cost of traversing any

transition between states s and s′ in graph G can therefore

be represented as c(s, s′) = ccell(s
′) + caction(s, s

′). The
action cost, caction, is the cost of the motion primitive which

is generally determined by the user. The soft padding cost,

ccell, is a cost applied to cells close to obstacles to discourage

the search from planning a path that drives any part of

the manipulator close to nearby obstacles if a safer path is

possible.

C. Informative Heuristics

For a heuristic function to be most informative, it must

capture the key complexities associated with the overall

search, such as mechanism constraints or the environment

complexities. Given the high degree of freedom in motion

planning for manipulation, it is even more imperative that

the heuristic has shallow local minima to prevent the search

from getting stuck.

A common approach for constructing a heuristic is to use

the results from a simplified search problem (e.g. from a

lower-dimensional search problem where some of the orig-

inal constraints have been relaxed). Heuristic-based search

algorithms require that the heuristic function, h, is admissible

and consistent. This is true when h(sgoal) = 0 and for every

pair of states s, s′ such that s′ is an end state of a single

action executed at state s, h(s) ≤ c(s, s′) + h(s′), where
h(s) is the heuristic at state s, sgoal is a goal state (any state

with the end-effector in the desired pose) and c(s, s′) is the
cost of the action that connects s to s′.

A common task in manipulation is to move the end-

effector to a desired goal position. Thus it is useful to

employ a heuristic function that is informative about the end-

effector position and orientation, (x, y, z, r, p, y). We use a

single heuristic that guides the search towards achieving the

(x, y, z) component of the goal constraint. In our earlier work

[5] [6], we have also explored using different heuristics to

guide the search, one guiding towards the position of the

goal constraint and one guiding towards the orientation of

the goal constraint. However, combining multiple heuristics

effectively is still an open problem for future research.

The ability to plan robustly in cluttered environments is

the primary motivation of this research, and so a heuristic

function that efficiently circumvents obstacles is necessary.

Simplifying a planning problem by removing some dimen-

sionality is a standard technique in creating an informative

heuristic function and we use a 3D breadth first search (BFS)

to compute the costs of the least-cost paths from every cell in

a grid to the cell that corresponds to the goal position (x, y, z)

while avoiding obstacles. During the planning, the heuristic

component h(s) for any state s is computed as follows:

we first compute the coordinates of the end-effector of the

manipulator configuration defined by state s; we then return

the cost-to-goal computed by the 3D breadth first search for

the cell with those coordinates. This heuristic proves to be

an informative heuristic in directing the graph search around

obstacles in very cluttered workspace.

In Figure 4 we illustrate the effectiveness of the 3D breadth

first search heuristic through a comparison to euclidean

distance as a heuristic. The robot used in this illustration

is the PR2 robot (see Section IV for more details about this

robot). In Figure 4a and Figure 4b, the least cost path is

drawn from the initial pose of the end effector to the goal

pose beneath the table, represented by the pink sphere and



(a) The least cost path according to hEuclidean. (b) The least cost path according to hBFS .

(c) Using hEuclidean inflated by ǫ = 100, a solution was found
after 35,333 expansions.

(d) Using hBFS inflated by ǫ = 100, a solution was found after
2,100 expansions.

Fig. 4: In this example, the pink sphere with cyan arrow represents the goal pose for the right end effector. The path shown

in red, is the shortest path suggested by the heuristic for the end-effector at its initial position. The green cubes represent

efxyz(s) of each expanded state when the respective heuristic function is used.

cyan arrow. While hBFS suggests a path around the edge

of the table, hEuclidean offers an infeasible path through the

tabletop. We performed an experiment in which we used each

of these heuristics to plan a path for the arm of the PR2

from above the table to the goal below. In the experiment

we inflated the heuristic with an ǫ = 100 to highlight how

effective it is. In Figures 4c and 4d we use green cubes to

represent the efxyz(s) of all of the expansions required to

reach the goal. Figure 4c demonstrates an inefficient and

almost uniform search within the workspace of the arm,

requiring 35,333 expansions to find a path with hEuclidean.

While, Figure 4d shows that with hBFS , a more direct route

is taken and only 2,100 states are expanded to compute a

solution.

It is important to note though that depending on the

configuration of the obstacles in the environment, it is

possible that the path to the goal computed by the BFS may

not be reachable by the manipulator. In these situations, the

heuristic becomes detrimental to the efficiency of the search.

An example of such a scenario is if the heuristic directs the

search outside of the reachable workspace of the arm. We

found that this rarely happens in practice. Nevertheless, we

discuss techniques to avoid such cases in Section IX.

For efficiency, the heuristic for a given state is computed

only as needed. Upon request, if the desired state has not

been reached by the BFS tree, the breadth first search is

expanded out from the goal state until the desired state is

found. This way we avoid needlessly performing the BFS

over the entire grid apriori.

An interesting additional benefit of the adaptive motion

primitives presented earlier is that they can assist the search

in reaching the orientation constraint of the goal pose without

the guidance of a heuristic. This is especially important in

a problem such as manipulation which requires a goal pose

for the end effector that has two components - a position and

orientation constraint. It is difficult to develop an informative

heuristic in such situations that can effectively guide the

search towards both components at the same time. Adaptive

motion primitives, especially the primitive that snaps to a

goal pose, are extremely useful in such situations.

IV. SINGLE-ARM PLANNING

The approach that we described in section III is capable of

planning to a goal constraint defined as a joint configuration

for the manipulator or as a pose constraint for the end-

effector of the manipulator. We chose to design our motion

planner to plan directly to an end-effector pose instead of

requiring it to plan to a joint configuration. This allows the

planner to converge to a joint configuration of its choice

based on the particular cost function being used. Such a

choice can have several benefits:

1) In a typical pick and place application, after an object

is detected and localized, a grasp planner is used to

generate an end effector pose capable of grasping the

object. The end effector pose it generates is a logical

goal input to the manipulation planner.

2) After a desired end effector pose is determined, it

can be time consuming to search through the possible



inverse kinematic solutions for one that is collision

free. Also, it is possible that the joint configuration

solution itself may be safe, but no collision free path

from the initial configuration exists.

3) If a valid joint configuration is not found but a tol-

erance on the goal constraint is allowed, then some

sort of search through the allowed goal region would

have to be performed so that a valid joint configuration

can be computed before planning can begin. It is not

straight forward how to search through the allowed

goal region for a valid configuration in a principled

and efficient way. These problems are avoided when

planning for the end-effector to any pose in the desired

goal region.

We will now present the particular nuances that allow us

to adapt our generic approach presented in Section III to the

problem of motion planning for a single arm.

A. Manipulation Lattice Graph

The representation that we described in Section III can

be directly applied to the single-arm planning problem. We

construct an n dimensional statespace when planning for an

arm with n joints. Each state is represented by an n element

vector whose elements correlate to actual joint positions.

Each motion primitive is an n element vector of velocities.

Figure 5 shows two views of a motion primitive being

performed by one of the 7 degree of freedom arms of the

PR2.

Fig. 5: Two perspectives of a static motion primitive in

which the upper arm is rolled 11.5◦, the elbow is flexed

8◦ and the wrist is pitched −8◦, it is represented by

(0, 0, 11.5◦, 8◦, 0,−8◦, 0).

In addition to the adaptive motion primitive,

ampik(s, sgoal) that we described earlier, for single-

arm planning we use another continuous solver-based amp,

which we call an orientation solver-based primitive, or

ampos(s, sgoal). When a state s is expanded whose end

effector position satisfies the position constraint of the

goal, efxyz(sgoal), we use an orientation solver to generate

an additional motion primitive, ampos for that state. The

orientation solver computes the proper motions necessary to

satisfy the orientation constraint, efrpy(sgoal) (roll, pitch,

yaw angles of the desired end-effector pose), without moving

the end effector out of its position, efxyz(s). The solver

computes mpos based on the joint configuration of state s as

well as efrpy(sgoal). Formally we state, that for any state s,

with efxyz(s) = efxyz(sgoal), succs(s) = succs(s) ∪ sgoal
if ampos exists and is collision free. The orientation solver

is based on the premise that in many cases, the end-effector

can be reoriented in place without displacing the wrist.

Thus, for example, the orientation solver will work in case

of a robot with a ball and socket wrist, because all possible

orientations can be achieved by making use of the joints in

the wrist alone.

B. Heuristic

To make the heuristic we presented in section III more

representative of the actual search, we represent the end-

effector using its inner sphere, i.e. the largest sphere that is

contained completely within the volume of the end-effector.

In our implementation, this implies that we are effectively

adding an extra padding to the obstacles equal to the radius

of this sphere when running the 3D breadth first search to

compute heuristics.

V. DUAL-ARM PLANNING

Dual-arm manipulation is an important skill for a robot to

have given that many of the objects we interact with on a day

to day basis are too heavy to be lifted by a single arm or are

too large to grasp with one. Many dual-arm tasks come with a

natural requirement that the object be kept upright throughout

the entire path, such as carrying a tray with food or drink

on it. In this section, we apply the framework presented in

Section III to motion planning for dual-arm manipulation

with an upright constraint.

Motion planning for dual-arm manipulation is inherently a

constrained task. The act of holding an object with two hands

naturally implies a constraint where the two end-effectors

of the arms have to maintain a relative configuration with

respect to each other. The rigidity of the grasp determines

how much the end-effectors can move with respect to each

other. We assume that the end-effectors are fairly constrained

in moving relative to each other, i.e. the grasp being executed

by the two arms is fairly rigid. We now discuss slight

modifications to the general design proposed in Section III.

A. Manipulation Lattice Graph

In Section IV we presented our method of planning for

single-arm manipulation in which we represented the config-

uration space of the arm in joint space. Thus, if we needed

to plan motions for a robot arm with seven joints, it would

result in a graph with seven dimensions. The combination

of informative heuristics, anytime graph search and adaptive

motion primitives addressed the high dimensionality of the

state space. However, if we were to construct a graph in the

same way for dual-arm planning then we would end up with

a 14 dimensional state space and the three key components

would become less effective. Fortunately though, we can

exploit the natural dimensionality reduction that stems from

the two constraints we mentioned above - the constraint



arising from the dual-arm grasp on the object and the upright

orientation constraint. We will illustrate our approach for

the dual-arm PR2 robot where each arm has 7 degrees of

freedom.

Given the global pose of the object and the positions of one

degree of freedom in each arm, we can compute the complete

configuration of each arm. That is, there is a one to one map-

ping between the 14 dimensional joint space of the two arms

and the 8 dimensional space represented by the object pose

and two free angles (one for each 7 degree of freedom arm),

represented as (x, y, z, roll, pitch, yaw, θ1, θ2). When an up-

right orientation constraint is considered, the representation

can be reduced further to 6 dimensions, (x, y, z, yaw, θ1, θ2),
because the roll and pitch of the object are fixed at zero

throughout the path. This representation enables us to plan

by constructing the graph in 6 dimensions. The 6 dimensional

states can be mapped back to the full 14 dimensional space

whenever required, e.g. for collision checking.

Fig. 6: The six degrees of freedom in the statespace.

Similar to our approach for the single arm, we use a

manipulation lattice graph here as well. The states in S are

the set of possible (discretized) 4 degree of freedom poses of

the object coupled with the joint angles of one joint (chosen

to represent the redundancy) in each arm. That is, we define

a state s as a 6-tuple, (x, y, z, θyaw, θ1, θ2) where (x, y, z)
describe the global position of the center of the object, θyaw
is the object’s global yaw angle and θ1, θ2 are the joint

positions of the redundant joint in the right arm and the

left arm, respectively. Refer to Figure 6 for a visualization

of the 6-tuple for the PR2 robot. Note that as mentioned

in Section IV, we dynamically construct the graph during

the graph search because pre-allocation is infeasible for the

6 dimensional graph. In this domain we define a motion

primitive as a vector of translational and rotational velocities

of the object in the global frame combined with the velocities

of the two redundant joints. Each motion primitive again has

a duration of 100 ms.

Before a successor of state s, s′ can be added to the graph

it must be checked for feasibility, i.e., we check that joint

configurations for both arms exist within the joint limits and

are collision free. We use an inverse kinematics solver to

compute joint configurations for each arm that satisfy the

state’s coordinates. If a solution is found for each arm, then

we can check if the state is valid, i.e. forward simulate the

motion of both arms corresponding to linear interpolation

between configuration in s and the solutions returned by IK

and then check for collisions.

During the expansion of a given state s, it is not uncom-

mon for the inverse kinematics solver to fail when computing

a solution for one or both of the arms when determining the

feasibility of a potential successor, state s′. If that occurs,

then rather than just reject the invalid successor completely,

we search over the redundant joint space for that arm for

a valid joint configuration that satisfies the (x, y, z, yaw)
component of s′. If a solution exists, then we generate an

adaptive motion primitive that is essentially defined as the

action that was used to reach the invalid state s′ except it has

a new value for θ1, θ2 or both. This results in a successor

state, s′′, whose coordinates represent the same object pose

as the coordinates of s′ but with a possibly new value for

θ1, θ2 or both.

B. Heuristic

In the heuristic we used for single-arm planning, we

represented the end effector as its inner sphere during the

computation of the BFS. The same heuristic can be used here

as well but given the upright constraint, we can modify it to

make it more informative. Instead of modeling the object

as a sphere when performing the 3D breadth first search,

we instead model it as a cylinder, or a stack of cylindrical

discs, because we are constraining the object from rolling or

pitching. The radius of the cylinder at a given z height, is

the radius of the inner circle of the object at height z, i.e.

the circle centered at the geometric center of the object (in

the xy plane) at height z, with the largest radius such that it

is completely contained within the object footprint.

To compute the heuristic, we iterate through n height

levels of the object and for each, we create an inflated xy

plane of the map. Then on each call to the heuristic function,

h(x,y,z), we check if cells (x,y,z),(x,y,z+1), ... ,(x,y,z+hobject)

are collision free. A detailed example can be found in

Figure 7.

Modeling the object as a cylinder is significantly more

informative than using an inner sphere when the object’s

dimensions are not similar along each axis, e.g. a tray which

is very wide and flat. The heuristic is then capable of guiding

the search through tighter spaces, e.g. when manipulating a

tray between two shelves of a bookshelf.

We use the radius of the inner circle along the xy-plane of

the object so that the heuristic is admissible, meaning that it

underestimates the cost-to-goal for any full-dimensional state

with given (x, y, z) of the object. Needless to say it does not

mean that if a feasible 3D path exists from the state to the

goal then a feasible motion plan exists to manipulate the

object to the goal. It is interesting to note that using the

radius of the outer circle may be much more informative

when guiding the search especially when the inner and outer

circles differ by a large amount. However, using the outer

circle to compute heuristics sacrifices the completeness of



(a) z = 0 (b) z = 0, inflated

(c) z = 0, z = 1, z = 2, inflated

Fig. 7: The obstacles are shown in black and the inflated

cells are red. The radius of the inner circle of the object is

1 cell and hobject=3. Upon a lookup for h(x,y,z), h(x,y,z),

h(x,y,z+1) and h(x,y,z+2) must be checked to determine if

h(x,y,z) is a valid state.

the planner, i.e., the planner may not find a solution even if

one exists. More on this can be found in Section IX.

VI. EXTENSIONS

The generic nature of heuristic-searches make them easily

extendable in many ways. We now present four capabilities

of our approach that are straight forward to implement and

that come at little or no cost in its performance.

Path Constraints. Many motion planning tasks not only

require that the end effector ultimately finds its way to the

goal pose, but also require that the manipulator adheres to

certain constraints along the way. A common example of

a planning task that requires path constraints is the upright

constraint required to manipulate a tray with glasses on it, as

discussed in Section V. Our approach supports arbitrary path

constraints expressed as bounds on the position or orientation

of a certain link as a required joint position of a specific

joint. In addition to simply rejecting invalid successors, path

constraints can be implemented as adaptive motion primitives

that adjust previously rejected static motion primitives to

satisfy the constraint. It is very common that path constraints

can provide a decent speedup to the planner by effectively

shrinking the statespace.

Goal Sets. Another feature of our approach is the ability to

handle multiple goal poses as input and return a path to the

goal pose with the minimal path cost overall. This can prove

useful when a grasp planner finds multiple feasible grasp

poses for manipulating an object and heuristics to choose

between them are not obvious. In this case, the motion

planner will compute a path to the grasping pose with the

least-cost path.

Goal Regions. Many motion planning problems do not

require the end effector to achieve an exact pose or one

within a goal set. Rather, the problem may call for the end

effector to be placed anywhere in some particular goal region

to perform a task. The region can be defined for the end

effector in the space of its position, orientation or both. Like

all heuristic searches, our approach is capable of planning

to goal regions without any algorithmic modifications. An

example of using sampling based approaches to plan to a

goal region can be found in [1].

Invalid Goal States. When planning for manipulation it

would be preferable if the motion planner was capable of

planning to the actual grasp pose determined by the grasp

planner. Since most planning approaches are incapable of

planning to an invalid goal state (e.g. a state in collision), the

alternative method is to translate the grasp pose away from

the object and then plan to the translated pose. To pick up the

object after the planned path is executed, an undesirable open

loop motion would be required to move the end effector the

translated distance. However, for heuristic searches, planning

to an invalid goal state is a viable option. With our approach,

one can determine a set of neighboring states that are valid

before planning. Then the set can be used as a goal set

for the search. Since, goal sets have no negative effect on

the efficiency of the search, the only additional computation

stems from computing the virtual goal set.

VII. SINGLE-ARM EXPERIMENTAL RESULTS

A. Experimental Setup

To measure the performance of our planner and compare it

against other approaches, we carried out a set of benchmark

experiments in different simulated environments. The set of

planners we compared our approach to are RRT* [9] and

RRT-Connect [16]. The cost function for RRT* is the dis-

tance traveled in joint space. Unless stated otherwise, RRT*

was configured to return the first solution that was found.

All these planners are implemented in the OMPL library[7].

More information on the benchmarking infrastructure used

for our experiments, as well as details on the environments,

can be found in [3].

All experiments were carried out using a simulated model

of the PR2 robot. The PR2 robot is a two-armed mobile

manipulation platform with an omni-directional base. It

carries a suite of onboard sensors that are useful for modeling

the environment in 3D. This includes a tilting laser range

finder, a stereo camera and RGB-D sensors. The sensors

generate 3D point clouds representing the environment that

can be incorporated into the collision environment used by

the planners. The PR2 also has sufficient onboard computing

to carry out fast motion planning in addition to any realtime

3D processing required to build an efficient representation of

the environment.

The environments we used are shown in Figure 9. In

each environment, multiple goal locations are defined for

the end-effector of a robot. The planners were instructed to

plan between successive goal positions for the arm of the

robot. Each experiment, between a start and goal position,

was carried out multiple times to ensure that a total of at

least 30 experiments were run in each environment for each

planner. Details of the planning requests can also be found

in [3]. Each planner was given a maximum of 60 seconds to



Fig. 8: The simplified collision model used in our exper-

iments. The green spheres represent the links of the robot

arms. The red voxels represent the distance field generated

for self-collision checking.

compute a solution. All resulting trajectories were logged and

metrics were computed on them. The averaged metrics are

presented in the next section. All experiments were carried

out on a quad-core Intel Core 2 Quad Q9550 CPU (2.83

GHz) with 5.8 GB of RAM running the Ubuntu Lucid variant

of Linux and the Fuerte variant of ROS.

All of the planners were configured with the same collision

checking library. Figure 8 shows the simplified representation

of the PR2. The links of the robot that can be moved

during the execution of a planned path are represented using

a number of overlapping spheres. The remaining links as

well as the environment are represented using a combination

of a voxel grid and geometric primitives. The environment

representation is processed to generate a distance field which

is capable of providing the distance to the nearest obstacle

from various points in the environment. The internal collision

model of the robot can then be easily checked against this

distance field to decide whether the robot is in collision

with the environment. A separate check is performed to

account for internal collisions. The distance field can also be

used to represent an obstacle cost for robot configurations,

measuring how far the robot is from an obstacle. A small

amount of time is spent on generating the distance field

while pre-processing the environment for collision checks.

In our experiments, depending on the complexity of the

environment, this can take anywhere between 100ms-600ms.

The configuration of our planner is as follows. MPlowD

contains 8 motion primitives. Each one rotates one of four

joints (shoulder pan, pitch, roll and elbox flex) by 8◦ in either
direction. MPfullD contains 14 motion primitives, in which

each motion primitive rotates one joint 4◦ in either direction.

The grid resolution we used to compute the heuristic was 2

cm.

B. Performance Benchmarks

The metrics measured on each plan include the following:

1) planning time

2) planned length - the length of the path generated by

the planner.

3) simplified length - the length of the path simplified

during the post-processing step (e.g. shortcutting).

4) success rate

Table I shows the performance benchmarks for all the

environments in Figure 9. The sampling-based planners

are very fast but our approach is certainly competitive in

most environments. In general, we found that the solutions

generated by ARA* are noticeably shorter in path length.

Note that in these experiments both ARA* and RRT* are

only run until the first solution. Table II shows the results of

ARA* and RRT* when given a time budget of 60 seconds for

planning. Both planners were configured to minimize total

path length in jointspace.

As stated earlier, the goals were defined as 6D poses

for the end-effector. While ARA* is capable of planning

to an end-effector pose, as configured, the sampling-based

approaches are not. In our experiments, we ran ARA* to

compute a valid joint configuration at the goal state and then

use it as input to the sampling-based planners. Thus, the

standard practice of first searching for a valid configuration

at the goal pose using an inverse kinematics solver was not

needed. This procedure can be time consuming especially if

the goal pose is in a cluttered region of the workspace.

C. Consistency Benchmarks

For many planning problems, the consistency of the gen-

erated motions is important as it helps make the actions of

the robot more predictable for a human interacting with it.

Planning with heuristic searches is typically very consistent,

meaning that similar inputs generate similar outputs. To

compare the consistency of the motions generated by the

planners, we performed an experiment in which all three of

the planners are called to plan from a single configuration

of the robot to multiple goal poses that are within a close

vicinity of each other. In Figure 10, the right arm of the

PR2 is extended over the tabletop, and below the table are

27 6D goal poses, all of which are contained within a 10 cm

cube. They are each given randomly generated orientation

constraints that fall within the workspace of the arm. For

these experiments, the planners were granted a translational

tolerance of 0.5 cm and a rotational tolerance of 0.05 radians

in each of roll, pitch and yaw. The planners planned to each

goal only once. It can be argued that for the same start

and goal conditions, sampling-based planners will return the

same path every time if the randomization seed is fixed.

However, by asking the planner to plan to similar (but not

the same) goals, we can get a better idea of how consistently

the planners will behave across multiple planning attempts.

To measure how spread apart the trajectories are, or how

much distance there is between them, we compare the paths

taken by the wrist and by the elbow along the planned

path for the arm. We used three planners to plan 27 paths

for the right arm of the PR2. We then compute the 3

dimensional link paths taken by the elbow and the wrist



(a) Kitchen (b) Tabletop (c) Industrial (d) Narrow Passageway

Fig. 9: The pink spheres with cyan arrows indicate the desired 6D goal poses for the right end-effector.

Environment → Kitchen Tabletop Industrial Narrow Passageway

Planner → ARA* RRTC RRT* ARA* RRTC RRT* ARA* RRTC RRT* ARA* RRTC RRT*

planning time (mean, sec) 0.31 0.01 0.87 0.98 0.01 0.03 0.14 0.01 6.06 0.74 0.66 3.90

planned length (joint space) (mean, rad) 9.52 13.13 12.90 10.97 10.20 10.19 5.76 12.12 12.33 17.33 25.66 23.24

simplified length (joint space) (mean, rad) 6.93 9.81 9.30 7.37 8.14 7.71 4.09 8.81 6.88 9.54 13.56 12.60

success rate 100% 100% 87% 100% 100% 100% 100% 100% 80% 100% 100% 100%

TABLE I: Performance comparison of three planners for single-arm manipulation in the scenarios shown in Figure 9.

Environment → Kitchen Tabletop Industrial Narrow Passageway

Planner (60sec) → ARA* RRT* ARA* RRT* ARA* RRT* ARA* RRT*

planned length (joint space) (mean, rad) 7.74 9.21 6.51 10.71 4.43 14.26 12.58 23.18

success rate 100% 80% 100% 100% 100% 94% 100% 100%

TABLE II: Results of ARA* and RRT* with a fixed planning time budget of 60 seconds.

along those trajectories. The link paths for two planners (our

approach and RRT-Connect) are shown in Figure 11. The red

lines are the link paths for the wrist and in yellow are the

link paths for the elbow corresponding to plans using our

approach. The green and blue lines are the wrist and elbow

link paths, respectively, for plans using RRT-Connect. The

average lengths of these paths can be found in Table III.

We compute the distance between the link paths by

discretizing each link path in the set into n waypoints. Then,

for the ith waypoint in each path of the set, we compute its

mean and variance. Finally, we sum up the variance of all

n waypoints. To compute the variance listed in Table III,

we used n = 100. The waypoints used for each path can

be seen in Figure 12. Figure 13 is included to uncover the

paths produced with our approach that are hidden below. The

variance of the elbow link paths generated by our approach

is approximately ten percent of that of RRT-Connect and

RRT*. The variance of our wrist path is between a fourth

and a fifth of RRT* and RRT-Connect.

VIII. DUAL-ARM EXPERIMENTAL RESULTS

A. Experimental Setup

Kinematic constraints of the arms, the size of the grasped

object and the positions and orientations of the grasps result

in a very tight feasible workspace for dual-arm manipula-

tion. In cluttered environments, the workspace for dual-arm

same start → different goals ARA* RRTC RRT*

length (joint space) (mean, rad) 8.828 23.565 22.259

length (joint space) (std. dev., rad) 2.758 14.705 17.438

length (wrist) (mean, meters) 1.921 2.831 2.831

length (wrist) (std. dev., meters) 0.255 1.929 2.365

length (elbow) (mean, meters) 1.133 1.769 1.703

length (elbow) (std. dev., meters) 0.155 1.050 1.469

variance (wrist) (total, meters2) 11.721 124.085 104.662

variance (elbow) (total, meters2) 10.128 55.716 44.023

TABLE III: Results from 27 trials with the same initial

configuration and with different goals (see Figure 10). The

length refers to the planned length.

manipulation is even smaller. To generate benchmark tests

in this domain, we manually picked start and goal poses for

the object, by generating inverse kinematics (IK) solutions

corresponding to them and checking that the solutions are

collision free. We conducted twelve experiments that were

inspired by practical manipulation scenarios in four different

cluttered environments with five different objects. All twelve

experiments were implemented in simulation first and then

on the PR2 robot itself. Figure 15 shows the different

simulation environments. The obstacles are in purple and

the collision model of the manipulated objects can be seen

in cyan. Stills of the robot during the actual experiments on



Fig. 10: To demonstrate the consistency of the set of planners

we are comparing, the planners are asked to plan for the right

arm from the position above the table to the 27 different goal

poses beneath it. The 27 equidistant poses are within a 10

cm cube and have randomly generated orientations.

the PR2 can be seen in Figure 16.

For all of our dual-arm experiments, we used a set of

32 static motion primitives. The set includes 26 motions in

which each one translates the object one cell in the direction

of one of the edges in a 26-connected grid. Our set also

includes four motions that rotate the redundant joints. Each

one of these motions rotates one of the two redundancies

in either direction. Lastly, our set includes two motions that

just yaw the object in the world frame. While this set of very

basic motion primitives does provide a dense coverage of the

workspace, in the future we plan on researching methods of

constructing motion primitives that are smooth, dense and

efficient. A summary of the motions can be seen in Figure 14.

B. Performance Benchmarks

The results of the simulated experiments are shown in

Table IV. In all of the runs the planner was initialized with

an ǫ = 100 and was given 15.0 seconds to generate a

more optimal solution if time permitted. The ǫ of the final

solution found is listed in the third column. The planning

times include the time it takes to compute the heuristic. The

resolution of the object’s pose is 2cm for the position and

5◦ for the yaw of the object as well as 2◦ for both of the

redundant joints. All of the tests require that the planner

computes a path to a 4 DOF pose constraint for the object

with a tolerance of 5◦ in the final yaw of the object and

a 2cm tolerance in the position of the object. We do not

require the redundant joints to reach the goal at specified

joint angles.

IX. DISCUSSION

Algorithmic Parameters. Our algorithm has a couple of

parameters that can affect its performance, such as the grid

resolution in which we compute hBFS and dik . We have

found a grid resolution of 2 cm provides an informative

Fig. 11: The paths taken by the elbow and the wrist during

the planned trajectories are shown above. The red(wrist) and

yellow(elbow) paths were planned using our approach. The

blue(elbow) and green(wrist) paths were planned by RRT-

Connect.

Time until First
Soln. (s)

Expands. until
First Soln.

ǫfinal Expands. until
Final Soln.

0.31 182 3 8,161

0.15 76 3 7,584

0.33 182 3 6,265

2.01 544 5 5,021

1.07 379 4 7,991

0.98 432 4 6,445

14.88 6,773 100 6,785

0.56 31 3 6,714

0.57 34 3 5,960

1.06 322 5 4,932

0.14 62 3 7,344

0.13 68 3 6,437

TABLE IV: Results from 12 simulated trials.

heuristic and does not restrict the planner in any of our ex-

periments. Experimentally we determined that a good value

for dik , as defined in Section III, is 6 cm.We experimented

with values of dik ranging from 40 cm down to 2 cm.

Motion Primitives. In Sections VII and VIII, we briefly

describe the sets of motion primitives that we use in our

experiments. In summary, our approach has generally been

to use sets of motion primitives, each of which move in a

single dimension, either jointspace or workspace. While it

proves to be adequate for many tasks, it is future work to

explore methods of generating motion primitives that change

more than one joint at a time. An example of such a primitive

is a motion that simultaneously rolls the forearm clockwise

by 2◦ while flexing the elbow by 8◦. In particular, it would

be useful to look for inspiration from principled methods for

generating motion primitives for navigation [20] [21].

Heuristic. Evident by our experimental results, hBFS is



Fig. 12: The planned paths lined with the equidistant

waypoints used to compute the distance between each set

of paths. The variance is computed for each waypoint index

and then summed. The total variance for each planner and

link path combination is shown in Table III.

Fig. 13: A closeup of the paths computed with our approach

(red: wrist, yellow: elbow). Notice that many of the paths

overlap each other and diverge just beneath the table towards

their respective goals.

very informative with avoiding local minima due to obsta-

cles. However, as mentioned in Section III, situations exist in

which hBFS can still be trapped by local minima. Given that

the kinematics of the arm are ignored and the end-effector (or

object) is approximated as an untethered sphere (or cylinder),

the shortest path computed by hBFS may prove infeasible for

the robot to perform for one of two reasons. Either because

the shortest path exits the manipulation workspace of the

robot at some point or the shortest path found is in a class in

which no feasible path for the robot exists. An example of the

second problem can be seen in Figure 17. A simple solution

(a) xyz (26) (b) θ1, θ2 (4)

(c) θyaw (2)

Fig. 14: The set of 32 static motion primitives we used during

our experiments.

Fig. 15: Clockwise from top left: stick around a pole, wood

board in bookshelf, tray with wine glasses under a table, tray

with wine glasses near wall and tray with a scotch glass in

bookshelf.

to the first problem is to mark all cells in the grid as invalid

that are beyond the workspace of the arm before computing

hBFS . In [6] we proposed a solution to the second problem

in which we combine hBFS with a second heuristic called

helbow. For a given state, helbow represents the shortest path

from the current pose of the elbow link to any of the feasible

poses where the elbow can reside while keeping the end-

effector at the goal pose. In the problematic situations, the

sum of the two heuristics was very successful in avoiding

the large local minima. It is future work to determine how

to combine the heuristics more effectively when the problem

does not exist.

Discretization. Search-based planning relies on the dis-

cretization of the state-space and the action space. There are



Fig. 16: Shown here are four of the experiments that were

run on the PR2.

Fig. 17: hBFS suggests a path to the goal that is infeasible

for the robot to follow.

pros and cons to it. On one hand, the discretization can lead

to a motion that looks somewhat discretized. On the other

hand, a simple deterministic shortcutting routine can deal

effectively with this artifact. In fact, it has an advantage over

common methods of path simplification for sampling-based

approaches in that the solutions generated by our search-

based approach allow a shortcutter to do most of the work

in a single pass through the points, and the second iteration

provides little benefit. In contrast, shortcutters for sampling-

based planners typically require many iterations [10]. In our

experiments, the complete post-processing time per plan was

typically around 20ms. Furthermore, the representation in the

workspace plus redundant degree of freedom (such as the

one explained in Section V) typically results in a motion

that does not require any shortcutting at all.

Theoretical Guarantees. Our approach is based on us-

ing a heuristic search with strong theoretical guarantees to

compute a high quality solution. It is important to note that

those guarantees are with respect to the graph constructed,

not to the continuous motion planning problem. The vari-

able dimensionality, non-uniform resolution, and the set of

motion primitives that we use, all play a part in determining

whether a solution can even be found in our graph and its

quality. In the future, it would be interesting to research

how to simultaneously provide guarantees on completeness

and optimality w.r.t. to our graph construction as well as

regarding the continuous planning problem.

X. CONCLUSION

We have presented a heuristic search-based approach to

motion planning for manipulation that leverages the construc-

tion of a manipulation lattice graph, informative heuristics

and an anytime graph search to deal effectively with various

manipulation planning problems. The manipulation lattice

graph relies on the use of adaptive motion primitives and

non-uniform dimensionality and non-uniform resolution of

the lattice to plan efficiently and precisely. In addition to

its explicit cost minimization. Our approach benefits from

the use of an anytime graph search to generate consistent

and good quality solutions quickly, as well as to provide

theoretical guarantees on the completeness and bounds on

the suboptimality of the solution cost, both with respect

to the constructed graph. The efficiency of the search is

aided heavily by an informative heuristic that dissipates

the deep local minima caused by environmental complex-

ities. We presented comparisons of performance, quality and

consistency between our approach and several sampling-

based planning approaches on practical planning problems

on a PR2 robot. The results show that our approach can

plan in many complex situations with sub-second planning

times. Finally, our experimental analysis shows that due to

its deterministic cost-minimization, the approach generates

motions that are of good quality and are consistent, i.e.

the resulting plans tend to be similar for similar tasks. For

many problems, the consistency of the generated motions is

important as it helps make the actions of the robot more

predictable for a human controlling or interacting with the

robot.

In future work, we are examining extensions of this

approach to higher dimensional problems like full-body

planning. In particular, we believe that this approach, when

combined with a caching or learning algorithm that attempts

to reuse prior experience, can be successful even in higher

dimensions.

XI. ACKNOWLEDGEMENTS

We thank Willow Garage for their partial support of this

work. In addition, this research was partially sponsored

by the Army Research Laboratory Cooperative Agreement

Number W911NF-10-2-0016.

REFERENCES

[1] Dmitry Berenson, Siddhartha S. Srinivasa, Dave Ferguson, Alvaro
Collet, and James J. Kuffner. Manipulation planning with workspace
goal regions. In IEEE International Conference on Robotics and

Automation, May 2009.



[2] R. Bohlin and L. Kavraki. Path planning using lazy prm. In IEEE

International Conference on Robotics and Automation, VOL.1, 2007.
[3] Ben Cohen, Ioan A. Şucan, and Sachin Chitta. A generic infrastructure

for benchmarking motion planners. In IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, pages 589–595, Vilamoura,
Portugal, October 2012.

[4] Benjamin Cohen, Sachin Chitta, and Maxim Likhachev. Search-
based planning for dual-arm manipulation with upright orientation
constraints. In IEEE Int. Conference on Robotics and Automation,
St. Paul, Minnesota, 2012. IEEE.

[5] Benjamin J. Cohen, Sachin Chitta, and Maxim Likhachev. Search-
based Planning for Manipulation with Motion Primitives. In Proceed-

ings of the IEEE International Conference on Robotics and Automation

(ICRA), 2010.
[6] Benjamin J. Cohen, Gokul Subramanian, Sachin Chitta, and Maxim

Likhachev. Planning for Manipulation with Adaptive Motion Prim-
itives. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), 2011.
[7] Ioan Şucan, Mark Moll, and Lydia Kavraki. The Open Motion

Planning Library (OMPL). http://ompl.kavrakilab.org, 2010.
[8] A. Kanehiro et al. Whole body locomotion planning of humanoid

robots based on a 3d grid map. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), 2005.
[9] E. Frazzoli and S. Karaman. Incremental sampling-based algorithms

for optimal motion planning. Int. Journal of Robotics Research, 2010.
[10] R. Geraerts and M.H. Overmars. Clearance based path optimization

for motion planning. In Robotics and Automation, 2004. Proceedings.

ICRA ’04. 2004 IEEE International Conference on, volume 3, pages
2386 – 2392 Vol.3, april-1 may 2004.

[11] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on

Systems, Science, and Cybernetics, SSC-4(2):100–107, 1968.
[12] K. Hauser and V. Ng-Thow-Hing. Fast smoothing of manipulator

trajectories using optimal bounded-acceleration shortcuts. In IEEE

International Conference on Robotics and Automation, May 2010.
[13] Nazareth Bedrossian Jeff M. Phillips and Lydia E. Kavraki. Guided

expansive spaces trees: A search strategy for motion- and cost-
constrained state spaces. In Proceedings of the International Con-

ference on Robotics and Automation (ICRA), 2004.
[14] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pas-

tor, and Stefan Schaal. STOMP: Stochastic trajectory optimization
for motion planning. In International Conference on Robotics and

Automation, Shanghai, China, May 2011.
[15] L. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Proba-

bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12(4):566–
580, 1996.

[16] J.J. Kuffner and S.M. LaValle. RRT-connect: An efficient approach to
single-query path planning. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), pages 995–1001,
2000.

[17] M. Likhachev and D. Ferguson. Planning long dynamically-feasible
maneuvers for autonomous vehicles. International Journal of Robotics
Research (IJRR), 2009.

[18] M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime A* with
provable bounds on sub-optimality. In Advances in Neural Information

Processing Systems (NIPS) 16. Cambridge, MA: MIT Press, 2003.
[19] J. Pearl. Heuristics: Intelligent Search Strategies for Computer

Problem Solving. Addison-Wesley, 1984.
[20] M. Pivtoraiko and A. Kelly. Generating state lattice motion primitives

for differentially constrained motion planning.
[21] Mihail Pivtoraiko and Alonzo Kelly. Kinodynamic motion planning

with state lattice motion primitives. In Intelligent Robots and Systems

(IROS), 2011 IEEE/RSJ International Conference on, pages 2172 –
2179, sept. 2011.

[22] Nathan Ratliff, Matt Zucker, J. Andrew Bagnell, and Siddhartha
Srinivasa. Chomp: Gradient optimization techniques for efficient
motion planning. In IEEE International Conference on Robotics and

Automation, 2009.
[23] Ioan Alexandru Sucan and Lydia E. Kavraki. Kinodynamic motion

planning by interior-exterior cell exploration. In International Work-

shop on the Algorithmic Foundations of Robotics, 2008.


