
Visual Sonar: Fast Obstacle Avoidance Using Monocular Vision∗

Scott Lenser and Manuela Veloso
{slenser,mmv}@cs.cmu.edu

Carnegie Mellon University, Pittsburgh, USA

Abstract

We contribute a fast system for avoiding unknown obstacles
on a mobile robot using a simple camera as the only sensor.
The vision module detects objects, both known and unknown,
around the robot. Unknown objects are detected by paying
attention to occlusions of a floor of known colors. Range and
angle to the objects is calculated and used to create a radial
model of the robot’s vicinity. This modeling component keeps
tracks of objects that are currently outside the field of view
of the camera allowing the robot to avoid obstacles it is not
currently looking at. We show the effectiveness of the vision
and modeling algorithms by creating a simple behavior which
wanders around while avoiding obstacles.

1 Introduction
General obstacle avoidance can be effectively accomplished
with several robot sensors including infrared, sonar, or laser.
However this requires that a robot be equipped with such sen-
sors. Instead, we are focused on robots that have vision as
their main sensor. For such robots, modeling all possible ob-
stacles for detection and avoidance is not practical. In this
paper, we contribute an algorithm that allows for a vision al-
gorithm to behave similarly to a sonar sensor. Hence we call
our approach “visual sonar”. With visual sonar, the robot is
capable of effectively detecting modeled objects in the world
while also avoiding any other unmodeled obstacle. The key
technical contributions of the visual sonar algorithm consist
of vision algorithms to detect obstacles, partial identification
of obstacles, and fast algorithms to update a “radial map” of
the environment. The robot can then use the radial map for its
behaviors, in particular for general obstacle avoidance. The
robot computes the open areas without obstacles and then can
move towards these open areas. Visual sonar is robust to dif-
ferent backgrounds, the robot being capable of being trained
on different backgrounds. Our work is inspired by other vi-
sion processing algorithms that reason about the background
of an image [5, 7, 10, 14].

In comparison to related work, our approach offers several ad-
vantages. Our vision algorithms run extremely quickly, run-

∗This research was sponsored by Grant No. DABT63-99-1-0013 and by
generous funding by Sony, Inc. The content of this publication does not
necessarily reflect the position of the funding agencies and no official en-
dorsement should be inferred.

ning in timeO(r(w+h)/f) wherer is the angular resolution
desired,w andh are the width and height of the image re-
spectively, andf is the field of view of the camera. We can
process a 176 by 144 pixel image in≈ .4ms on a 400MHz
MIPS R4000 excluding the segmentation step (which is done
by another module). Note that the complete vision update (in-
cluding segmentation) scales with

√
s wheres is the size of

the image with a small constant factor, making it extremely
fast. Motion updates take timeO(nr) wherer is the angular
resolution andn is the number of object categories. One ob-
ject category is required for each set of objects that must be
reported at the same angle at the same time. Note that this
scale linearly with the resolution. Motion updates take ap-
proximately 6ms peak on our processor. Visual sonar takes
≈ 10% of our processor updating for vision at 25Hz and mo-
tions at 31.25Hz (these are full rate updates for our hardware).

Our vision routines integrate domain specific identification
of detected obstacles when possible. This allows us to se-
lectively ignore objects that we do not wish to avoid (such
as stripes on the floor or balls that we wish to manipulate).
General obstacle avoidance is still achieved as all non-floor
colored objects are added to a general unidentified obstacle
category. Selective object identification allows the model to
be used for more than just obstacle avoidance as it carries ex-
tra information about the types of objects around the robot. It
also allows objects to be ignored which cannot be separated
using only color using a little domain knowledge to disam-
biguate between the two classes. This allows us to ignore
white stripes on the field while still avoiding the white walls.
Our vision segmentation method allows for the robot to cor-
rectly avoid obstacles even on multi-colored floors as we can
represent multi-model distributions for the floor (we require
only that the colors of obstacles be mostly separate from the
colors of the floor). Our technique requires only a simple
monocular color camera to operate making it applicable to a
wide range of inexpensive robots.

Our model representation is an alternative to the popular oc-
cupancy grid approach. Our model scales as the square root
of the area covered by the model as opposed to linearly for an
occupancy grid. The price we pay for this speed up is the in-
ability to represent objects behind another object of the same
type. Since these objects are not of interest for large classes

of tasks (almost any reactive task), this is a small price to pay
for increased speed. Our representation allows us to selec-
tively remove outdated data and ignore classes of objects as
required by the task.

Others have also used vision to calculate free regions for pur-
poses of robot navigation. None of their vision techniques
allow for the selectively ignoring obstacles, allow use of the
radial model for other purposes (requires object identifica-
tion), or process images as quickly. Many techniques require
that the floor be a uniform color, unlike our approach. Some
require additional vision hardware and this is noted as appro-
priate. Many of these techniques are based upon the height
of object in the world. They are unable to avoid flat obstacles
such as grassy areas (when following a pathway) or caution
tape on the floor. Some of these groups incorporate models
into their systems. All of these models are based on grid rep-
resentations which have the shortcomings noted above. Each
group is compared in more detail below.

The OMNI RoboCup small-size team [10] segments an im-
age based on background color to find free space around
the robot using an omni-directional camera. Their algorithm
scales with the size of the image and is unable to handle floors
consisting of multiple colors or overlap of floor colors. Ul-
rich and Nourbakhsh [14] use color histograms to segment
camera images into clear floor and obstacle regions. They
do their filtering in HSI space and therefore require a color
transform per pixel. Their algorithm scales with the size of
the image. Their algorithm requires 200ms to process a 320
by 260 image on a PII 333MHz. Lorigo et.al. [5] use a ref-
erence area at the bottom of the image to create histograms
which are compared with other areas of the image using a
distance threshold to find obstacles. Their algorithm scales
linearly(performing color space conversion) with image size,
window size, and histogram bins. Their method doesn’t cal-
culate the actual position of objects around the robot and
therefore precludes some uses of the model and makes be-
haviors harder to develop. Ohno et.al. [7] have created a sys-
tem for following paths using color vision. Their segmenta-
tion method is based off using minimum Mahalonobis dis-
tance from clusters in YIQ color space. There representation
requires bimodel (two color) distributions for colors of free
space and obstacles. They have to calculate 4 Mahalonobis
distances per pixel which requires several matrix multiplica-
tions at each pixel and thus scales with the size of the image.

Jośe the robot waiter [3] uses a vision based approach to
obstacle avoidance based upon a trinocular camera system
for calculating depth information. Obviously, this technique
requires more cameras and processing which adds to cost.
Burschkal, Lee, and Hager [2] use stereo disparity for cre-
ating a distance map from stereo images. This requires stereo
cameras and textured images for the disparity calculation.
Their technique runs at 11.2Hz for vision alone on a PIII
850MHz using megapixel cameras.

Pears and Liang [8] use corner tracking and image homogra-

Figure 1: Radial vision image with scan lines.

phies to find coplanar corners to find the ground plane. They
use the ground plane regions found to seed a color based re-
gion growing method which leaves small false obstacle re-
gions which must be post processed. Their technique scales
with the size of the image (corner finding) and number of
corner calculations performed. Rasmussen [9] created a algo-
rithm for road detection. This computes many image features
and uses a neural network to combine features. Speed should
be slow given the amount of processing being done.

Many vision researchers have developed systems to separate
moving objects from a stationary background in video se-
quences (e.g. [4, 6, 11, 13]). These systems do not address
the full obstacle detection problem since they are incapable
of detecting stationary obstacles. Obstacle avoidance using
visual sonar results in a navigation pattern of the robot to the
open spaces of the environment. Visual sonar has then the
potential to be applied to path planning that aims at largely
covering a space (as in [12]) by guiding the robot to avoid
previously visited regions.

The paper is organized as follows. Section 2 presents the vi-
sion algorithms. Section 3 describes the representation of the
world model. Section 4 shows how the radial map is used for
general obstacle avoidance, while being able to not avoid any
modeled objects if needed, such as the lines on the field and
the ball. Our visual sonar approach is fully implemented in
our Sony ERS-210 (AIBO) robots. Although the best proof
of the results is through actual life demonstrations, we present
an illustrative sequence of images of the performance of ob-
stacle avoidance. Section 5 concludes the paper.

2 Vision
The vision component is responsible for detecting objects
present along different angles around the robot. The vision
processing consists of several discrete stages. The first stage
takes the raw camera image and classifies each pixel into one
of several color classes. Pixels corresponding to the floor are
classified into the “floor” class. Pixels of other colors are
classified into either one of the color classes for various ob-
jects or into the “unknown” class for general obstacles. Scan
lines are then drawn in the image that correspond to lines on
the ground plane emanating from the reference point for the

robot. Figure 1 shows an example image with the scan lines
drawn over the image. We used scan lines spaced every5◦

degrees around the robot. The classified pixels on each scan
line are then run length encoded. Objects are located along
each scan line and identified if possible. Most of the run time
is spent classifying the image which does one table lookup
per pixel. Other parts of the processing contribute negligible
additional time. The algorithm does an excellent job of lo-
cating objects and identifying them when possible. Figure 2
gives pseudo-code for the complete algorithm.

Segmentation:We segment the image into color classes us-
ing CMVision 2, a real time color vision library [1]. CMVi-
sion uses a lookup table(threshold map) to perform the map-
ping from YUV pixel values to symbolic color class. We use
4 bits of Y and bits of U and V to make a 16 bit index into the
lookup table. Each entry in the table has the symbolic color
class that pixels of that image pixel color should be assigned.
Note that each symbolic color class may correspond to sev-
eral physical colors, e.g. a “floor” color class which includes
all the colors found on the floor. The threshold map is trained
by taking images with the camera and hand labelling the sym-
bolic color classes to be used for that image. The color classes
we use include a color class which corresponds to unknown
colors. We take advantage of this class to identify obstacles of
unknown colors which are known to not be of the same color
as the floor (the “floor” color class). The camera and hand la-
belled images define a supervised classification problem. We
take an example driven approach to this problem.

Our solution is to take each example pixel in YUV space and
spread it using geometric decay in all directions of the full
YUV space. The geometric decay is done in Manhattan dis-
tance which allows for an efficient implementation using a
fill stage followed by a constant number of sweeps across the
threshold map. We use a geometric decay rate of .5 which de-
cays rapidly with distance. For each box in the threshold map,
the total example weight due to each color class is calculated.
Each color class has an associated confidence threshold. If
the proportion of weight due to a particular color class com-
pared to the total weight in this threshold box is greater than
the confidence threshold of the color class, the threshold box
is labelled with this symbolic color. If no color class satis-
fies these conditions, the threshold box is labelled with the
“unknown” color class.

Object detection: The vision identifies the following object
types:wall, stripe, unknownobstacle, red robot, blue robot,
ball, cyangoal, andyellow goal. All of the objects are iden-
tified using the following heuristic: the object is the first con-
tinuous set of pixels in the scan line composed completely
of color classes that are “ok” for the object and which has
k more pixels of the “best” color class for this object than
all other color classes. The value ofk reflects the amount of
noise present in the image; we use a value of 5. Sincewall
andstripe are both composed of the same color (white), an
additional test is needed to disambiguate when awall/stripe

ProcedureVision(v:vision)
Project corners of image into egocentric coordinates.
Calculate angle of each projected corner.
let min angle←Minimum angle of corners.
let maxangle←Maximum angle of corners.
Snapmin angleandmaxangleto one of the

fixed scan angles.
for α ←min angleto maxangle

Find the line on the imagel which corresponds to
a line on the ground at angleα.

Scan through the segmented image alongl creating
a run length encoded version of the liner.
Store the start/end screen coordinates of each run.

IdentifyObjects(v,AngleIdx(α),r)

Figure 2: Radial vision

is detected. The object is considered awall only if it is at
least 50mm wide and the number of white pixels on thewall
is at least as great as the number of green pixels after the
wall. The first filter makes sure the wall could not just be a
stripe. The second filter is due to our use of a green carpet
as our floor which does not extend much beyond the white
walls. These filters reliably distinguish betweenwall which
must be avoided andstripe which can be transversed safely.
An unknownobstacleis detected whenever enough pixels be-
longing to the “unknown” class occur together. Since one of
the color classes is “floor”, this corresponds to occlusions of
the floor by other objects. These objects get labels asun-
knownobstaclesin this manner. Because the bodies of robots
are also of unknown color,unknownobstaclesoften occur for
us due to robots. We peek ahead along this scan line to see
if this obstacle can actually be identified and if so move this
obstacle into thered robotor blue robotclass as appropriate.

Distance to objects is calculated by intersecting rays through
the closest pixels of the object on the image onto the ground
plane the robot is standing on. This generates very accurate
distances for objects that are close and noisy estimates for
more distant objects. Because only the closer objects are use-
ful for obstacle avoidance, distances to the objects of interest
are all quite accurate. Some distances can be slightly high
due to parts of the object being off of the ground. This also
is not a problem because the estimates improve somewhat as
the robot approaches. Since objects in the air must be sup-
ported by something, the supports are usually also visible and
since they are resting on the ground, they will have accurate
distance estimates. So for all objects of interest for obstacle
avoidance, accurate distance estimates are available.

3 Model
Since the camera has a limited field of view (55◦ in the case
of our robot), it is necessary to keep a model of the local envi-
ronment to ensure good obstacle avoidance performance. The
purpose of the model is to remember objects that the robot has
seen recently that must be avoided and are currently outside

ProcedureModelVisionUpdate(m:model,v:vision,time)
for α:angle← 0 to NumAngles− 1

if ¬ SeeAngle(v,α)
continue

let visible start ← ClosestVisiblePt(v,α)
let visible end← FarthestVisiblePt(v,α)
for i:object← 0 to NumObjectTypes− 1

if mi
α.valid∧ (|mi

α.~x| < visible start)
continue

if visible start <= |mi
α.~x| <= visible end

mi
α.valid ← false

if vi
α.valid∧ ((¬mi

α.valid) ∨ (|vi
α.~x| <= |mi

α.~x|)
mi

α.~x ← vi
α.~x

mi
α.valid ← true

mi
α.last seen← time

Figure 3: Model vision update. miα refers to theith model
object at theαth angle index. miα.~x refers to the point associ-
ated with this angle and object. Visual information is shown
using the same syntax.

the field of view of the camera. The model is represented
radially to be similar to the visual information. Each object
type in the model is represented separately using its own ra-
dial map. The model for each object type is divided into a
set of pie shaped slices that each cover a range of contiguous
angles. Only the closest object of each object type is kept in
order to conserve memory. Objects of the same type which
are farther away are not of interest for obstacle avoidance and
usually not interesting in general. Each pie slice for an object
type keeps track of the closest object of that type seen re-
cently. The model is updated for both new visual information
and the movement of the robot.

Vision updates are handled by simply replacing the visible
part of the model with the new visual information. We are
careful to keep objects which are too close to be seen with the
current position of the camera as these objects are critical for
obstacle avoidance. Objects which should have been seen but
weren’t are removed from the model as the camera rescans
the area. The algorithm is detailed in Figure 3.

The motion update updates the model for the motion of the
robot. Each angle of each object has an associated point in
Cartesian coordinates which is the egocentric coordinate of
the location at which the object was seen. The motion update
proceeds by moving each of these points counter to the mo-
tion of the robot. The points are then copied over into a new
radial model. The connectivity of the points is considered
while performing this update to ensure that different parts of
objects don’t fragment into disconnected components. Two
points are considered connected during the update if they are
of the same type and in neighboring angles. Connectivity
must be considered because as the robot moves closer to an
object, more resolution in angle is needed to represent an ob-
ject of the same size. We maintain connectivity by creating

ProcedureModelMotionUpdate(m:model,u:update,time)
let m new←m
for i:object← 0 to NumObjectTypes− 1

ModelMotionUpdate(m,m new,u,i,time)
m ←m new

ProcedureModelMotionUpdate(m old,m new:model,
u:update,i:object,time)

for θ:angle← 0 to NumAngles− 1
m newi

θ.valid ← false
m oldi

α.valid ←m oldi
α.valid∧

(time−m oldi
α.last seen<= TooOldTime)

m oldi
α.~x ← Apply(u,m oldi

α.~x)
for α:angle← 0 to NumAngles− 1

if ¬ m oldi
α.valid continue

let ~p ←m oldi
α.~x, θ ← ~p.Angle()

if ¬m newi
θ.valid∨ (|~p| <= |m newi

θ.~x|)
m newi

θ ←m oldi
α

let β ← (α + 1) modNumAngles
let next valid ←m oldi

β .valid
if next valid

let ~q ←m oldi
β .~x, φ ← ~q.Angle()

if θ=φ continue
FillInMissing(m old,m new,i,θ,φ,Line(~p, ~q),

Min(m oldi
α.last seen,m oldi

β .last seen))
ProcedureFillInMissing(m old,m new,i,θ,φ,line,last seen)

for ν ← (θ + 1) to φ modNumAngles
if Intersects(line,ν)

let ~x ← Intersect(line,ν)
if ¬m newi

ν .valid∨ (|~x| <= |m newi
ν .~x|)

m newi
ν .valid ← true

m newi
ν .~x ← ~x

m newi
ν .last seen← last seen

Figure 4: Model motion update. miα refers to theith model
object at theαth angle index. miα.~x refers to the point associ-
ated with this angle and object.

new points on the line between the two old points if necessary
to fill in missing angles. Old observations must eventually
be removed to avoid the unbounded accumulation of motion
error. We take the simple approach of simply throwing out
observations that are older than a timeout during the motion
update. The motion update algorithm is detailed in Figure 4.

Figure 5 shows an example of a motion update that requires
connectivity maintenance. The black(solid) points represent
the location of points in the radial model before the motion
update. The black(solid) lines represent the logical connec-
tivity of points inferred by the motion update algorithm. The
blue(dashed) points represents the points updated for the for-
ward/leftward motion of the robot. The blue(dashed) lines
represent the desired logical connectivity of the points. No-
tice that the angle in front of the robot has no blue(dashed)
point. This is fixed by intersecting the blue(dashed) line with
the bold line which bisects the angle and adding a new point
at this location (shown in bold).

We have shown how to create a radial model which remem-

Figure 5: Motion update example. Divisions between angles
are shown in black, old points in black(solid), points after
motion update in blue(dashed), and points due to connectivity
maintenance in bold. See text for details.

bers objects which cannot currently be seen. This model can
be used in the same way that sonar sensors are used. It pro-
vides local range estimates around the robot of all pertinent
objects. It also provides some ability to identify and track dif-
ferent types of objects. This allows the robot to be selective
about what it avoids. By using this feature, we are able to
walk over stripes and through balls while still avoiding other
obstacles including ones that look quite similar visually such
as walls. See Figure 6 for an example of the output of the
radial model. See Figure 7 for pictures of the domain from
which this model was generated.

4 Behaviors
We tested the visual sonar algorithm by implementing a basic
behavior that wanders around while avoiding obstacles. The
robot walks fast (≈ .2m/sec) most of the time. As the space
around the robot gets more crowded the robot slows down to
give itself more time to react. The behavior ignores obstacles
farther thanMaxAvoidDist . If the robot gets too close to ob-
stacles (StopAvoidDist), it will back up some. The robot tries
to walk straight. If obstacles are in the way, the robot turns
towards free space and away from obstacles. This is done us-
ing a simple angular potential function in which objects repel
the robot angularly.

The behavior bases all of its calculations on the minimum
distance of an object in the set of avoid object types at
each angle. This distance is then bounded between 0 and
MaxAvoidDist . A weighted distanceavg dist to obstacles in
front of the robot is calculated where each angle is weighted
using a Gaussian centered on straight ahead. The fraction
of full forward speed to use is calculated as(avg dist −
StopAvoidDist)/(MaxAvoidDist−StopAvoidDist). Any re-
maining fraction is available for turning. The direction and
amount to turn is calculated based upon a penalty term for
left versus right. A turn direction is penalized by the total
amount by which obstacles to that side of the robot are closer

Figure 6: Radial model while avoiding obstacles. The black
box represents the robot which is facing to the right of the
image. The black circles near the robot are .5m meter marks.
The white line to the left of the robot is a wall of the field. The
black line in front of the robot represents a hammer that the
robot is in the process of avoiding. The clusters of black dots
to the right of the robot represents a lid and a satchel seen
earlier.

thanMaxAvoidDist . The turn direction is then calculated as
(right penalty− left penalty)/(right penalty+ left penalty).
This quantity will be between -1 and 1 and represents the di-
rection of turn and the amount of the available movement
fraction available for turning to use. Despite the simplicity
of the algorithm, it successfully avoids obstacles while wan-
dering around an area.

5 Results
As with most complete systems designed to perform a task,
it is difficult to produce quantitative results. We tested the
system extensively using a variety of different colored and
shaped objects. The system was able to wander around with-
out hitting the obstacles as long as two conditions are met:
the objects have a reasonable fraction of colors that are not
present in the flooring and the robot actually looked at the
obstacle. The system was also able to avoid obstacles that ap-
peared suddenly within close range if the obstacle was seen
before the collision occurred. The robot spent most of its time
during tests walking quickly forward or veering slightly, only
occasionally slowing down to turn away from a particularly
close obstacle (usually one that suddenly appeared). A typi-
cal path taken by the robot is shown in Figure 7. As you can
see in the figure, the robot tends to randomly cover large sec-
tions of the environment and can successfully avoid obstacles
even in cluttered environments. We have shown how to avoid
obstacles using only a simple monocular camera and a frac-
tion of the available CPU, freeing CPU to be used on other
tasks and algorithms while still avoiding obstacles.

Acknowledgements: We would like to thank James Bruce
for many useful suggestions related to this work.

Figure 7: Example path taken by robot. The path of the robot is shown with the white line with the arrow at the end. This path
took approximately 50secs to execute. The arena is 4.2m by 2.7m and the robot is 20cm long. The robot successfully avoided an
umbrella, a rubber hose, several robots, packing foam, a keyboard, an IROS bag plus a few miscellaneous objects in the vicinity
of the robots path.

References
[1] J. Bruce, T. Balch, and M. Veloso. Fast and inexpensive color image

segmentation for interactive robots. InProceedings of IROS-2000, 2000.

[2] D. Burschkal, S. Lee, and G. Hager. Stereo-based obstacle avoidance
in indoor environments with active sensor re-calibration. InICRA 2002,
volume 2, pages 2066–2072, 2002.

[3] P. Elinas, J. Hoey, D. Lahey, et al. Waiting with José, a vision-based
mobile robot. InICRA 2002, volume 4, pages 3698–3705, 2002.

[4] S. Jehan-Besson, M. Barlaud, and G. Aubert. Video object segmentation
using Eulerian region-based active contours. InProceedings of IEEE
International Conference on Computer Vision (ICCV), volume 1, pages
353–360, 2001.

[5] L. Lorigo, R. Brooks, and W. Grimsou. Visually-guided obstacle avoid-
ance in unstructured environments. InIn IROS 1997, volume 1, pages
373–379, 1997.

[6] J. M. F. Moura, R. S. Jasinschi, H. Shiojiri, and J.-C. Lin. Video over
wireless.IEEE Personal Communications, 6(1):44–54, February 1996.

[7] K. Ohno, T. Tsubouchi, S. Maeyama, and S. Yuta. A mobile robot cam-
pus walkway following with daylight-change-proof walkway color im-
age segmentation. InIROS 2001, volume 1, pages 77–83, 2001.

[8] N. Pears and B. Liang. Ground plane segmentation for mobile robot
visual navigation. InIROS 2001, volume 3, pages 1513–1518, 2001.

[9] C. Rasmussen. Combining laser range, color, and texture cues for au-
tonomous road following. InICRA 2002, volume 4, pages 4320–4325,
2002.

[10] D. Sekimori, T. Usui, Y. Masutani, and F. Miyazaki. High-speed ob-
stacle avoidance and self-localization for mobile robots based on omni-
directional imaging of the floor region. InProceedings of RoboCup 2001
International Symposium, Seattle, USA, August 2001.

[11] B. Stenger, V. Ramesh, N. Paragios, F. Coetzee, and J. Buhmann. Topol-
ogy free hidden markov models: application to background modeling.
In Proceedings of IEEE International Conference on Computer Vision
(ICCV), volume 1, pages 294–301, 2001.

[12] J. Svennebring and S. Koenig. Building terrain-covering ant robots.
Technical Report GIT-COGSCI-2002/10, College of Computing, Geor-
gia Institute of Technology, Atlanta, Georgia, USA, 2002.

[13] Y. Tsaig and A. Averbuch. A region-based MRF model for unsupervised
segmentation of moving objects in image sequences. InProceedings of
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), volume 1, pages I889–I896, 2001.

[14] I. Ulrich and I. Nourbakhsh. Appearance-based obstacle detection with
monocular color vision. InProceedings of AAAI National Conference
on Artificial Intelligence, Austin, TX, USA, 2000.

