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ABSTRACT
Classifying nodes in networks is a task with a wide range
of applications. It can be particularly useful in anomaly
and fraud detection. Many resources are invested in the
task of fraud detection due to the high cost of fraud, and
being able to automatically detect potential fraud quickly
and precisely allows human investigators to work more effi-
ciently. Many data analytic schemes have been put into use;
however, schemes that bolster link analysis prove promis-
ing. This work builds upon the belief propagation algorithm
for use in detecting collusion and other fraud schemes. We
propose an algorithm called SNARE (Social Network Anal-
ysis for Risk Evaluation). By allowing one to use domain
knowledge as well as link knowledge, the method was very
successful for pinpointing misstated accounts in our sample
of general ledger data, with a significant improvement over
the default heuristic in true positive rates, and a lift factor
of up to 6.5 (more than twice that of the default heuris-
tic). We also apply SNARE to the task of graph labeling in
general on publicly-available datasets. We show that with
only some information about the nodes themselves in a net-
work, we get surprisingly high accuracy of labels. Not only
is SNARE applicable in a wide variety of domains, but it is
also robust to the choice of parameters and highly scalable–
linearly with the number of edges in a graph.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Applications—
Data Mining
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1. INTRODUCTION
Accounting irregularities, in which data are intentionally

or unintentionally misrepresented, raise significant risk for
corporations and investors. Settlement amounts awarded in
investor lawsuits have been increasing [10], and so has the
number of financial restatements in recent years [27]. Audi-
tors undertake a variety of procedures to determine whether
there is reasonable assurance that financial statements are
fairly stated, so automated assistance for detecting risks of
misstatement has the potential for making the audit process
more efficient.

Most of the well-known techniques for detecting account-
ing irregularities, such as ratio analysis, operate at the fi-
nancial statement level, a highly aggregated summary of a
company’s financial activity, and generally offer little useful
guidance to an auditor beyond a broad indicator of risk at a
company. We have been investigating analytics that operate
at a much more detailed level, on the transactions recorded
in a company’s general ledger. Past methods in this domain
[2] explored the potential of different classification methods,
such as logistic regression, expectation-maximization, and
naive Bayes, on individual accounts and transactions. In
this paper we show how exploiting the link structure be-
tween accounts has the potential to greatly increase the ac-
curacy of classification methods while making only a few
assumptions. We will be applying belief propagation algo-
rithms and link analysis to identify the risk of irregularities
in corporate accounting.

Furthermore, we will show that this method is highly flex-
ible to other tasks. Different domains will have different
sources of knowledge about nodes in a network; however,
our method allows a simple setting for domain experts to



input this information without an understanding of the de-
tails of the algorithm.

Our contributions are the following: We introduce SNARE
(Social Network Analysis for Risk Evaluation), which de-
tects related entities that may be overlooked by using in-
dividual risk scores, it extends a well-known algorithm for
graphical models into a useful application, and it may be
flexibly applied to different domains. We show how it can
be applied to the detection of fraud risk in general ledger
accounting data as well as typical graph-labeling tasks in
other domains such as web data and social networks.

2. RELATED WORK
Social networks have become more important as practi-

tioners become increasingly aware of the significance of rela-
tions between entities in a network. It has been demon-
strated that knowledge of social structure can allow one
to help make inferences about an organization [3, 21], to
identify individuals [17], or to predict adopters of consumer
products [18]. Related work has used knowledge of social
structures for detecting securities fraud [23]. The authors
later improved the approach by showing that one can often
infer links that are not explicitly stated [13], and successfully
extended the methods using inferred knowledge [11].

Semi-supervised learning methods may also be useful for
graph labeling, as addressed in [30]. Finding authority of a
node is one specific labeling task addressed in the literature.
One way of defining the authority of a node in a network
is its “reputation for knowledge,” that is, how reliable the
source is. Guha et al. extends many of these ideas for rep-
utation networks applied to eBay or Epinions [16]– rather
than simply trusting someone’s knowledge of a topic, one
may also trust another’s reliability as a seller on eBay or a
recommender on Epinions. The authors use matrix methods
and model a “web of trust”, where both trust and distrust
are propagated over edges (with different patterns of propa-
gation). They were able to predict trust between individuals
given a small amount of labeled data.

HITS[20] and Pagerank[24] address reputation for web-
pages. Other methods of propagation of trust and distrust
are discussed in Ziegler et al. [31], particularly in relation
to trust on the semantic web.

Other work identifies particular anomalous patterns and
seeks to spot them in large graphs. Pandit et al. intro-
duce NETPROBE, which uses belief propagation to model
eBay as a tripartite network of “fraudsters”, “honest users”,
and “accomplices”. Upon deciding on this model, they then
use loopy belief propagation to assign probabilities of each
node being in the three states [25], by detecting bipartite
cores. (Our work differs in that we do not identify a specific
network structure such as a bipartite core, only that one
can propagate labels using homophily. This allows for more
flexibility to different domains.)

Many risk detection methods approach the problem by
attempting to detect suspicious behavior in users. This ap-
proach has been successful for cellular phone fraud, where
a caller’s patterns are often disrupted by periods of inactiv-
ity. Here, most fraud schemes follow certain signatures, such
that a rule-based system have lead to some successes [12].
Rule-based approaches have also been applied to the detec-
tion of money laundering[7]. A survey of related methods
can be found in [6].

The literature contains many methods for detecting ac-

counting irregularities which typically use a model-based ap-
proach [4, 5, 6, 9, 15]. However, many of these traditional
approaches are limited by factors such as the diversity of
fraud schemes, errors present in the training data, and ac-
cess only to aggregated financial statement data instead of
detailed transactions. To counter thihis problem, in pre-
vious work, authors set up a system called Sherlock1 for
detecting errors and fraudulent behavior in general ledger
data [2]. Sherlock used classification methods for identify-
ing suspicious accounts, by evaluating a set of features mea-
suring different types of unusual activity. Methods such as
naive Bayes, expectation-maximization, and logistic regres-
sion were used and compared. This work will approach the
same problem of identifying accounts with high fraud risk
from a social network analytic perspective.

This is the first work, to our knowledge, that has adapted
generalized belief propagation to the accounting domain,
and provided a framework to extend it into other domains
for node labeling, incorporating both node and edge infor-
mation. In this work, we are using data where all true labels
are unknown from the start, and our results are verified by
human investigation.

3. PROPOSED METHOD
We will address the following problem:

Given:

• A graph G = (V,E), where entities (persons, accounts,
blogs, etc.) are represented as vertices, or nodes, in the
graph, and interactions (phone calls, account trans-
actions, hyperlinks) between them are represented as
edges.
• Binary class (state) labels X = {x1, x2} defined on V .
• A set of flags for each node vi ∈ V , based on node

attributes (geographic location, name, etc.)

Output: A mapping V → X from nodes to class labels.

The labels X are binary categorical variables derived from
the context (normal or irregular, conservative or liberal,
etc.). We also note that while nodes and links can be re-
lated to social entities such as persons and relations or ac-
tions, the proposed methods can be applied to any sort of
entities, such as accounts or webpages.

The basic premise of SNARE is to use neighboring labels
to classify a given node. This premise has proven effective
for many graph labeling tasks [19]. However, we also take
into account domain knowledge, by assigning an initial risk
scores to nodes prior to evaluating neighborhood associa-
tions between them. To measure risk by association, we then
use belief propagation for passing risk to connected nodes. A
detailed tutorial of belief propagation may be found in work
by Yedidia [29].

Let us summarize the procedure. In a network for a
given task, the true label for each node vi is unknown. We
are, however, given some local observations about the node,
which we use as a local estimation of its risk, or node poten-
tial φi(xc) of vi for class xc (the procedure for determining
this will be described shortly). Information about this node
is inferred from the surrounding nodes. This is obtained

1Sherlock is research in progress. As such, the methods we
describe should not be interpreted as descriptive of PwC’s
current standard practice in analyzing general ledger data.



through iterative message passing to and from vi to each
neighbor vj , where a message from vi to vj with its own
assessment of vj ’s believed class is denoted by mij . At the
end of the procedure, the belief of a node vi belonging to
in class xc is determined. The belief is an estimated prob-
ability, which can be thresholded into the classes (e.g. a
bi(xc) > .5 implies vi belongs to class xc), or used relatively
to compare risk scores between nodes (e.g. bi(xc) > bj(xc)
implies vi is more likely to belong to xc than vj).

In more detail, messages are obtained the following way.
Each edge eij has associated messages mij(xc) and mji(xc)
for each possible class. mij(xc) is a message that vi sends
to vj about vj believed likelihood of belonging to xc. Iter-
atively, messages are updated using the sum-product algo-
rithm. Each outgoing message from a node to a neighbor
is updated according to incoming messages from the node’s
other neighbors. Formally, the message-update equation is
as follows:

mij(xc)←
X

xd∈X

φi(xd)ψij(xd, xc)
Y

k∈N(i)\j

mki(xd) (1)

where N(vi) is the set of neighboring nodes to vi. ψij(xc, xd)
is the edge potential of an edge between two nodes i, j of
classes xc and xd. ψij(xc, xd) is generally large if edges be-
tween xc and xd occur often, and small if not. Order of
message-passing does not matter, provided all messages are
passed in each iteration. We also normalize mij(xc) to avoid
numerical underflow, as discussed in [8], so each edge’s mes-
sage vector sums to one:

P

c
mij(xc) = 1.

Convergence occurs when the maximum change between
any message between time ticks is less than some value (in
our experiments 10−6). Convergence is not guaranteed in
general graphs (only for trees), but typically occurs in prac-
tice. Upon convergence, belief scores are determined by the
following equation:

bi(xc) = kφc(vi)
Y

vj∈N(vi)

mji(xc) (2)

where k is a normalizing constant (beliefs for each class must
sum to 1).

Adapting the message passing algorithm to our purposes
has the following challenge: Find an effective yet intuitive
way to choose node and edge potentials. We use two main
concepts, homophily over edges and node attributes to influ-
ence probability of different classes.

For purposes of explanation, we will have two classes, xR

for “risky” and xNR for “non-risky”. We will subsequently
refer to bi(xR) is the end probability of a node being risky
after completion of the algorithm. A node with bi(xR) = 1
is certainly suspect, and bi(xR) = 0 is not suspect; most
nodes will fall somewhere in between, on the continuum.
SNARE will then produce a ranked list of the“risky”nodes,
as candidates for further investigation.

For the edge potential term ψij(xc, xd) in the message-
passing equations, we chose an identity function with a noise
parameter ǫ. That is, if vi is risky, vj has a high probabil-
ity of being risky, while allowing for some variance. The
transition matrix is shown formally in Table 1.

Before beginning the message passing procedure, how-
ever, we must also assign a node potential to each individ-
ual node. The node potential represents the risk of a node

ψij(xd, xc) vi = xNR vi = xR

vj = xNR 1− ǫ ǫ

vj = xR ǫ 1− ǫ

Table 1: Transition matrix, or edge potentials for
belief propagation.

without considering information from its neighbors. The
initial node potential depends on the assumed distribution
of class labels– when classes are evenly divided, default val-
ues (φ(xNR), φ(xR)) = (0.5, 0.5) may be appropriate, while
in cases where risk is sparse (as in most anomaly-detection
domains) more skewed values such as (φ(xNR), φ(xR)) =
(0.9, 0.1) may be more reasonable.

However, a key component of SNARE is that the initial
node potential is determined for each individual node by an
process that can incorporate prior knowledge into the algo-
rithm, for example in form of domain knowledge. In most
domains where fraud is a challenge, there is rich information
available about the potential fraudsters, such as geographic
location, patterns of activity, or other flags for suspicious
behavior. Therefore, we adjust node potential by assessing
the risk to each individual node. There are many ways of do-
ing this; the most useful for our purposes is the use of flags.
A node may be flagged for having several different types of
suspicious behavior, and the domain expert may assign dif-
ferent severity to these flags. Where applicable we chose to
use additive risk, increasing with a sigmoid function:

Fi =
1

1 + exp(−1 ∗ fi)
(3)

where fi is the total flagged risk, summed for all potential
causes for suspicion. The node potential for node i, then, is
φi(R) = Fi and φi(NR) = 1− Fi.

2

When a node is highly flagged it also sends a stronger
risk signal to its neighbors. However, if a flagged node’s
neighbors all have a low initial probability of being risky,
the flagged node will be dampened. This is a reasonable
action, since isolated flags are more likely to occur in error.

One key advantage of SNARE is that it will find risky
associated nodes. Fraud schemes as they occur in accounting
often involve many accounts, which often allow fraudsters to
hide their actions. Since each account may have a very small
risk score associated with it, traditional methods may not
pinpoint the accounts as abnormal. However, SNARE will
use the fact that the accounts interact with each other, and
raise the associated risk of each account, allowing experts to
more easily find the fraudulent behavior.

Since the flags are determined by the domain expert, this
procedure can be successful on a wide variety of node label-
ing tasks, as we will show in the next section.

4. CASE STUDIES
We developed SNARE to help detect risks in accounting

data, so we will primarily evaluate it on its ability to find
misstated accounts in a company’s general ledger.3 How-
ever, since our G/L data is proprietary, and because we
2It may be possible to learn the appropriate flag increments
through machine learning techniques; this is left for future
work.
3Some of the terminology we use here is for the purpose of



believe SNARE is more generally useful, we also evaluate
its performance for graph labeling using public data from
social media and political campaigns. A description of the
data and the problems addressed may be found in Table 2.

4.1 Detecting misstated general ledger ac-
counts

The general ledger (G/L) of a company is an accounting
record that summarizes its financial activity with double-
entry bookkeeping. Within every G/L is a set of accounts
which can be thought of as variables representing the allo-
cation of monetary resources. Business events, such as the
purchase of machinery, would result in a transaction that
reduces the value of the the cash account but increases the
value in the fixed asset account by an equivalent amount.
The G/L is used to prepare the financial statements by ag-
gregating the balances of the accounts and thus auditors are
extremely interested in finding misstatements in this data.

Manipulation of records can be found by experts on both
the G/L and financial statement level. There are many dif-
ferent fraud schemes [14, 28] for which experts have iden-
tified “red flags” that indicate suspicious behavior based on
domain knowledge [9, 14, 22, 26]. For example, one fraud
scheme is known as channel stuffing. In order to meet earn-
ings expectation, fictitious sales are recorded to increase the
revenue for the current quarter. These sales are typically not
complete and are recorded solely to meet the earnings target.
The company overloads their distribution channels to make
it appear as if additional sales have been completed. This
helps the company appear to meet its target. Such channel
stuffing is usually followed by an increase in the number of
returns at the beginning of the next quarter. In the gen-
eral ledger, one could record the return of a sale by debiting
revenue and crediting accounts receivable; thus to look for
channel stuffing one might create a threshold test or red
flag that highlights an account when there are an excessive
number of these transactions.

In practice however, the creation of such a flag to detect
channel stuffing or other schemes is fraught with difficulty
and pitfalls. For instance with our example of channel stuff-
ing one would need to determine what is an excessive amount
of returns since some will always occur for normal business
reasons. Setting the threshold too high could result in miss-
ing potential frauds, but setting the threshold too low could
result in too many false positives. Furthermore, people who
intentionally manipulate the G/L are often well aware of the
red flags used by auditors and actively attempt to avoid de-
tection. Thus, for example, they may try to hide the activity
by spreading the returns over many accounts so as to not set
off any thresholds. Our hope with SNARE is that we could
set the thresholds relatively low so as to be more sensitive to
risky activity and use belief propagation to aggregate risk in
the network to identify misstated accounts with a low false
positive rate.

To analyze general ledger data with SNARE we first need
to create a network with nodes, edges, and initial risks. For
our application, we construct the network as follows:

• Each account in the general ledger becomes a node in
the network.

conducting research in the area of accounting and is by ne-
cessity highly simplified and abbreviated. It not descriptive
of how PricewaterhouseCoopers analyzes general ledgers.

• For every pair of accounts (X,Y ) in the general ledger,
they are connected with an edge if there are transac-
tions where the sum of the amounts debiting X and
crediting Y exceeds a minimum threshold.
• The initial risks on the nodes is determined by per-

forming a preliminary scan over the data to detect red
flags as determined by domain experts. The red flags
are given equal weight and taken together they deter-
mine the initial risk as defined by Equation 3.

For example, Figure 1 shows a partial network with nodes
for accounts receivable, accounts payable, bad debt, non-
trade A/R, and several revenue accounts. In our example
of channel stuffing, thresholds for our red flags could be set
low enough to flag multiple revenue accounts and SNARE
would then propagate the risk to accounts receivable where
the collected belief would be strong enough to implicate it.
In the next two sections, we present results of SNARE on
general ledgers with known misstatements and show that on
real data it is effective at aggregating risk across the network.

4.1.1 GL1
In the first set of G/L data there were a total of 1, 380

accounts, 3, 820 edges, and 11, 532 red flags (nearly every
node had at least one flag). From prior domain knowledge,
26 accounts were identified as being misstated. We applied
SNARE to this network and the message-passing process
converged after 6 iterations. Our initial node potentials were
φi(Risky) = 0.1 and φi(NotRisky) = 0.9 for a node i with
no flags, and additional flags changed node potential accord-
ing to Equation 3, so key information is in the nodes’ number
of flags relative to each other.

Figure 2 shows the ROC curve for the SNARE approach
under the assumption that the 26 identified accounts was
the complete set of true positives (and all other accounts
are true negatives). In addition to SNARE , we plotted to
ROC curve for a default approach based on simply rank-
ing the accounts by the number of tests flagged. From the
graph, we note that SNARE dominated the default sum
approach over all regions of the ROC curve. Furthermore,
SNARE produced an extremely steep initial curve at low
false positive rates. This is very promising as this is the
region of the operating space most interesting from an ap-
plication viewpoint.

4.1.2 GL2
The second set of G/L data contained 1, 678 nodes, 18, 720

edges, and 11, 401 red flags. Unfortunately, with this data
set we had only coarse label information available that iden-
tified general groups of misstated accounts. For our experi-
ments we treated all accounts in an identified group as being
misstated, resulting in a total of 337 positive labels.

The results for GL2 are shown in Figure 3. The results
are not as strong as for the previous G/L, but this may be
due to the noisy class labels. However, there is still sig-
nificant improvement in the ROC curve compared with the
default strategy of using the number of flags as a scoring
mechanism.

Relevant non-proprietary risk-related data with a network
structure is challenging to collect and institutions are reluc-
tant to share data due to privacy concerns. Therefore, we
will next show the use of SNARE for labeling nodes in using
publicly available social network data.



Data Problem description Size (Nodes, Edges) Classes Flags
GL1 Identifying misstated

accounts from a general
ledger.

1, 380 accounts, 3, 820
edges (edge occurs if
transaction)

1, 354 Nor-
mal, 26
Misstated

Expert-identified flags of
certain suspicious behaviors,
11, 532 flags total on the 1, 380
accounts.

GL2 Identifying misstated
accounts from a general
ledger.

1, 678 nodes, 18, 720 edges 1, 305 Nor-
mal and 373
Misstated
(noisy la-
beling, see
Sec. 4.1.2).

Same as GL1 , 11, 401 flags to-
tal on the accounts.

PoliticalBlogs Labeling political affilia-
tion of blogs.

1, 224 blogs joined by hy-
perlinks

636 Conser-
vative and
558 Liberal

220 flags total, 171 unique
blogs with nonzero flags. Blogs
flagged based on key sub-
strings in blog domain name.

Campaigns Correctly classifying polit-
ical candidates on a bipar-
tite network of candidates
and political action com-
mittees.

(2004 cycle) 1, 357 nodes,
11, 334 edges. Edge oc-
curs if there was a donation
from committee to candi-
date.

Republican
or Democrat

Flags were on stated class
of committees, so candidate
labels were acquired only
through propagation.

Table 2: Descriptions of data and problems

Figure 1: An example network with G/L accounts represented by nodes and edges connecting pairs of accounts
with significant amounts debited/credited with each other, under a fraud scheme of channel stuffing. The
left image shows flagged accounts in red (revenue accounts flagged by abnormal debits), before propagation.
The image on the right is the relative risk scores based on beliefs after propagation. Notice that now, since
Accounts Receivable had many flagged neighbors, it now has the highest risk in the network, while Accounts

Payable had a lower relative risk, due to the influence of unflagged Inventory.
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Figure 2: ROC curves for SNARE vs. SUM on GL1. The first graph shows the entire range and the second
shows performance for false positive rates of less than 0.1.
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Figure 3: ROC curves for SNARE vs. SUM on GL2. The first graph shows the entire range and the second
shows performance for false positive rates of less than 0.1.

4.2 Political blogs
The domain of social media presents the difficult task of

automatically assessing political stance of a blog, news site,
or other webpage. Doing so often requires analysis of senti-
ment in the text, which is both difficult and computationally
expensive. Being able to do so by using the structure of the
induced web graph can aid in this problem.

To this end, we tested SNARE on a network of polit-
ical blogs, human-labeled as Conservative or Liberal. The
data contained 758 Liberal blogs and 732 Conservative blogs,
which were joined with edges based on hyperlinks made by
the blog owners. (For details of building the network and
labeling, see [1].) Of these, 1, 224 had degree greater than 0–
558 Liberal and 636 Conservative, which we chose to focus
on for our experiments. The network was relatively dense,
with 16, 718 total edges.

In this case, node information was noisy. We chose to flag
nodes as more likely to be Conservative/Liberal based on
substrings in the blog title. We chose the following flags, and
indicate each substring’s prevalence in blogs human-labeled
as Conservative and Liberal.4 Of the connected nodes, 171
had flags. Some blogs had multiple flags, so we used additive
risk score.

String Incidence Flag
“con” 34 conservative, 9 liberal +1
“right” 33 conservative, 2 liberal +1
“rep” 19 conservative, 9 liberal +1
“bush” 8 conservative, 6 liberal +1
“lib” 11 conservative, 18 liberal -1
“left” 3 conservative, 28 liberal -1
“dem” 4 conservative, 28 liberal -1
“kerry” 2 conservative, 6 liberal -1

Since the number of Conservative and Liberal blogs was
expected to be approximately equal, we used a default po-
tential (φ(xL), φ(xc) = {0.5, 0.5}. With ǫ = 0.3, 95% on

4Crawling the blogs themselves and using textual analysis
would have potentially provided more accurate flags; how-
ever, we chose the more naive flag for experimental purposes,
showing that even imperfect node information provides good
results.

nodes (1, 188 of 1, 247) were classified correctly. An addi-
tional 233 nodes ended with a belief score bcon = 0.5, which
we did not consider to be classified one way or the other
(though most of them were Liberal). Most of these were
isolated nodes; fewer than 20 had a degree greater than 0.
For isolated nodes we simply classified them based on the
flag, which was 0 in most nodes.

SNARE presented improvements over using the flag
method alone or through clustering based on structure. Of-
ten times the flag was misleading, such as in the case of
laughatliberals.com or johnkerrymustlose.com, but the
edge effects usually allowed SNARE to correct the classi-
fication, without needing to do sentiment analysis on the
words. On the other hand, there were occasions where
a few blogs of one class formed a sort of “appendage” on
the main cluster of the opposite class, which typical graph
clustering methods would fail to identify but were success-
fully labeled using SNARE . One example of this is the two
blogs enemykombatant.blogspot.com and democratvoice.

org. The former blog was connected to the Conservative
cluster, but the flag on the latter blog, its neighbor, propa-
gated into it, correctly labeling both blogs as Liberal. This
is shown in Figure 4.

In fact, most misclassifications occurred on cases of un-
flagged blogs of one class only bordering on blogs of the
opposite class, and in cases along the middle between the
two clusters. These cases would be difficult to classify using
node information or edge information alone.

4.3 Political campaign contributions
While labeling political party membership for individuals

running for office is not typically a challenge, we used it as
a way to test our approach to labeling nodes by leveraging
connection structure.

We took subsets of data from the United States Fed-
eral Election Commission 5 from the election cycles of 1980
through 2006, that listed donations from political action
committees to political candidates for President, Senate, and
House of Representatives. We then built a bipartite net-
work of committees and candidates, creating edges between

5www.fec.gov/finance/disclosure/ftpdet.shtml,
downloadable in parsed format from www.cs.cmu.edu/
~mmcgloho/data.html



Figure 4: The political blog network, where human-
labeled conservative blogs are shown in gray and lib-
eral blogs shown in black. Flagged nodes (in either
class) are shown as squares. This section highlights
two outlier Liberal blogs connected to the cluster of
Conservative blogs. Since democratvoice was flagged
as Liberal, these two blogs were correctly classified
with SNARE .

a committee and a candidate if a committee had, at some
point, donated funds to the candidate. The largest cycle,
2004, contained 1, 357 nodes with positive degree (686 can-
didates and 671 committees) and 11, 334 edges. The classi-
fication task was to label a candidate as Democrat or Re-
publican, based only on the committees it was connected to
through donations.

Of the 671 committees, 583 were labeled with a party.
We used these labels as flags (+1 or -1). From there, we ran
SNARE on the bipartite graph to propagate labels to candi-
dates. SNARE correctly labeled 659, mislabeled 12, and did
not label 25, which gave an accuracy of 96 percent. With
one exception (the earliest cycle, 1980, with an accuracy of
82%), all other cycles had above 90 percent accuracy.6

We find that varying parameters does not drastically affect
accuracy, and the method is scalable to large graphs, as we
will explain in the next section.

5. ANALYSIS
We next demonstrate the robustness of SNARE to differ-

ent parameter ranges, analyze its computational efficiency,
and compare the accuracy to to spectral clustering on the
task of graph labeling.

5.1 Sensitivity of parameters
SNARE is very robust and easy to use. Some domain

knowledge is necessary for determining the node potential
for both flagged and unflagged nodes. Default node poten-
tial is typically set at the expected percentage from each
class (for example, {0.9, 0.1} if one expects 90% of nodes
in class 0 and 10% in class 1). Modifications of the sigmoid
function tend to work well for additive risk for flagged nodes.

The edge potential parameter ǫ may be set in the range
of 0 < ǫ < .5 without drastically affecting results. In Cam-

6In fact, using very sparse flags (randomly selecting 10 com-
mittees from each class to flag) produced comparable results.
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Figure 5: A demonstration of the robustness of
SNARE , by varying the ǫ for PoliticalBlogs data,
between 0 and 0.1. Note that even the smallest ǫ is
effective. Accuracy results are similar for ǫ up to 0.5
(omitted to avoid redundancy).

paigns, we observed high sensitivity on the node potentials,
and putting any bias on class tended to cause one class to
dominate. This would seem natural, since the data were
approximately split equally among the two classes, so any
initial bias will dominate the final result. However, the ǫ pa-
rameter showed little sensitivity, and varying it between 0
and 0.5 affected results by less than 1 percent on both Cam-
paigns and PoliticalBlogs. (Setting ǫ ≥ .5 would remove
the homophily assumption, which would not be useful for
tasks addressed here.) Figure 5 shows finer-grained results
of varying parameters on blog data; even the smallest ǫ is
effective, and accuracy does not change up to ǫ = 0.5.

5.2 Computational performance
The most costly operation of SNARE occurs during the

message-passing. Each iteration runs in O(|E|) time, where
|E| is the number of edges in the network. Our experiments
also reached convergence in relatively few iterations (less
than 10 for all datasets). Other negligible computational
costs are in assessing node potentials and calculating beliefs
(both O(N)), and in all cases convergence occurred within
10 message-passing iterations.

Since the data varied in structure, we chose to run scaling
experiments only on Campaigns. To sample, we took differ-
ent window-sizes of election cycles, for every possible cycle,
and timed the completion of SNARE 100 times apiece. A
plot of average time vs. number of edges in the graph is
shown in Figure 6, including the best linear fit.

5.3 Comparison to existing work
To compare our performance to the state of the art, we

also run spectral clustering on our data, which is an un-
supervised method for node labeling. For Campaigns and
PoliticalBlogs the data were already well-clustered, and vi-
sual analysis could cluster reasonably successfully. Spectral
clustering, however, performed less well than SNARE even
on these data sets.

On PoliticalBlogs, attempting to find two clusters failed.
However, clustering results were better by allowing for a
third cluster that did not fit with the other two. The two
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Figure 6: Scalability results for Campaigns data.
SNARE scales linearly, with a 50,000 edge graph
converging in under 3.5 seconds.

major clusters roughly corresponded to the conservative and
liberal sectors. In full, of 1224 non-isolated blogs, 1133 were
correctly classified. There were 83 misclassifications, and 8
in the third “undecided” cluster. This gave an accuracy of
92.5%, slightly less than SNARE .

On Campaigns, results were similar. There were two dis-
tinct clusters roughly corresponding to the parties. There
were 617 correct classifications, 19 incorrect, and 60 unclas-
sified, for 88.5% accuracy.

However, for data sets such as the general ledger data
where the nodes do not form very clear clusters, spectral
clustering does not perform well. In this type of data
SNARE has a distinct advantage.

6. CONCLUSION
We successfully applied link analysis to the domain of risk

detection for accounting data and produced results that were
a significant improvement over a the method that flags sus-
picious accounts. Formerly, an automated system simply
flagged entities that appeared risky, with some sense of pri-
ority. Using link analytic methods, one can rerank the risk
of an account not only based on irregularities in a single ac-
count, but also in other accounts with which it shares trans-
actions. Also, a group of accounts that are closely related
and have distributed risk may be identified while under in-
dividual flags they would fall below the threshold. In many
other domains there may be a cluster of related entities (for
example, collaborators in a social network), where the col-
lection of evidence from each party may put the collective
risk above the threshold.

We also show that SNARE is successful for the task of
node labeling in networks in general. While risky nodes
may be relatively sparse in a graph, we show that by adjust-
ing initial belief scores one can generalize to domains where
labels are more evenly divided between two classes. SNARE
also has the capability of considering prior node-specific do-
main knowledge for flags– while we used accounting-specific
flags in GL1 and GL2 , we chose text flags in PoliticalBlogs
and committee information in Campaigns.

The SNARE system is simple to implement and ex-
tend to other domains, and may be particularly useful for
other types of fraud detection that ordinary graph cluster-
ing methods may have difficulty with, such as link farms or

botnets in the web graph, or fraud in mobile phone networks.
In summary, our contributions are the following:

• We have introduced SNARE , which uses belief propa-
gation, taking into account both domain knowledge as
well as network effects for labeling nodes in a graph,
for risk detection and other applications. SNARE has
the following characteristics:
• Flexible: We have applied SNARE to a variety of do-

mains, including a sample of general ledger accounting
data as well as public datasets (blog labeling, election
contributions).
• Accurate: SNARE has a high labeling accuracy, com-

pared to simply using flags for accounting irregularity
detection (up to 6.5 lift, more than twice that of the
default heuristic), and performs better than spectral
clustering (with up to 97% accuracy).
• Scalable: The algorithm is very efficient, running in

linear time with the number of edges in the graph–
50,000 edges completed in 3 seconds.
• Robust: SNARE is robust with a variety of param-

eters, so it requires almost no tweaking of parameters
to work correctly. It is therefore flexible, simple to im-
plement, and can be applied to many other domains,
in addition to those we have already introduced.
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