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Abstract. Multiple cooperating robots are able to complete many tasks more quickly and reliably than

one robot alone. Communication between the robots can multiply their capabilities and e�ectiveness, but

to what extent? In this research, the importance of communication in robotic societies is investigated

through experiments on both simulated and real robots. Performance was measured for three di�erent

types of communication for three di�erent tasks. The levels of communication are progressively more

complex and potentially more expensive to implement. For some tasks, communication can signi�cantly

improve performance, but for others inter-agent communication is apparently unnecessary. In cases where

communication helps, the lowest level of communication is almost as e�ective as the more complex type.

The bulk of these results are derived from thousands of simulations run with randomly generated initial

conditions. The simulation results help determine appropriate parameters for the reactive control system

which was ported for tests on Denning mobile robots.
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1. Introduction

Robot system designers must carefully consider

each component of their design. The inclusion of

sensors, actuators, or additional robots must be

justi�ed by contributing to e�cient task comple-

tion. Components that do not directly contribute

add cost without bene�t. Communication is an-

other component of multiagent robotic systems

that merits careful consideration. The question is

not simply whether or not to include inter-robot

communication, but what type, speed, complexity

and structure. How should these design decisions

be made?

As in other disciplines, a formal methodology

helps the designer answer these questions. At the

Georgia Tech Mobile Robotics Laboratory, such

a robot system design methodology has been de-

veloped and re�ned for both single and multia-

gent robotic systems. These systems are imple-

mented in both simulation and on mobile robots

(e.g., [3], [13]). The approach relies on two key

points: 1) an objective metric of system perfor-

mance, and 2) an iterative cycle of simulation and

instantiation on real systems. Through simula-

tion, the designer can quickly discover which sen-

sors, actuators, and control parameters are most

critical. Parameters are varied as performance is

measured and compared to that of other con�gu-

rations. The goal is to �nd a system that maxi-

mizes (or minimizes) the performance metric. Fi-

nally, the con�guration is ported to a real robotic

system for testing. In this article, the approach is

applied to communication in reactive multiagent

robotic systems.

To discover how communication impacts multi-

agent robotic system performance, three societal

robot tasks were devised. The performance in

simulation of a team of robots is measured for

each of these tasks for three di�erent types of

communication. The experiments are designed so

that performance for each type of communication

can be compared across di�erent tasks. In all, a

six-dimensional space of task, environment, and

control parameters was explored including: task,

communication type, number of robots, number

of attractors, mass of attractors, and percentage
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of obstacle coverage. The simulation results were

supported by porting the control system to a team

of Denning mobile robots.

2. Related Work

2.1. Multiagent Robotic Systems

Multiagent robotic systems constitutes a very ac-

tive area of research. A large body of literature

exists regarding systems ranging in size from two

to thousands of robots. Dudek et al [19] provide

a taxonomy of these systems classi�ed along the

dimensions of group size, recon�gurability, pro-

cessing ability, and communication range, topol-

ogy and bandwidth. The research in this article

concentrates on relatively small group sizes, typ-

ically on the order of two to ten agents. Large

scale swarm robotic systems (e.g., [27]) are not

considered.

Fukuda was among the �rst to study multia-

gent robotic systems in the context of what he

refers to as cellular robotics [24]. This pioneer-

ing work is mainly concerned with heterogeneous

agents. The research reported in this article is

for homogeneous societies, where all the agents

are functionally equivalent. Recently, researchers

at MIT's AI Laboratory [16], [40] have studied

aspects of subsumption-based reactive control us-

ing robot societies consisting of up to 20 agents.

In particular, learning methods have been evalu-

ated (e.g., [45]). Applications of multiagent sys-

tems are also being investigated in military envi-

ronments in both the United States and Europe

[43], [34]. Extra-terrestrial planetary exploration

has also been proposed as a useful target domain

for these societies [41].

Our research focuses on three tasks: forag-

ing, consuming, and grazing. Foraging consists

of searching the environment for objects (referred

to as attractors) and carrying them back to a cen-

tral location. Consuming requires the robot to

perform work on the attractors in place, rather

than carrying them back. Grazing is similar to

lawn mowing; the robot or robot team must ad-

equately cover the environment. Of these three,

foraging has been the most widely studied to date.

Floreano [21] describes nest-based foraging strate-

gies using a neural network architecture. Drogoul

and Ferber [20] report results of simulations of for-

aging robots demonstrating the spontaneous evo-

lution of structure such as chains from extremely

simple agents.

A pressing question, and one which the re-

search described in this article addresses, is the

role of communication in multiagent robotic sys-

tems. Arkin [5] previously reported that success-

ful task-achieving behavior can occur even in the

absence of communication between agents. Al-

tenburg and Pavicic created a multi-robot society

consisting of a group of small robots conducting a

search and retrieve task using either an infra-red

or incandescent recruitment signal. The authors

reported an approximately 50% improvement in

performance for target acquisition using this type

of signal. The work as reported in [1] is very pre-

liminary.

Werner and Dyer [52] have studied the evolu-

tion of communication in synthetic agents. They

have demonstrated that directional mating sig-

nals can evolve in these systems given the pres-

ence of societal necessity. MacLennan [38] also

has studied this problem and has concluded that

communication can evolve in a society of simple

robotic agents. In his studies, the societies which

evolved communicationwere 84% �tter than those

in which communication was suppressed. An or-

der of magnitude better performance was observed

when learning was introduced. Franklin and Har-

mon, in simulation research conducted at ERIM

[22], used a rule-based cooperative multiagent sys-

tem to study the role of communication, cooper-

ation, and inference and how these relationships

lead to specialized categories of cooperative sys-

tems. Regarding communication, they recognized

that information need not be explicitly requested

by a receiver in order for it to be potentially useful

to the multiagent system as a whole.

Yanco studied communication speci�cally in

the context of robotic systems. In her research

[53], a task is de�ned which requires communi-

cation to coordinate two robots, Ernie and Bert.

The robots have a limited vocabulary which self-

organizes over time to improve the performance

of the task, which involves mimicking the behav-

ior of a leader robot. Noreils [44] describes coor-

dinated protocols as a basis for encoding commu-
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nication signals between robots for navigational

tasks. Formal theoretical methods are also being

applied in a limited way to this problem. For ex-

ample,Wang [51] has looked at distributed mutual

exclusion techniques for coordinating multi-robot

systems.

The research we report in this article is moti-

vated by the desire to create a design methodol-

ogy for multiagent reactive robotic systems. To

e�ectively design these systems it is important

to choose correctly the number of agents and the

communication mechanisms of a robot society for

a particular task. This goal is decidedly di�erent

than the studies reported above.

2.2. Biological Systems

Nature o�ers a wealth of existing successful be-

haviors which robot designers can often directly

apply to their work. Since communication is im-

portant in many natural societies it is appropriate

to look to them for inspiration. Our strategy for

creating multiagent systems has been signi�cantly

inuenced by biological and ethological studies. In

[10], we reported the dimensions by which commu-

nication can be described in these systems. A few

speci�c examples of the role of communication in

animal societies are reported below.

One of the most commonly studied social bi-

ological systems is that of ants. Excellent refer-

ences on their social organization and communi-

cation methods include [29], [25]. Ants typically

use chemical communication to convey informa-

tion between them. Goss et al [26] have studied

foraging behavior in ants, creating computer mod-

els that are capable of replicating various species'

performance for this task. Franks [23] has looked

in particular at the behavior of army ants in the

context of group retrieval of prey regarding the

relationships of mass to objects retrieved and ve-

locity of return.

Tinbergen's inuential work on social behav-

ior in animals [50] describes a range of behav-

iors including: simple social cooperation involv-

ing sympathetic induction (doing the same things

as others), reciprocal behavior (e.g., feeding ac-

tivity), and antagonistic behavior; mating behav-

iors involving persuasion, appeasement, and orien-

tation; family and group life behaviors involving

ocking, communal attack (mobs), herding behav-

iors, and infectious behaviors (alarm, sleep, eat-

ing); and �ght-related behaviors involving repro-

ductive �ghting (spacing rivals), mutual hostility

(spacing group individuals), and peck-order (re-

ducing �ghting).

An interesting study showing environmental

impact on foraging behavior in �sh is presented in

[18]. The factors considered include food supply,

hunger, danger and competition. Mob behavior

and communication in the whiptail wallaby [31]

also provides an understanding for the emergent

organization of multiple agents and the nature of

communication that supports this group behavior.

Studies in primates have been conducted regard-

ing the organization of colonies [2] relative to their

environment. Finally, research in display behavior

in animals (e.g., [42]) provides insights in relation

to the state-based communicationmechanisms de-

scribed later in this article.

3. Three Tasks for Robotic Societies

The task a robotic system is to perform dictates

to some extent the sensors and actuators required.

It is not as apparent how the task impacts control

system and communication parameters. To inves-

tigate this question, three generic multiagent tasks

are considered: Forage, Consume, and Graze.

3.1. Forage

The Forage task for a robot is to wander about

the environment looking for items of interest (at-

tractors). Upon encountering one of these attrac-

tors, the robot moves towards it, �nally attach-

ing itself. After attachment, the robot returns

the object to a speci�ed home base. Many ant

species perform the Forage task as they gather

food. Robots performing this task would poten-

tially be suitable for garbage collection or speci-

men collection in a hazardous environment.

Figure 1a shows a simulation of two robots for-

aging for seven attractors and returning them to

a home base (the simulation environment is de-

scribed in Section 6). In the simulation, obsta-
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cles are shown as large black circles, attractors are

represented as small circles, and the paths of the

robots are shown as solid or dashed lines. They

leave dashed lines as they wander, and solid lines

when they acquire, attach, and return the attrac-

tors to home base.

The mass of the attractor item dictates how

quickly a robot can carry it. The heavier the at-

tractor, the slower the speed. Several robots co-

operating can move the attractor faster, but only

up to the maximum speed of an individual robot.

3.2. Consume

Like Forage, the Consume task involves wan-

dering about the environment to �nd attractors.

Upon encountering an attractor, the robot moves

towards it and attaches itself to the object. Un-

like the Forage task, however, the robot per-

forms work on the object in place after attach-

ment. The time required to do the in-place work

is proportional to the mass of the object. It is not

necessary for the robot to carry the object back

to home base. Applications might include toxic

waste cleanup, assembly, or cleaning tasks.

Figure 1b shows a simulation of two robots con-

suming seven attractors. Note that this task is

performed in exactly the same environment as the

forage task shown in Figure 1a. The robots leave

dashed lines as they wander, and solid lines when

they acquire and move to the attractors.

The mass of the attractor item dictates how

quickly a robot can consume it. The heavier the

attractor, the more time it takes. Several robots

cooperating can consume an attractor faster. For

this task the rate of consumption is linear with

the number of robots and has no ceiling.

3.3. Graze

The Graze task di�ers from Forage and

Consume in that discrete attractors are not in-

volved. Instead, the object is to completely cover,

or visit the environment. Some familiar exam-

ples are mowing the lawn, sowing seed, and of

course, cows grazing. The Graze task for a robot

is to search for an area that has not been grazed,

move towards it, then graze over it until the en-

tire environment (or some percentage of it) has

been covered. It is assumed that the robot pos-

sesses some means to \graze" and that it grazes

over a �xed \swath." The size of the task is dic-

tated by the proportion of environment that must

be covered before completion. Figure 1c shows

a simulation of two robots grazing over 95% of

the environment. The robots leave dashed lines

as they wander, and solid lines when they graze.

Grazing robots might be used to mow, plow or

seed �elds, vacuum houses [37], or remove scrub

in a lumber producing forest.

The size of the swath that a robot can graze,

and the percentage of the area that the robot must

graze over both a�ect how long it takes to com-

plete the task. Multiple robots can complete the

task faster if they avoid traversing already grazed

areas and if they can �nd ungrazed areas quickly.

3.4. Task Parameters

Each of the task de�nitions include parameters

that a�ect the speed at which a robotic system

can carry them out. These are the most impor-

tant:
� Number of attractors. Clearly the number

of attractors the robots must collect or consume

will a�ect how long it takes to accomplish the

task.
� Mass of attractors. In general terms, an at-

tractor's mass can be thought of as a \trans-

portability" factor for the Forage task, or a

\workability" factor for the Consume task.
� Graze coverage. For the Graze task, the to-

tal size of the area and the percentage required

to be grazed directly impacts the time to cover

it.

Sections 7 and 8 report experimental results on

how each of these factors a�ect performance.

3.5. Complex tasks

For this work, only the three basic tasks and the

behaviors necessary for robots to perform them

are considered. The results for these tasks are

important because more complex tasks are easily

described as combinations of simpler ones. Con-

sider a robot removing scrub from a forest, after
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Forage Consume Graze

Fig. 1. Simulation of Forage, Consume, and Graze with two robots and seven attractors.

working for a period of time, it must return to a

refueling station. The scrub removal portion of

the task is analogous to Graze, while refueling is

similar to Consume.

Another complex task, BoundingOverwatch,

is a movement tactic utilized by Army Scouts.

Usually employed by two groups of two ground

vehicles, it allows safe penetration into hostile

areas. Each group moves forward a short dis-

tance, then waits and \covers" the other group

as it moves forward. A behavior to perform

BoundingOverwatch can be built as a more spe-

cialized and coordinated Consume task. Once ap-

propriate waypoints for each group are selected,

virtual attractors can be placed there. The be-

havior would emerge as each two element group

successively moves from attractor to attractor.

Other research in our laboratory is underway

which investigates how complex behaviors may be

speci�ed as combinations of basic behaviors [36].

The research includes a language which allows in-

dividual robots, and societies of robots to be de-

scribed formally. Formal operators allow basic,

or primitive, behaviors to be grouped into more

complex assemblages. These assemblages are fur-

ther combined to form the overall behavior of the

robot. The language includes operators that coor-

dinate individual robots into cooperating groups.

For clarity, this article will describe the robot be-

haviors somewhat less formally than in this related

work, but the same recursive philosophy applies.

4. Reactive Control

A schema-based reactive control system is used in

this research. To provide the reader appropriate

background, a brief summary of reactive control

is �rst provided, followed by some of the special

characteristics of schema-based systems.

Reactive control is a paradigm which emerged

in the mid-1980's as a new approach to controlling

robots. It arose in response to perceived problems

in earlier research which required heavy reliance

on internal world models. Reactive control is char-

acterized by several distinct features:

� Multiple parallel behaviors are constructed in

a modular fashion.

� The design of the systems is in a bottom-up

manner, incrementally adding more and more

competence to the robot.
� Perception and action are tightly coupled.

� Reliance on explicit world models and represen-

tational knowledge is avoided during execution.

� They are particularly well-suited for dynamic

and unstructured domains.

Brooks' subsumption architecture is a well-

known example of this control paradigm [15].

Other representative examples include [3], [30],

[46], [39], [49]. These various strategies di�er in

several signi�cant ways including the organization

and decomposition of behaviors and whether arbi-

tration, action-selection, or concurrent processing

is used. The interested reader is referred to [8] for

a more complete review.

Schema-based reactive control has been widely

used with success in our laboratory for both sim-

ulation studies and real robot implementations
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(e.g., [3], [5], [12], [13], [14]). Some features

which distinguish schema-based robotic control

from other reactive approaches include:

� A dynamic network of processes (schemas) is

used rather than a hardwired layered system.
� No arbitration is used, instead behaviors

(schemas) execute concurrently.

� Potential �eld techniques are used to encode

the robot's behavioral response.

� Flexibility is introduced by allowing high-level

knowledge and planning to select and parame-

terize the system [6].

� Adaptation and learning are facilitated through

this exibility [17], [47], [48].

� Neuroscienti�c, psychological, and ethological

studies provide motivation for schema use. [7]

In schema-based control, each of the active be-

haviors (motor schemas) computes its reaction to

its perceptual stimuli using a method analogous

to potential �elds [3]. It must be noted that un-

like traditional potential �elds [33], [32], the entire

�eld is never computed, only the robot's reaction

to its current perception of the world at its present

location. All of these independent computations

are summed and normalized and then sent to the

robot for execution. This perceive-react cycle is

repeated as rapidly as possible and is facilitated

by the use of action-oriented perception [4] which

permits only task-relevant information to be pro-

cessed on a need-to-know basis. Problems with

local minima, maxima, and cyclic behavior which

are endemic to many potential �elds strategies are

handled by several methods including: the injec-

tion of noise into the system [3]; resorting to high-

level planning [6]; repulsion from previously vis-

ited locales [14]; continuous adaptation [17]; and

other learning strategies [47], [48]. Schema-based

robot control has been demonstrated to provide

robust navigation in complex and dynamic worlds.

The Appendix contains information on the spe-

ci�c computation of the individual schemas used

in this research.

4.1. Baseline Assemblage Parameters

Experimental results were generated for the tasks

described in Section 3 by comparing performance

of proposed robotic systems to baseline, or con-

trol, performance results. The baseline data was

computed by �rst selecting a reasonable set of con-

trol parameters, then running a statistically sig-

ni�cant number of simulations. Values for these

parameters are based on previous research [5]. In

this section, the behaviors for executing the three

tasks (Forage, Consume, and Graze) and their

baseline parameters are described.

At the highest level, the tasks themselves

are assemblages which are represented as �nite

state acceptors (FSAs) consisting of several states.

FSAs provide an easy means for both expressing

and reasoning about behavioral sets by providing

formal semantics [11]. Each state corresponds to

a separate assemblage in which a constituent set

of motor schemas is instantiated if that particular

state is active. Perceptual T riggers cause tran-

sitions between states. Each active motor schema

has a perceptual schema associated with it to pro-

vide the information necessary for the robot to

interact with its environment.

4.2. Forage

For the Forage task, the robots can be in one of

three states: wander, acquire, and deliver. All

robots begin in the wander state. If there are

no attractors within the robot's �eld of view, the

robot remains in wander until one is encountered.

When an attractor is encountered, a transition to

the acquire state is triggered. While in the ac-

quire state, the robot moves towards the attrac-

tor and when it is su�ciently close, attaches to

it. The last state, deliver, is triggered when the

robot attaches to the attractor. While in the de-

liver state the robot carries the attractor back to

home base. Upon reaching home base, the robot

deposits the attractor there and reverts back to

the wander state. Figure 2 shows the FSA for

Forage. 1

For each state, the active schemas and their

parameters are:
� Wander State

noise: high gain, moderate persistence to

cover a wide area of the environment.

avoid-static-obstacle for objects: su�-

ciently high to avoid collisions.
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avoid-static-obstacle for robots 2: mod-

erately high repulsion to force individual

robots apart and more e�ciently cover the

environment.

detect-attractor: perceptual schema

that triggers the acquire state when the

robot senses an attractor.

� Acquire State

noise: low gain, to deal with local minima.

avoid-static-obstacle for objects: su�-

ciently high to avoid collisions.

avoid-static-obstacle for robots: very

low gain, to allow robots to converge on

the same attractor and thus cooperate, but

avoid colliding with one another.

move-to-goal: high gain to move the

robot to the detected attractor.

detect-attachment: a perceptual

schema that triggers a state transition to

deliver when the robot is close enough to

attach to the attractor.

� Deliver State

noise: as in acquire, low gain to deal with

local minima.

avoid-static-obstacle for objects: as in

acquire, su�ciently high to avoid collisions.

avoid-static-obstacle for robots: same

as in acquire.

move-to-goal: high gain, with home base

as the target.

detect-deposit: a perceptual schema

that triggers a state change when the robot

reaches home base.

Speci�c values used for schema gains and pa-

rameters in this study are listed in Table 1

(Sec. 6.3).

Deliver

Acquire
Encounter

Deposit
Attach

Wander

Fig. 2. The Forage FSA

4.3. Consume

The FSA and behaviors for the Consume task

(Figure 3) are similar to those used in Forage.

In fact, the schemas and their gains are identi-

cal in the wander and acquire states. The con-

sume state, however, is unique to to this behav-

ior. In the consume state, only one motor schema,

consume-attractor is activated. It reduces the

mass of the attractor at a �xed rate over time.

When the attractor is fully consumed (mass zero)

it is deactivated and the robot transitions back

to the wander state. Table 1 shows the schema

parameters for Consume.

4.4. Graze

For the Graze task, the wander and acquire states

are again similar to those of Forage and Con-

sume. The primary di�erence is that detect-

attractor in the wander state is replaced with a

similar detect-ungrazed-area schema. Detect-

ungrazed-area has the same �xed sensor range

as detect-attractor, but it detects ungrazed ar-

eas instead of attractors. Each robot starts in

the wander state and searches for ungrazed areas.

Upon encountering one, it transitions to the ac-

quire state and moves towards it. When the robot

arrives at the graze site, it transitions to the graze

state. The graze state is quite di�erent from the

corresponding states in the other FSAs. While in

the graze state, the robot tends to move along its

current heading as it \grazes" over a �xed swath

of the environment. As long as there continues

to be ungrazed areas directly ahead, the robot re-

mains in the graze state. The active schemas for

this state are:
� noise: low gain, to deal with local minima.

Acquire
Encounter

Attach

Consume

Complete

Wander

Fig. 3. The Consume FSA



8 Balch and Arkin

Acquire
Encounter

Complete

Graze

Arrive

Wander

Fig. 4. The Graze FSA

� avoid-static-obstacle for objects: high

enough to avoid collisions.

� avoid-static-obstacle for robots: very low, to

allow robots to graze close by, but avoid colli-

sions.
� probe - moderate gain, to encourage the robot

to keep moving along its current heading to-

wards ungrazed areas.

� graze - performs the actual graze operation

over a �xed swath.

� detect-grazed-area - perceptual schema that

triggers a state change once the robot has com-

pletely grazed the local area.

For simulation purposes, Graze is implemented

by maintaining and marking a high resolution grid

corresponding to the environment. Initially, the

entire grid is marked as ungrazed. As robots

graze, they mark visited areas on the grid accord-

ingly.

Gains and parameters for each of the schemas

active in the graze state are listed in Table 1.

5. Forms of Inter-agent Communication

Three di�erent types of communication are evalu-

ated in this research. Using a minimalist philoso-

phy, the �rst type actually involves no direct com-

munication between the agents. The second type

allows for the transmission of state information

between agents in a manner similar to that found

in display behavior in animals [42]. The third

type (goal communication) requires the transmit-

ting agent to recognize and broadcast the loca-

tion of an attractor when one is located within

detectable range. Each of these forms of commu-

nication is described in more detail below.

5.1. No Communication

For this type of multiagent society no direct com-

munication is allowed. The robots are able to

discriminate internally three perceptual classes:

other robots, attractors, and obstacles. None of

this information, however, is communicated to

other agents. Each robot must rely entirely upon

its own perception of the world. Arkin has shown

in previous work [5] that this basic information is

enough to support cooperation in robot retrieval

tasks (Forage). Cooperation in this context refers

to the observed phenomena of recruitment, where

multiple agents converge together to work on the

same task. The baseline results (Section 7) show

that cooperation also emerges in the Consume

and Graze tasks as well.

5.2. State Communication

When state communication is permitted, robots

are able to detect the internal state (wander, ac-

quire, or deliver) of other robots. For the results

reported in this article, the communication is even

simpler than that, where only one bit of data is

transmitted: with zero indicative of an agent be-

ing in the wander state and one indicating that

it is in any state other than wander (i.e., acquire,

deliver, consume, or graze). In [9], this type of

communication was shown to provide a distinct

advantage over no communication for performance

of the Forage task. Communication is often con-

sidered a deliberate act, but state communication

is not necessarily \intentional" since information

can be relayed by passive observation. The sender

does not necessarily explicitly broadcast its state,

but allows others to observe it. In nature this

type of communication is demonstrated when an

animal changes its posture or external appearance,

such as a dog raising its hackles or exhibiting ight

behavior in response to fear.

To take advantage of state information in reac-

tive control, the behavioral assemblages for each

task are modi�ed slightly. >From a robot's point

of view, the most important states to look for in

another robot are those where the other robot has

found an attractor or an area to graze; that means

that the other robot has found useful work. If the

robot goes to the same location, it is likely to �nd
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useful work as well, or at least be able to assist

cooperatively. The appropriate states are acquire,

deliver, consume, or graze ; in the wander state

the robot has not yet found any work to do.

For all three tasks, the behaviors are modi�ed

so that a robot will transition to acquire if it dis-

covers another robot in acquire, deliver, consume,

or graze. Since the robot may not yet know the

location of the attractor, it follows the other robot

instead. Once the attractor is detectable it heads

directly for it.

5.3. Goal Communication

Goal communication involves the transmission

and reception of speci�c goal-oriented informa-

tion. Implementation on mobile robots requires

data to be encoded, transmitted, received, and de-

coded. Goal communication di�ers from the other

two levels in that the sender must deliberately

send or broadcast the information. A natural ex-

ample of this type of communication is found in

the behavior of honeybees. When a bee discovers

a rich source of nectar, it returns to the hive and

communicates the location with a \dance" which

encodes the direction and distance from the hive

to the source.

For reactive control, goal communication is im-

plemented by modifying the behavioral assem-

blages in the same manner as described for state

communication. However, instead of following the

transmitting robot that discovered the attractor,

a receiving robot moves directly toward the loca-

tion of the attractor. The intent is that the agent

may now follow a more direct path (beeline) to

the attractor.

This very rudimentary form of communication

only broadcasts the goal that the transmitting

agent is involved with. Another mode of com-

munication, not yet explored, involves the trans-

mission of all detected attractors independent of

whether the transmitting agent is already acquir-

ing or delivering one. This would present more

options for the receiving agent, perhaps choosing

to move to the closest attractor independent of

whether or not the transmitting agent would ben-

e�t from its help. This additional form of commu-

nication is left for future work.

5.4. Explicit versus Implicit Communica-

tion

The implementation of goal and state communi-

cation requires explicit signaling and reception of

the communicated information. State communi-

cation can be implemented simply by mounting a

binary signal atop the robot which is either on or

o� depending on the robot's internal state. This

communication, although trivial, is explicit as it

requires the deliberate act of invoking the signal.

Information pertinent to cooperation might be

gathered by other means as well. The internal

state of a robot could be inferred by observing its

movement (e.g., recognizing a robot in the wan-

der state due to apparent random movements),

thereby placing a larger perceptual burden on the

receiving agent. Robots can also communicate

through their environment. In the graze task,

robots leave evidence of their passage since the

places they visit are modi�ed. This fact is observ-

able by the other robots. These types of commu-

nication are referred to as implicit since they do

not require a deliberate act of transmission.

Implicit communication was found to be an im-

portant mode of cooperation in simulations of the

graze task. Since this communication emerges

from the interaction of the agent and the environ-

ment, it cannot be \turned o�." Thus compar-

ative analyses of performance with and without

implicit communication are not meaningful.

6. Simulation Environment

The simulation environment should provide an ac-

curate estimate of robot performance in the real

world. Simulation is important because it o�ers a

means to test many robot system con�gurations

quickly. To be useful, the simulation must re-

port performance in terms of the prescribed per-

formance metric and realistically emulate the envi-

ronment and the robot's interaction with it. Fur-

thermore, the simulation must allow hardware,

control, and environmental variables to be read-

ily manipulated.

The test environment for this research is writ-

ten in C using the X Windows graphics package.

The simulator has been a useful tool for other re-

search in the Mobile Robot Lab at Georgia Tech,
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including [9], [17], [47], [37], [14] among others.

Results generated in this simulation environment

have routinely been demonstrated on actual mo-

bile robots (e.g., [3], [12], [13], [14]). Except for

minor changes 3, the present simulator is the same

one used in these earlier projects. The simulator

may be run in a visual mode, or in a text-only

mode. The visual mode is used primarily for de-

bugging and qualitative accessments. The text-

only mode is used for multiple runs to gather ex-

tensive statistical data.

Each robot is an identical holonomic vehicle

which is controlled by one of the task assemblages

described above. Each agent's current state, how-

ever, is dependent solely on its own perception.

The robotic agents execute their tasks in a 64 x

64 unit environment. The units are dimensionless,

but for convenience of comparison to real robot

implementations they represent one foot. Time is

measured in steps. Each step is one iteration of

the program that calculates the robots' next posi-

tions. The robots are able to sense their location

in the environment, and detect obstacles, attrac-

tors and other robots within a �xed radius �eld of

view. They are able to grasp and carry attractors,

consume attractors, or graze as the task dictates.

The simulation automatically enforces the limits

and rules set forth in the task speci�cations, as

well as sensor/actuator limits. The robots are al-

lowed to move without restriction within the 64 x

64 environment, but they may not move outside

of it.

6.1. The Performance Metric

What is \performance"? Since one goal of this

research is to report the impact of communica-

tion on robotic societies, performance must be ob-

jectively measurable. Selection of a performance

metric is important because these metrics are of-

ten in competition - i.e., cost versus reliability.

Some potential metrics for multiagent robotic sys-

tems are:

� Cost - Build a system to accomplish the task

for the minimum cost. This may be appropri-

ate for many industrial tasks. Use of this metric

will tend to reduce the cost of the system and

minimize the number of robots used.

� Time - Build a system to accomplish the task

in minimum time. This metric will lead to a

solution calling for the maximum number of

robots that can operate without interference.

� Energy - Complete the task using the small-

est amount of energy. This is appropriate in

situations where energy stores are limited, e.g.,

space or undersea applications.
� Reliability/Survivability - Build a system

that will have the greatest probability to com-

plete the task even at the expense of time or

cost. This may be useful for certain strategic

military applications.

The task metric can also be a numeric combina-

tion of several measurements. Whatever the met-

ric is, it must be measurable, especially in simula-

tion. For this research, time to complete the task

was chosen as the primary performance metric. It

is easily and accurately measurable and conforms

to what is frequently thought of as performance.

No claim is made however that this is the \best"

metric; robot path length or energy consumption

may be equally useful. In the simulation stud-

ies described herein, performance is measured by

counting how many iterations the simulation pro-

gram executes before the task is completed.

There are a few initial conditions for some

tasks that prevent the robots from completing it.

For example, if an attractor was somehow placed

within a circle of obstacles, the robots would never

be able to reach it. Such a scenario is not solvable

by any robot system without the capacity to move

the obstacles. Other scenarios, however, may ul-

timately be solvable, but may potentially defeat

the purely reactive strategies presented here. To

provide for these situations, the simulation is al-

lowed to continue for 8000 steps before failure is

declared. Since most runs complete in less than

2000 steps, it is highly likely that the system will

never complete the task if it does not do so before

failure is declared. The objective is to evaluate the

impact communication makes on performance, so

it is not important to know why the system failed,

just to measure how it improves with communica-

tion. In cases of failure, the run is recorded as

having taken 8000 steps. This approach reports

optimistic performance since the run might never

have completed (in�nite steps). But, to show im-

provement over a failure case, the system must
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actually complete the task and in less than 8000

steps.

6.2. Environmental Factors

As much as can be known about the target sys-

tem's operating environment should be incorpo-

rated into the design process for the control sys-

tem. If these factors are known a priori, they can

be included in the simulation. Important environ-

mental factors include:
� Mobility factors: Is the terrain mountainous

or at? What percent of the environment is

served by roadways?
� Obstacle coverage: What percent of the en-

vironment is cluttered with obstacles?
� Metric a priori knowledge: Does the robot

have a good map of the area or is it completely

unknown?
� Static or dynamic: Is the environment �lled

with moving objects, thus reducing the utility

of maps, or is the environment a static one?

For this study, a static at environment with

randomly scattered obstacles is assumed. No a

priori knowledge of the obstacles' location is avail-

able. Obstacle coverage is varied from 5% to 20%

of the total area, with 15% as a baseline.

6.3. Motor and Sensor Constraints

As a step in the robot system design methodology,

realistic bounds on the expected motor and sen-

sor capabilities of robots are set. These bounds

help reduce the search space for an optimum solu-

tion. The a�ect of communication on performance

is the main thrust of this research, so �xed val-

ues representing the expected performance of the

robots were used. If the goal were to determine

optimal sensor or motor requirements, those pa-

rameters could be varied as well. Table 1 shows

the experimental motor and sensor values used in

the simulations.

7. Baseline Results and Analysis Tools

To build a baseline database of performance mea-

surements, a con�guration of environment, con-

trol, and task parameters was selected empiri-

cally (Table 1). The baseline database serves as

a control for comparison in the evaluation of the

communication experiments described below. The

database is generated by running the simulation

using the baseline con�guration parameters for

each of the three tasks: Forage, Consume, and

Graze. For each task, the number of robots and

the number of attractor objects (or percentage of

graze coverage) is varied. For each combination of

robots and attractors, a measure of performance

is taken by timing runs on 30 di�erent randomly

generated scenarios. Overall performance is the

average of those 30 runs. For each run, the sim-

ulation records the number of steps taken, and

whether or not the run timed-out (failed).

The baseline performance measurements were

made with no communication allowed between

the robots. This control is then compared with

the performance in each of the three tasks when

state or goal communication is allowed (Section

7). >From these comparisons, one can see quan-

titatively how these modes of communication im-

pact performance.

7.1. Basic Performance

Performance data is visualized as a 3-dimensional

surface with the X axis reecting the number of

robots and the Y axis indicating the number of at-

tractors or percent coverage4 (see Figure 6). The

Z, or height, axis shows the average time to com-

plete the task for that combination of robots and

attractors (smaller numbers are indicative of bet-

ter performance).

The plots for all three tasks share a simi-

lar shape. Notice that the back left corner is

the highest point on the three surfaces. This is

expected since that location represents the case

where one robot by itself must complete the most

work (seven attractors for forage and consume,

95% coverage for graze). Similarly, the right front

is the lowest point, since the largest number of

robots (�ve) complete the least amount of work

(one attractor). It is also apparent for all three

tasks that performance initially improves sharply

as more robots are added, but then tapers o�. In

some cases, performance does not improve much
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Table 1. Experimental Parameter Values. Unless noted otherwise, the values are the same for all three tasks.

Factor Baseline Experimental Range

Task Factors

Number of attractors - 1 to 7

Mass of attractors 5 avg 1 to 8
Graze Coverage 95% 13% to 95%

Environmental Factors

Obstacle Coverage 15% 10% to 25%
Obstacle radius - 1.0 to 4.0

Number of Robots - 1 to 5

Sensor and Motor Constraints

Maximum Velocity 2 ft/step �xed
Attractor Sensor Range 20 ft �xed

Obstacle Sensor Range 20 ft �xed
Communication Range 100 ft �xed
Communication Type No No,State,Goal
Graze Swath 2 ft �xed
Consume Rate 0.01 units/step �xed

Control Parameters

Obstacle Sphere of Inuence 5 ft �xed
Obstacle Repulsion Gain 1.0 �xed

Robot Repulsion Sphere 20 ft �xed
Robot Repulsion Gain (wander) 0.5 �xed

Robot Repulsion Gain (acquire) 0.1 �xed
Robot Repulsion Gain (deliver; graze) 0.1 �xed

Move-to-Goal Gain (acquire) 1.0 �xed
Move-to-Goal Gain (deliver) 1.0 �xed
Probe Gain (graze) 1.0 �xed

at all with more than 4 robots. This is important

if robots are expensive.

To illustrate, suppose a robotic system for the

Forage task should be both fast and inexpensive.

Fig. 5. Optimizing in Forage for time and cost. Perfor-
mance here is de�ned as time to complete the task plus the
number of robots times 300 (no communication).

Performance is then a combination of the time to

complete the task and the cost of the system. Ulti-

mately, the designer must balance the importance

of cost versus speed of completion, but one ap-

proach is to amortize the cost of the robotic sys-

tem over its expected lifetime. Thus the cost of

one run is the overall cost divided by the expected

number of runs. For this example, suppose the

amortized cost of each robot per run is valued the

same as 300 time steps. Then if N is the number

of robots, and T is the time to complete the task,

the overall performance is:

P = N � 300 + T (1)

Using timing measurements taken for Forage and

adding in amortized cost, a three dimensional sur-

face is generated for the new performance metric

(Figure 5). A system with two robots is generally

best for three or more attractors. If the environ-

ment is expected to contain only one or two at-
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Fig. 6. Time to complete the Forage, Consume, and Graze tasks for one to �ve robots and one to seven attractors with
no communication.

tractors, one robot is the best choice. Even though

more robots may be faster, the overall goals of the

designer may call for fewer.

7.2. Speedup

Another e�ective tool is speedup measurement. A

plot of speedup reveals how much more e�cient

several robots are than just one in completing a

task. If P [i; j] is the performance for i robots and

j attractors, the speedup at that point is:

S[i; j] =

P [1;j]

i

P [i; j]
(2)

So, if two robots complete the task exactly

twice as fast as one robot, speedup is 1.0 (higher

numbers are better). Mataric introduced a simi-

lar metric of robot performance in [40]. Anywhere

speedup is equal to 1.0, the performance is said

to be linear. Superlinear performance is greater

than 1.0, and sublinear is less than 1.0. Realize,

however, that in some cases more robots will be

faster for actual task completion time, but still

o�er sublinear speedup.

Figure 7 shows speedup plots for Forage,

Consume, and Graze without communication.

Note that speedup for all tasks is generally higher

for larger numbers of attractors. Researchers in

other branches of computer science have found

that randomized search tasks are often completed

in superlinear time on parallel systems [28]. Since

the wander behavior used in all three tasks essen-

tially solves a randomized search task, it is not sur-

prising that performance is superlinear when this

behavior is heavily utilized, as is the case when

there are large numbers of attractors.

Surprisingly, speedup in the Consume task is

sublinear at all but one point (Figure 7b). The

behavior in the consume state can at most o�er

linear speedup (the limit is set by the speci�cation

of the task). So an environment with massive at-

tractors will force the speedup to be limited near

1.0.

Fig. 7. Speedup in the Forage, Consume, and Graze tasks for one to �ve robots and one to seven attractors (no commu-
nication).
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Table 2. Summary of speedup data for three tasks.

Task Avg. Speedup Best Worst

Forage 0.93 1.15 0.64

Consume 0.82 1.01 0.65
Consume(low mass) 0.89 1.26 0.66

Graze 1.07 1.21 0.97

This hypothesis was tested by reducing the

average mass of the attractors, then rerunning

the simulations. In the baseline runs, attractor

mass varies from 2.0 to 8.0 units, but for these

experimental runs, mass was reduced to 1.0 to

4.0 units. Reducing attractor mass allows the

robots to spend more time wandering (a superlin-

ear task) instead of consuming (at most linear).

The speedup for Consume with lower mass at-

tractors is shown in Figure 7. At every point on

the surface, speedup is better for low mass attrac-

tors than for high mass. In fact, in many cases

speedup is superlinear.

Speedup in the Graze task is superlinear at all

but three points on the surface (Figure 7). In the

very worst case, speedup dips to 0.97. Situations

requiring a high percentage of graze coverage re-

sult in the best speedup; the peak is 1.21 for �ve

robots and 95% coverage. In cases where high

graze coverage is required, robots spend more time

in wander as they look for the last bit of area to

graze. Again, since wander is a superlinear time

task, the best speedups should be expected for

those regimes.

Speedup results are summarized in Table 2.

Fig. 7. Side by side comparison of speedup in the Consume task (without communication). Performance with attractors
of average mass 5.0 (left) and 2.5 (right).

7.3. Timeouts

A timeout occurs when a simulation run ex-

ceeds a time limit (for these experiments, the limit

is 8000 steps). A timeout mechanism is neces-

sary to avoid lockups in in�nite loops in the event

the society is unable to complete the task for that

particular world. Frequency of timeouts for each

combination of robots and attractors is measured

and plotted in Figure 8. The frequency of time-

outs serves primarily as a measure of data quality.

In situations where timeout frequency is higher,

the experimenter cannot know for sure how long

the runs would have taken if they were allowed to

complete. Some runs may have completed while

others may have run inde�nitely. When there are

relatively few timeouts, the performance is known

with greater certainty. As would be expected,

most timeouts occur when fewer robots must solve

a task with more attractors or a higher graze cov-

erage requirement.

7.4. Summary of Baseline Results

Baseline results serve as a control for experimen-

tal comparison in assessing the impact of other

communication modes on performance. It is im-

portant to derive and understand fully these basic

results before testing more complex robot con�g-

urations. Important results for the baseline con-

�guration are:

� For a given number of attractors, more robots

complete a task faster than fewer robots.

� For a given number of robots, it takes longer to

complete a task with more attractors.



Communication in Reactive Multiagent Robotic Systems 15

Fig. 8. Frequency of timeouts (percent) in the Forage, Consume, and Graze tasks for one to �ve robots and one to seven
attractors (no communication).

� Some performance metrics may result in a sys-

tem that is optimized with lower numbers of

robots than for other metrics.
� Speedup is greater in scenarios where larger

numbers of attractors are present.
� Speedup in the Consume task is mostly sub-

linear, but can be superlinear for lower mass

attractors.
� Speedup in the Graze task is mostly superlin-

ear.
� Timeouts occur more often for low numbers of

robots and high numbers of attractors.

8. Results with Communication

8.1. Communication in the Forage Task

Figure 9 shows a typical simulation run of two

robots foraging for seven attractors with no, state,

and goal communication. Inspecting the images

from left to right reveals an apparent improvement

in the \orderliness" of the robots' paths. The

quantitative experimental results summarized in

Table 3 con�rm these qualitative impressions.

Figure 6a shows a typical performance plot for

Forage, in this case for no communication (better

performance is lower). Each data point represents

30 di�erent simulation runs. The plots for no,

state, and goal communication are quite similar in

contour but there is improvement in performance

evidenced by lower surfaces as the communication

becomes more complex. The statistical analysis in

Table 3 summarizes these observations.

To quantify the di�erence between performance

with and without communication, a performance

ratio plot is computed (Fig. 10). At each point,

the performance with communication is divided

by the performance without communication. Re-

sults greater than 1.0 imply improved perfor-

mance. For instance, a value of 1.1 indicates 10%

improvement. For all the cases tested, State com-

munication improved performance in the Forage

task an average of 16%. On the average, goal com-

munication is 3% better than state communication

in the Forage task.

8.2. Communication in the Consume Task

The impact of communication on performance of

the Consume task is similar to that in Forage.

Figure 11 shows a typical simulation of two robots

consuming seven attractors with no, state, and

goal communication. A surprising result is that

the simulation with goal communication actually

takes longer than the one with state communi-

cation. This slight increase in run time with goal

versus state communication is typical for this task.

A representative example of the basic perfor-

mance data for simulations of the Consume task

is plotted in Figure 6b. Again, the contours for

all three forms of communication are quite simi-

lar. A comparative analysis reveals that on the

average, state communication o�ers a 10% perfor-

mance advantage over no communication. Goal

communication is 4% worse on the average than

state communication. Goal communication, how-

ever, is still 6% better than no communication at

all. Table 3 summarizes these results.
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No Communication State Communication Goal Communication

Fig. 9. Typical run for Forage task No (left), State (center), and Goal (right) Communication. The simulations required
5145, 4470 and 3495 steps, respectively, to complete.

Fig. 10. Performance ratio plot for the Forage task for
Goal versus State communication.

Recall that speedup in the Consume task is

linked to attractor mass (Section 4). Attractor

mass may also impact the bene�t of communica-

tion. Analysis of the data from runs with lowmass

attractors reveals that goal communication per-

formance is almost indistinguishable from that of

state communication (1% worse). Future research

may determine if this result is just an anomaly or

if environmental and task parameters might shift

this trend.

8.3. Communication in the Graze Task

The surprising result from Graze task simulations

is that communication hardly helps at all. Plots

of basic performance data for each of the di�erent

levels of communication are not shown because

they are visually identical (see Figure 6c for the

case with no communication). On average, state

communication is only 1% better than no commu-

nication. Performance with goal communication

is virtually indistinguishable from that with state

communication (0% di�erence). Table 3 summa-

rizes these results.

As robots graze they inevitably leave a record

of their passage: the graze swath. This physical

change in the environment is actually a form of

implicit communication. The robots leave marks

that advise others where work has or has not been

completed. This result is important because it

implies that for tasks where such implicit com-

munication is available, explicit communication is

unnecessary.

No Communication State Communication Goal Communication

Fig. 11. The Consume task with No, State, and Goal Communication. The simulations required 4200, 3340 and 3355
steps, respectively, to complete.
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Task Average Improvement Best Worst

Forage

State vs No Communication 16% 66% -5%

Goal vs No Communication 19% 59% -7%
Goal vs State Communication 3% 34% -19%

Consume

State vs No Communication 10% 46% -9%
Goal vs No Communication 6% 44% -16%
Goal vs State Communication -4% 5% -30%
Goal vs State (low mass attractors) -1% 23% -19%

Graze

State vs No Communication 1% 19% 0%

Goal vs No Communication 1% 19% 0%
Goal vs State Communication 0% 0% 0%

Table 3. Summary of performance ratios for no, state and goal communication.

8.4. Summary of Results with Communication

The performance improvements each type of com-

munication o�ers for each task are summarized in

Table 3. Several important conclusions may be

drawn:
� Communication improves performance signi�-

cantly in tasks with little implicit communica-

tion (Forage and Consume).
� Communication appears unnecessary in tasks

for which implicit communication exists

(Graze).
� More complex communication strategies (Goal)

o�er little bene�t over basic (State) communi-

cation for these tasks (i.e., display behavior is

a rich communication method).

9. Results on Mobile Robots

The ultimate goal of this research is a work-

ing multiagent robotic system; simulation serves

only as a development tool. To demonstrate

the simulation results, and to move towards a

completely functional society, the behaviors for

Forage, Consume, and Graze must be instan-

tiated on mobile robots. The target system is

a group of three Denning mobile robots, George,

Ren, and Stimpy. They each have three-wheeled

kinematically holonomic suspensions and a ring

of 24 ultrasonic range sensors. George, is a DRV-

1; Ren and Stimpy are MRV-2s. Initial results

were obtained by porting tasks to Driver, a menu-

driven motor schema-based reactive control sys-

tem written in C.

9.1. Omnidirectional Sensing

The behaviors used here can bene�t from an omni-

directional sensor which enables robots to discrim-

inate between other robots, attractors and obsta-

cles. Two omnidirectional sensor systems have

been evaluated for multiagent robot implementa-

tion at Georgia Tech: a conic mirror camera sys-

tem, and a laser barcode reading system.

The conic mirror camera system was originally

developed by MacKenzie for the Georgia Tech Un-

manned Aerial Vehicle Team [35]. It is intended

for localization of an unmanned robotic helicopter.

Bright lights located about the environment serve

as reference points for triangulation. The chief ad-

vantage is speed; image processing demands are

comparatively low.

Conic vision can be readily adapted for mobile

robot systems as follows. Marker lights are af-

�xed to attractors and other robots. For di�eren-

tiation, robots have two lights arranged vertically,

while attractors only have one. A typical con�g-

uration is shown in Figure 12 (the system can be

seen atop the robot Ren in Figure 11). Figure

13 is an actual image from the system. An at-

tractor and robot are visible as short bright blobs

on the left side of the image. Azimuth to an at-

tractor may be computed trigonometrically. Since

the robots are equipped with two lights having

a known separation, both azimuth and range are
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Attractor Camera Robot

Conic Mirror

Fig. 12. Typical scene for conic vision processing.

Fig. 13. Image from the conic vision system. The bright

blobs identify an attractor and another robot in the envi-
ronment.

computable. Figure 14 shows how the separation

between the blobs resulting from the two lights on

a robot grows as it approaches.

The laser barcode reader is manufactured by

Denning Mobile Robots. An upward-�ring laser

is positioned in the center of the device. A rotat-

ing mirror inclined at 45 degrees allows it to scan

360 degrees. The sensor is able to detect and ac-

curately report the azimuth to targets coded with

retro-reective tape up to 60 feet away. The bar-

code reader is shown on Ren in Figure 15.

The barcode reader is supported by the Driver

reactive control system, and has been utilized for

both localization and attractor detection tasks.

The system is well suited for multiagent robotic

research. Presently only one barcode reader is

available at Georgia Tech, so multi-robot deploy-

ment is impossible. The conic vision system is not

yet supported by Driver.

Other omnidirectional sensing capabilities for

George, Ren and Stimpy should be available

shortly as our laboratory acquires new sensors

such as IR or laser range scanners.

9.2. Forage

The Forage task described in Section 4 was

ported and tested on Ren and Stimpy. Most of

the required schemas had already been coded in

Driver, but the lack of an existing omnidirectional

sensor system for attractor and robot detection

complicated matters. The problem was circum-

vented by simulating the sensor within an em-

bedded perceptual schema utilizing shaft encoder

data. Spatial locations of attractors and mov-

ing robots are maintained in continuously updated

shared �les. Fidelity is maintained by coding the

perceptual schema so that it does not \reveal" the

location of attractors or other robots until they are

within sensor range.

A test with one robot, Ren, is depicted in Fig-

ure 11. The sequence shown was �rst videotaped

and then images were captured for print from that

tape later. Telemetry from the run is shown at the

right of Figure 11. Initially, Ren is set up at home

base. Two attractors are available for collection,

marked by circles on the oor in the foreground

and background. Another inactive robot, Stimpy

is just o� to the left. Even though Stimpy was not

involved in the task directly, the avoid-static-

obstacle schema for robot to robot repulsion was

active on Ren.

Except for sensor range, parameters were set

as in the baseline simulations (Table 1). Since

the test area is rather small, attractor sensor

range was reduced from 20 to 10 feet. This

value, nonetheless, prevented Ren from immedi-

ately sensing both attractors at home base.

Fig. 14. In this image the other robot has been drawn
closer. Note the increased separation between the two
blobs.
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Stimpy

Homebase
Attractor Attractor

Fig. 11. A Denning robot, Ren, demonstrates the Forage task (left). Ren tags an attractor (center). Telemetry from the
Single-Agent Forage demonstration is shown at right. Home base is in the center. Two attractors are located on the left
and right. The inactive robot Stimpy is in the lower left.

The foreground attractor is eight feet from

home base, so at the start of the test it is imme-

diately visible. Ren moves towards it and \tags"

it in Figure 11. The notional attractor is carried

back to home base. Ren transitions to wander.

Note that the other robot, Stimpy, is located be-

tween Ren and the remaining attractor. Since

wander includes a strong robot to robot repulsion,

Ren continues to search away from the attractor.

The assumption is that Stimpy would search the

rest of the space, but since Stimpy is inactive and

there is no communication present, the attractor

might take an inordinate amount of time to be dis-

covered. A human steps in to help. The human is

able to herd Ren towards the attractor by placing

his hands near the ultrasonic sensors. Once Ren

gets within 10 feet of the attractor, it transitions

to acquire (the human leaves), and then the robot

tags it. Finally, the attractor is deposited at home

base.

A two robot run of the Forage task is shown in

Figure 15. Again, the parameters are those from

the baseline simulation runs, except for the at-

tractor sensor range which was set at 10 feet. The

minimum range a robot could approach an obsta-

cle was set at two feet. There are three attractors

(boxes) and one obstacle (chair) in the environ-

ment. Both robots were initialized at home base.

This run was made without communication. At

the beginning of the run (Fig. 15), the robots enter

the wander state, and are repulsed by each other.

They immediately detect separate attractors. Af-

ter tagging their respective attractors, the robots

deliver them to home base. Again the robots cy-

cle to wander. Only one attractor remains (in the

foreground). The attractor is within Ren's sensor

range, but outside Stimpy's, so Ren approaches

it alone. As Ren returns the attractor to home

base, it carries it within Stimpy's sensor range.

Stimpy responds by approaching Ren and helping

to deliver the attractor. A (hand-drawn) recon-

struction of this run is shown in Figure 16.

9.3. Communication modes and Consume

All three levels of communication for the

Consume task have been implemented and tested

on Ren and Stimpy. A scenario for the two

robots with one attractor was used in testing the

Consume behavior (Figure 17). Although the sce-

nario is simple it serves to illustrate the advan-

tages of and the qualitative di�erences between

the three levels communication described in Sec-

tion 5. Runs on mobile robots are directly com-

pared with simulations of the same scenario in Fig-

ure 17.

In the test scenario, two robots and one attrac-

tor are arranged so that one robot is immediately

within sensor range of the attractor, while the

other is just outside sensor range. In the simula-

tions, the attractor is 20 feet from the lower robot.

If no communication is allowed, one robot should

initially move towards the attractor. The other

robot should move away, due to inter-robot repul-

sion. If communication is allowed, both robots

should initially move towards the attractor since

at least one of them senses it.
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Fig. 15. Two Denning robots, Ren and Stimpy, demonstrate the Forage task (upper left). Ren tags an attractor (upper

right). Stimpy \tags" an attractor (lower left). Ren and Stimpy deliver the attractors to home base (lower right).

These predictions are borne out in the simula-

tions shown in the top row of Figure 17. The sim-

ulations were run in the environment described

in Section 6 using the baseline control parame-

ters (Table 1). In the case of No Communication,

Robot 1 immediately moves to the attractor and

begins consuming it (top left). Robot 2 moves

away, and continues to search for attractors in the

wander state. Eventually it too falls within sen-

sor range of the attractor, moves towards it, and

helps consume it. In the case of State Communi-

cation (top center), Robot 1 again initially moves

towards the attractor. Robot 2 begins to follow it

(dotted line), then transitions to the acquire state

(solid line) when it comes within sensor range of

the attractor. Finally, in the case of Goal Com-

munication (top right), both robots immediately

move to the attractor and consume it. A quali-

tative di�erence between State and Goal Commu-

nication is visible in the paths Robot 2 takes to

the attractor in Figure 17 (top row). With State

Communication, Robot 2, initially outside sensor

range of the attractor, makes a curved path to the

attractor since it can only follow Robot 1 initially

(top center). When Goal Communication is al-

lowed, however, Robot 2 can proceed directly to

the attractor (top right).

Now compare the simulations (top row) with

runs on the robots Ren and Stimpy (bottom row).

Since the sensor range of the robots is set at 10

feet, the scenario was altered for runs on mobile

robots so that the attractor is only 10 feet away

from the lower robot. The telemetry is shown at

half the scale of the simulated runs to account for

the smaller scale of the scenario.

Qualitatively, performance for mobile robots

with No Communication is quite similar to sim-

ulated performance (Figure 17 bottom left). Ini-

tially, Ren does not sense the attractor and ex-

plores the left side of the laboratory instead.

But eventually, it comes within sensor range and

moves to the attractor. When State Communica-

tion is allowed Ren follows Stimpy to the attrac-

tor, making a curved path (bottom center). Fi-
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Home base

AttractorObstacle

Attractor

Attractor

Ren
Stimpy

Home Base

AttractorObstacleAttractor

Attractor

Home Base

Attractor Obstacle

Fig. 16. A reconstruction (from above) of the Forage demonstration.

nally, when Goal Communication is allowed, Ren

travels directly to the attractor (bottom right).

The path of the lower robot for the cases of

State and Goal Communication is somewhat dif-

ferent in simulation than on mobile robots. On

mobile robots, the lower robot curves away from

the upper robot much more than in simulation.

This is a result of two factors. First, the scale

of the telemetry re-creations are half that of the

simulations. Thus, the e�ects of inter-robot re-

pulsion are visually exaggerated. Second, the per-

ceptual process for obstacle detection (a ring of

ultrasonic sensors) is not sophisticated enough to

ignore robots: robots are detected as robots and

as obstacles. The repulsion between them is fur-

ther exaggerated. This problem will be resolved

as better omnidirectional sensors and perceptual

processes are incorporated into our research.

10. Summary and Conclusions

The impact of communication on performance in

reactive multiagent robotic systems has been in-

vestigated through extensive simulation studies.

Performance results for three generic tasks illus-

trate how task and environment can a�ect com-

munication payo�s. Initial results from testing on

mobile robots are shown to support the simulation

studies.

The principal results for these tasks are:
� Communication improves performance signi�-

cantly in tasks with little environmental com-

munication.
� Communication is not essential in tasks which

include implicit communication.

� More complex communication strategies o�er

little or no bene�t over low-level communica-

tion.

More detailed conclusions appear in Sections 7.4

and 8.4 of this article.

Future work involves three major research

thrusts. The �rst is concerned with societal per-

formance in fault-tolerant multiagent robotic sys-

tems; where unreliable communication may be

present and the robotic agents have the potential

for failure. The second research thrust involves in-

tegrating humans more e�ectively with the control

of a society through teleoperation. The last area

includes developing novel methods for formalizing

and expressing multiagent robotic systems with

the goals of producing tools which will facilitate

their use and to establish formally provable prop-

erties (i.e., necessary and su�cient conditions) re-

garding their speci�cations.

Appendix : Motor Schema Formulae

This appendix contains the methods by which

each of the individual primitive schemas used in

this research compute their component vectors.

The results of all active schemas are summed and

normalized prior to transmission to the robot for

execution.

� Move-to-goal: Attract to goal with variable

gain. Set high when heading for a goal.

Vmagnitude = adjustable gain value

Vdirection = in direction towards perceived

goal
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No Communication State Communication Goal Communication

Robot 1

Robot 2

Attractor Robot 1

Robot 2

Attractor Robot 1

Robot 2

Attractor

Stimpy

Ren

Attractor Stimpy

Ren

Attractor Stimpy

Ren

Attractor

Fig. 17. Comparison of simulated Consume task runs (top row) with runs on mobile robots (bottom row).

� Avoid-static-obstacle: Repel from object

with variable gain and sphere of inuence. Used

for collision avoidance.

Omagnitude =

0 for d > S

S�d
S�R

�Gfor R < d � S

1 for d � R

where:

S = Adjustable Sphere of Inuence

(radial extent of force from

the center of the obstacle)

R = Radius of obstacle

G = Adjustable Gain

d = Distance of robot to center of obstacle

Odirection = along a line from robot to center

of obstacle moving away from obstacle

� Noise: Randomwander with variable gain and

persistence. Used to overcome local maxima,

minima, cycles, and for exploration.

Nmagnitude = Adjustable gain value

Ndirection = Random direction that persists

for Npersistence steps

(Npersistence is adjustable)

� Probe: Used in Graze for favoring continued

motion in the current directional heading.

Vmagnitude = adjustable gain value or 0 if

no ungrazed areas detected

Vdirection = Straight ahead along an extrap-

olated path from the current location only if

grazed area ahead. Direction not important if

no ungrazed area ahead as gain is 0.
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Notes

1. This task was described earlier in [9]. The \forage"
state mentioned there corresponds to the \wander"
state here.

2. Avoid-static-obstacle is also used for non-
threatening moving objects. Other schemas such as
escape and dodge can be used for non-cooperative
moving objects when appropriate.

3. The di�erences are in three areas: 1) How test scenar-
ios are generated, 2) What happens when robots fail to

complete the task, and 3) Restrictions on robot move-
ment. In the new simulator, obstacles are not allowed
to overlap one another. Previously, this was allowed,

resulting in a less accurate accounting of obstacle cov-
erage. For this research robots are initially placed in
the center of the environment, at home base. In earlier
research they were placed randomly about the environ-

ment. The authors believe a single starting location for
all robots is more likely in real world implementations.

The previous simulator allowed runs not to exceed a
maximum of 2000 steps. If a run exceeded this time
limit it was halted and discarded. Here the limit is
raised to 8000 steps and runs that timeout are counted
as taking 8000 time steps. In the new simulator, robots

are not allowed to move outside the visual boundaries
of the environment, as was previously the case.

4. For Graze, the percent of area to be grazed is varied in

increments of 13.57%. This allows the di�culty to be
varied in seven discrete steps from 13.57% to 95%. Re-

sults can be directly compared to Forage and Consume
tasks with one to seven attractors.
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