A Non-Prenex, Non-Clausal QBF Solver with Game-State Learning

Will Klieber, Samir Sapra, Sicun Gao, Edmund Clarke Carnegie Mellon University

July 13, 2010

Preview

► Non-prenex, non-clausal QBF solver (DPLL-based).

Game-state learning

 Reformulation of clause/cube learning, extended to non-prenex case.

Ghost literals

 Symmetric propagation technique, exploits structure of non-prenex, non-clausal instances.

Why study QBF?

- Practical problems naturally expressed in QBF.
- ► Formal verification: e.g., Bounded Model Checking
- ► SAT solvers: success in formal verification.
 - Hopefully QBF solvers too.

Semantics

- ► $|\phi|_{x=T}$: plug in T (true) for x. E.g., $(x \lor y)|_{x=T} = (T \lor y) = T$.
- ► $[\forall x. \phi] = [\phi|_{x=T}] \land [\phi|_{x=F}]$ (universal quantifier)
- ► $[\exists x. \phi] = [\phi|_{x=T}] \lor [\phi|_{x=F}]$ (existential quantifier)

QBF Solver:

- Input formula: InFmla
- Assume each variable quantified exactly once in InFmla.
 - No free variables.
 - ► *InFmla* evaluates to either T or F.
- ► Goal: determine the truth value of *InFmla*.

QBF as a Game

- Existential variables are owned by Player E.
 Universal variables are owned by Player U.
- Players assign variables in quantification order.
 - Start with outermost quantified (leftmost).
- Player E's goal: Make *InFmla* be true.
 Player U's goal: Make *InFmla* be false.
- ► To make this more precise: *reduction* (next slide).

Reduction of a Formula

- Let " π " denote a (partial) assignment of values to variables.
- To construct the *reduction* of f under π (denoted " $f|\pi$ "):
 - For each variable x in π :
 - Delete quantifier of x.
 - Replace occurrences with assigned value.

Reduction of a Formula

- Let " π " denote a (partial) assignment of values to variables.
- To construct the *reduction* of f under π (denoted " $f|\pi$ "):
 - For each variable x in π :
 - ► Delete quantifier of *x*.
 - Replace occurrences with assigned value.
- Example:
 - $f = (\exists e_1. \forall u_2. e_1 \land u_2), \pi = \{e_1: \text{True}\}$
 - Reduction: $f|_{\pi} = (\forall u_2. \text{ True} \land u_2)$
- We say "P wins f under π " iff P has a winning strategy for $f|_{\pi}$.
- Player E wins f under π iff $f|_{\pi}$ is true.
- Player U wins f under π iff $f|_{\pi}$ is false.

Quantification Order

- Don't need strict outer-to-inner.
- ► Block of one type of quantifier. $\exists e_1 \exists e_2 \exists e_3 \forall u_4 \forall u_5.f$
- ► We say {e₁, e₂, e₃} are ready, while {u₄, u₅} are unready (under the empty assignment).

Quantification Order

- Don't need strict outer-to-inner.
- ► Block of one type of quantifier. $\exists e_1 \exists e_2 \exists e_3 \forall u_4 \forall u_5.f$
- ► We say {e₁, e₂, e₃} are ready, while {u₄, u₅} are unready (under the empty assignment).
- Definition: An unassigned variable is *ready* iff its quantifier is not within the scope of the quantifier of an unassigned variable owned by the opposing player.
- E.g., $\exists e_4. ((\exists e_5.f) \land (\forall u_6.h))$
 - e_4 and e_5 are ready, while u_6 is unready.

Representation of Formulas

- Negation-Normal Form (NNF)
 - ► Logical operators: AND, OR, NOT.
 - Negations are pushed inward by De Morgan's; occur only in front of variables.
 - Literal: a variable or its negation.
- ▶ Prenex: All quantifiers at beginning. $\forall x \exists y \forall z. ((x \land y) \lor (y \land z))$

prefix matrix

- Early QBF solvers: Prenex CNF (Conjunctive Normal Form)
- Prenexing is harmful (since it limits the branching order).
- Converting to CNF is harmful (since Player E's variables are conflated with gate variables).

Representation of Formulas (cont.)

- ► Gate variables: label each conjunction/disjunction.
- Prime gate vars: include quantifier prefix.
- Input variables: original (non-gate) variables.

$$\exists e_{10} \left[\underbrace{[\exists e_{11} \forall u_{21} \underbrace{(e_{10} \land e_{11} \land u_{21})}_{g'_1}]}_{g'_1} \land \underbrace{[\forall u_{22} \exists e_{30} \underbrace{(e_{10} \land u_{22} \land e_{30})}_{g'_2}]}_{g'_2} \right]$$

Representation of Formulas (cont.)

- ► Gate variables: label each conjunction/disjunction.
- Prime gate vars: include quantifier prefix.
- Input variables: original (non-gate) variables.

$$\exists e_{10} \left[\underbrace{[\exists e_{11} \forall u_{21} \underbrace{(e_{10} \land e_{11} \land u_{21})}_{g'_1}]}_{g'_1} \land \underbrace{[\forall u_{22} \exists e_{30} \underbrace{(e_{10} \land u_{22} \land e_{30})}_{g'_2}]}_{g'_2} \right]$$

- Quantified subformulas (e.g., g'_1 , g'_2): subgames.
- Subgames g'_1 and g'_2 are independent after e_{10} assigned.
- Implementation: Pure NNF is not required.
 A quantifier-free subformula can be represented in circuit form.

Representation of Current Assignment

- During solving process, we assign values to the input variables.
- ► We write "*CurAsgn*" to denote the current assignment.
- *CurAsgn* may be represented by the set of literals assigned true.
- E.g., $\{e_1=T, e_2=F\}$ may be represented by $\{e_1, \neg e_2\}$.

Top-level algorithm

/* Goal: Find out who wins InFmla (under empty asgn). */

- 1. while (true) {
- 2. while (don't know who wins *InFmla* under *CurAsgn*) {
- 3. DecideLit(); // Pick a ready literal.
- 4. Propagate(); // Detect forced literals.
- 5. }
- 6. ... 7. ...
- *(*. ...
- 8. ...
- 9. ...
- 10. }

Top-level algorithm

/* Goal: Find out who wins InFmla (under empty asgn). */

- 1. while (true) {
- while (don't know who wins *InFmla* under *CurAsgn*) {
 DecideLit(); // Pick a ready literal.
- 4. Propagate(); // Detect forced literals.
- 5. }
- 6. Learn so that we don't repeat same decisions again;
- 7. if (we learned who wins InFmla under Ø) return;
- 8. Backtrack(); // Remove recent literals from *CurAsgn*;
- 9. Propagate(); // Learned information will force a literal. 10. }

Optional modification: Target in on a subgame when independent.

- ► Reformulation of clause/cube learning, extended to non-prenex.
- For prenex CNF: merely cosmetic differences between game-state learning and clause/cube learning.

$$\exists e_1 \exists e_3 \forall u_4 \exists e_5 \exists e_7. \underbrace{(e_1 \lor e_3 \lor u_4 \lor e_5)}_{g_1} \land \underbrace{(e_1 \lor \neg e_3 \lor \neg u_4 \lor e_7)}_{g_2} \land \dots$$

• g_1 : If $\{e_1, e_3, u_4, e_5\}$ are false, then U wins.

- Reformulation of clause/cube learning, extended to non-prenex.
- For prenex CNF: merely cosmetic differences between game-state learning and clause/cube learning.

$$\exists e_1 \exists e_3 \forall u_4 \exists e_5 \exists e_7. \underbrace{(e_1 \lor e_3 \lor u_4 \lor e_5)}_{g_1} \land \underbrace{(e_1 \lor \neg e_3 \lor \neg u_4 \lor e_7)}_{g_2} \land \dots$$

- g_1 : If $\{e_1, e_3, u_4, e_5\}$ are false, then U wins.
- ▶ g_1 : If {¬ e_1 , ¬ e_3 , ¬ u_4 , ¬ e_5 } are true, then U wins.

- Reformulation of clause/cube learning, extended to non-prenex.
- For prenex CNF: merely cosmetic differences between game-state learning and clause/cube learning.

$$\exists e_1 \exists e_3 \forall u_4 \exists e_5 \exists e_7. \underbrace{(e_1 \lor e_3 \lor u_4 \lor e_5)}_{g_1} \land \underbrace{(e_1 \lor \neg e_3 \lor \neg u_4 \lor e_7)}_{g_2} \land \dots$$

- g_1 : If $\{e_1, e_3, u_4, e_5\}$ are false, then U wins.
- ▶ g_1 : If {¬ e_1 , ¬ e_3 , ¬ u_4 , ¬ e_5 } are true, then U wins.
- g1: If {¬e1, ¬e3, ¬e5} are true and ¬u4 is non-false, then U wins. ("non-false": "true or unassigned")

- Reformulation of clause/cube learning, extended to non-prenex.
- For prenex CNF: merely cosmetic differences between game-state learning and clause/cube learning.

$$\exists e_1 \exists e_3 \forall u_4 \exists e_5 \exists e_7. \underbrace{(e_1 \lor e_3 \lor u_4 \lor e_5)}_{g_1} \land \underbrace{(e_1 \lor \neg e_3 \lor \neg u_4 \lor e_7)}_{g_2} \land \dots$$

- g_1 : If $\{e_1, e_3, u_4, e_5\}$ are false, then U wins.
- ▶ g_1 : If {¬ e_1 , ¬ e_3 , ¬ u_4 , ¬ e_5 } are true, then U wins.
- g₁: If {¬e₁, ¬e₃, ¬e₅} are true and ¬u₄ is non-false, then U wins. ("non-false": "true or unassigned")
- Game-state sequent: " $\langle \{\neg e_1, \neg e_3, \neg e_5\}, \{\neg u_4\} \rangle \models (U \text{ wins } InFmla)"$
- Can learn who wins a subgame.

- Consider a subgame f (a quantified subformula).
- " $\langle L^{\text{now}}, L^{\text{fut}} \rangle \models (P \text{ wins } f)$ " means "Player P wins f whenever:
 - 1. every literal in L^{now} is true, and
 - every literal in L^{fut} is non-false (i.e., true or unassigned) (i.e., every literal in L^{fut} can be true in the future)."

- Consider a subgame f (a quantified subformula).
- " $\langle L^{\text{now}}, L^{\text{fut}} \rangle \models (P \text{ wins } f)$ " means "Player P wins f whenever:
 - 1. every literal in L^{now} is true, and
 - every literal in L^{fut} is non-false (i.e., true or unassigned) (i.e., every literal in L^{fut} can be true in the future)."
- L^{now} may contain both input literals and gate literals;
 L^{fut} may contain only input literals.

- Consider a subgame f (a quantified subformula).
- " $\langle L^{\text{now}}, L^{\text{fut}} \rangle \models (P \text{ wins } f)$ " means "Player P wins f whenever:
 - 1. every literal in L^{now} is true, and
 - every literal in L^{fut} is non-false (i.e., true or unassigned) (i.e., every literal in L^{fut} can be true in the future)."
- "P wins f whenever ...":

"P wins f under all assignments meeting the conditions" (even if out of quantification order, due to forced literals).

Player E wins f under π iff f|π is true.
 Player U wins f under π iff f|π is false.

- Consider a subgame f (a quantified subformula).
- $\langle L^{\text{now}}, L^{\text{fut}} \rangle \models (P \text{ wins } f) \text{ matches } an assignment <math>\pi$ iff, under π ,
 - 1. every literal in L^{now} is true, and
 - every literal in L^{fut} is non-false (i.e., true or unassigned) (i.e., every literal in L^{fut} can be true in the future)."

- At time t^* : $CurAsgn = \pi^*$, targetted subgame is f.
- ► Suppose $\pi^* \cup \{\neg \ell\}$ matches $\langle L_B^{\text{now}} \cup \{\neg \ell\}, L_B^{\text{fut}} \rangle \models (P \text{ loses } h).$

in game-state database h is a subgame of f

- At time t^* : $CurAsgn = \pi^*$, targetted subgame is f.
- ► Suppose $\pi^* \cup \{\neg \ell\}$ matches $\langle L_B^{\text{now}} \cup \{\neg \ell\}, L_B^{\text{fut}} \rangle \models (P \text{ loses } h)$, and
 - ℓ is owned by *P*.
 - ℓ does not appear outside h (and h is a subgame of f).
 - ℓ is upstream of all literals in L_B^{fut} . (ℓ gets picked before L_B^{fut})
- For P to win f, making $\ell = F$ is at least as bad as $\ell = T$.
 - Only way ℓ can help P win f is by helping P win h.
 - If P makes $\ell = F$, then P loses h.

- At time t^* : $CurAsgn = \pi^*$, targetted subgame is f.
- ► Suppose $\pi^* \cup \{\neg \ell\}$ matches $\langle L_B^{now} \cup \{\neg \ell\}, L_B^{fut} \rangle \models (P \text{ loses } h)$, and
 - ℓ is owned by *P*.
 - ℓ does not appear outside h (and h is a subgame of f).
 - ℓ is upstream of all literals in L_B^{fut} . (ℓ gets picked before L_B^{fut})
- For P to win f, making $\ell = F$ is at least as bad as $\ell = T$.
- Therefore $\ell = T$ is a forced literal for *P*.

- At time t^* : $CurAsgn = \pi^*$, targetted subgame is f.
- ► Suppose $\pi^* \cup \{\neg \ell\}$ matches $\langle L_B^{now} \cup \{\neg \ell\}, L_B^{fut} \rangle \models (P \text{ loses } h)$, and
 - ℓ is owned by *P*.
 - ℓ does not appear outside h (and h is a subgame of f).
 - ℓ is upstream of all literals in L_B^{fut} . (ℓ gets picked before L_B^{fut})
- For P to win f, making $\ell = F$ is at least as bad as $\ell = T$.
- Therefore $\ell = T$ is a forced literal for *P*.
- Suppose $\pi^* \cup \{\ell\}$ matches $\langle L_A^{now} \cup \{\ell\}, L_A^{fut} \rangle \models (P \text{ loses } f).$
- ► P loses f under $\pi^* \cup \{\ell\}$. in game-state database
- ▶ *P* loses *f* under π^* , since ℓ =F is no better than ℓ =T.

- At time t^* : $CurAsgn = \pi^*$, targetted subgame is f.
- ► Suppose $\pi^* \cup \{\neg \ell\}$ matches $\langle L_B^{now} \cup \{\neg \ell\}, L_B^{fut} \rangle \models (P \text{ loses } h)$, and
 - ℓ is owned by *P*.
 - ℓ does not appear outside h (and h is a subgame of f).
 - ℓ is upstream of all literals in L_B^{fut} . (ℓ gets picked before L_B^{fut})
- For P to win f, making $\ell = F$ is at least as bad as $\ell = T$.
- Therefore $\ell = T$ is a forced literal for *P*.
- ► Suppose $\pi^* \cup \{\ell\}$ matches $\langle L_A^{\text{now}} \cup \{\ell\}, L_A^{\text{fut}} \rangle \models (P \text{ loses } f).$
- ► Then learn: $\langle L_A^{\text{now}} \cup L_B^{\text{now}}, L_A^{\text{fut}} \cup L_B^{\text{fut}} \rangle \models (P \text{ loses } f).$ (Since the same argument applies to any matching assignment.)

- At time t^* : $CurAsgn = \pi^*$, targetted subgame is f.
- ► Suppose $\pi^* \cup \{\neg \ell\}$ matches $\langle L_B^{now} \cup \{\neg \ell\}, L_B^{fut} \rangle \models (P \text{ loses } h)$, and
 - ℓ is owned by *P*.
 - ℓ does not appear outside h (and h is a subgame of f).
 - ℓ is upstream of all unassigned literals in L_B^{fut} .
- For P to win f, making $\ell = F$ is at least as bad as $\ell = T$.
- Therefore $\ell = T$ is a forced literal for *P*.
- ► Suppose $\pi^* \cup \{\ell\}$ matches $\langle L_A^{\text{now}} \cup \{\ell\}, L_A^{\text{fut}} \rangle \models (P \text{ loses } f).$
- ► Then learn: $\langle L_A^{now} \cup L_B^{now}, L_A^{fut} \cup L_B^{fut} \rangle \models (P \text{ loses } f).$ (Since the same argument applies to any matching assignment.)
- Move assigned literals from L_B^{fut} to L_B^{now} if upstream of ℓ . Then move back from $L_A^{\text{now}} \cup L_B^{\text{now}}$ to $L_A^{\text{fut}} \cup L_B^{\text{fut}}$.

Ghost Literals

- ► Goultiaeva et al. (SAT'09): propagation technique for circuit QBF.
 - Force a gate literal if detect that Player E needs it.
 - Asymmetric between players.
- We use *ghost literals* to make it symmetric:
 - Prenex: $g\langle U \rangle$ for Player U and $g\langle E \rangle$ for Player E.
 - $g\langle P \rangle$ forced when detect P can win only if g is true.

Ghost Literals

- ► Goultiaeva et al. (SAT'09): propagation technique for circuit QBF.
 - ► Force a gate literal if detect that Player E needs it.
 - Asymmetric between players.
- We use *ghost literals* to make it symmetric:
 - Prenex: $g\langle U \rangle$ for Player U and $g\langle E \rangle$ for Player E.
 - Non-prenex: $g\langle U, b \rangle$ and $g\langle E, b \rangle$
 - \blacktriangleright *b* is a subgame which contains *g*
 - $g\langle P, b \rangle$ forced when detect P can win b only if g is true.
 - "Avoid a move that wins the battle but loses the war."

Optimized Ghost Literals

- Two tracks of QBFLIB benchmarks:
 - 1. CNF, reverse engr'd to prenex circuit form (DAG-based).
 - 2. Nonprenex NNF (tree-based representation of formula).
- ▶ Both tracks: No sharing of subformulas between subgames.
 - If a subformula directly occurs in two subgames, then the two occurrences are labelled with different gate vars.
- Optimization: See paper.

Experimental Results: GhostQ vs CirQit

- Implementation: GhostQ.
- Compare to CirQit (by Goultiaeva et al.) on QBFLIB non-CNF.

Disclosure:

- Different test machines. (CirQit not publicly available.)
- But CirQit had the advantage. GhostQ: 2.66 GHz, 300 sec CirQit: 2.80 GHz, 1200 sec

Family	inst.	GhostQ	CirQit
Seidl	150	150	147
assertion	120	12	3
consistency	10	0	0
counter	45	40	39
dme	11	11	10
possibility	120	14	10
ring	20	18	15
semaphore	16	16	16
Total	492	261	240

Experimental Results: GhostQ vs Qube

- QBFLIB CNF benchmarks.
- Timeout: 60 seconds.
- Reverse-engineer from CNF to circuit form.
- GhostQ beats Qube on tipdiam, tipfixpoint, k. (279 vs 173 solved instances.)

Family	inst.	GhostQ	Qube
bbox-01x	450	171	341
bbox_desig	n <i>28</i>	19	28
bmc	132	43	49
k	61	42	13
s	10	10	10
tipdiam	85	72	60
tipfixpoint	196	165	100
sort_net	53	0	19
all other	121	9	23
Total	1136	531	643

Conclusion

- ► Game-State Learning: Extend clause/cube learning.
- Ghost Literals: Symmetric propagation technique.
- Promising experimental results.
- Future work: Consider ghosting input variables for non-prenex? (Additional propagation power, but also more overhead.)