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1 Introduction
This thesis aims to study the theory and algorithms of representation learning, which is
one of the main driving forces behind the recent boom in artificial intelligence (AI) and
machine learning (ML). In particular, this thesis studies why and how big models can
learn (a) generalizable, and (b) transferable representations of real-world data.

Since around 2018, machine learning (ML) has been shifting from end-to-end train-
ing to a new paradigm powered by representation learning and foundation models [4],
very big models trained on very large generic data sets such as Wikipedia. Given the
current momentum of this new paradigm, there is no doubt that it will shape the devel-
opment in AI in the near future. Thus, this thesis studies a timely matter.

Generalization refers to the ability of anMLmodel trained on finite samples to still be
able to performwell on new test data drawn from the same distribution. It is well known
that generalization is extremely hard for high-dimensional data, a phenomenon called
the curse of dimensionality [23]. Representation learning is a way of doing dimension-
ality reduction. By projecting high-dimensional raw data to a much lower-dimensional
latent space, we hope to reduce the sample complexity. Indeed, foundation models can
facilitate few-shot learning, where very few samples for a downstream task suffice.

Transferability refers to the ability of an ML model trained on data distribution P to
still be able to perform well on another data distribution Q. Transferability has always
been at the center of deep learning. In the early years following the deep learning boom
in 2012, neural networks pretrained on ImageNet [19] were the go-to base models for
computer vision, because people found that these models still performed well on data
sets other than ImageNet. Transferability is why a foundation model pretrained on a
generic data set can be applied to specific downstream tasks.

This proposal shall summarize the work I have done so far, and outline the directions
I intend to explore towardsmy thesis defense. This proposal will not contain any proofs.
On a high level, the work I have done can be summarized as:

• Generalization: I propose a new framework for studying representation learning,
which can explainwhy biggermodels can learn better representations than smaller
ones in practice. The framework views representation learning as extracting basis
functions of a functional spaceF , which is definedwith our prior knowledge about
the downstream task, rather than a big model.

• Transferability: I focus on the subpopulation shift problem, where the test distri-
bution is absolutely continuous to the train distribution. I reveal several problems
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of existing methods, including the surprising negative result that many methods
based on sample reweighting cannot lead to transferable models. Then, I propose
new algorithms to solve these problems.

I plan to apply representation learning methods to practical applications, especially
on tabular data. The specific directions I intend to explore are the following:

• Multiple sources of prior knowledge: I have already shown that one source of prior
knowledge can induce a functional space F , and representation learning extracts
basis functions of this space. What if we havemultiple sources of prior knowledge?
How to combine multiple functional spaces?

• Extracting eigenfunctions of a general kernel: Prior work andmywork have shown
that contrastive and non-contrastive learning are natural ways of extracting the
eigenfunctions of the contrastive kernel. But for a more general function, how can
we extract its eigenfunctions?

• New metrics for evaluating learned representations: Currently the most widely
used way of evaluating representations is with specific downstream tasks. How-
ever, one downstream task can only reflect one aspect of the learned representation,
and it is widely observed that some representations are better than others on some
tasks, but not on others. Is there amore generalmetric to compare representations?

2 Preliminaries
Representation learning refers to the process of learning low-dimensional representa-
tions of data that concisely encode relevant information useful for building classifiers or
other predictors [3]. Let X be the space of raw data. The goal of representation learning
is to learn an encoder Φ̂ = [ϕ̂1, · · · , ϕ̂d] : X → Z , where Z = Rd is called the latent space,
and Φ̂(x) is called the embedding of sample x. The task used to learn the encoder is
called the pretraining task, or the upstream task. Once pretrained on a generic unlabeled
data set, the encoder can be applied to a variety of specific downstream tasks, and each
downstream task can have its own data distribution.

The method of pretraining a foundationmodel with massive unlabeled data is called
self-supervised learning (SSL). In order to construct a training objectivewithout any labels,
we need to design an auxiliary task. The task is “auxiliary” because it is very unlikely to
be similar to any downstream task, but is only used for self-supervision. For instance,
when training a BERT [6], we randomly mask the sentences in the training set and ask
the model to predict the masked tokens. Clearly, this auxiliary task is not similar to most
downstream tasks, such as question answering, translation, summarizing, etc.

The downstream task is a standardML task, wherewe need to learn a predictor f̂ that
approximates an unknown ground-truth labeling function f ∗ : X → Y , with label space
Y . The predictor is evaluated with the expected riskRQ(f̂ , f

∗) = EX∼Q[ℓ(f̂(X), f ∗(X))],
where Q is the data distribution of this downstream task, and ℓ : Y × Y → R is a loss
function. In the first part of this thesis, we will assume Q to be equal to the pretraining
data distribution PX . In the second part where we study transferability, Q ̸= PX .

There are a number of ways to learn the predictor f̂ : X → Y based on the encoder
Φ̂ : X → Z . This thesis will mainly focus on linear probing, which fits a linear model on
top of Φ̂; that is, f̂(x) = W Φ̂(x) for someW .
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Figure 1: Illustration of the theoretical framework of understanding representation
learning. A pretrained d-dimensional representation spans a d-dimensional subspace
Fd of the functional space F . f ∗ is the ground truth function, f0 is the projection of f ∗

onto F , and fd is the projection of f0 onto fd. f̂ is the downstream predictor.

3 Theoretical Framework for Understanding Generaliza-
tion of Big Models in Representation Learning

The first part of the thesis will propose a new framework for studying representation
learning. The framework is based on two main arguments:
(a) Representation learning is extracting basis functions of a functional space F .
(b) The functional spaceF should be defined with prior knowledge instead of a model.

Denote the encoder by Φ = [ϕ1, · · · , ϕd], where ϕi : X → R. Suppose by prior knowl-
edge, we know that all ϕi belong to a specific functional spaceF , which is essentially the
hypothesis space. If ϕ1, · · · , ϕd ∈ F , then they will span a d-dimensional linear subspace
ofF , denoted byFd. Therefore, upstreampretraining can be viewed as learning this sub-
space Fd, as illustrated in Figure 1. At downstream, using a linear probe is equivalent to
finding f̂ within Fd.

With this machinery, how can we bound the prediction error of f̂? Let us assume for
now that the error is measured by the squared L2 distance, that isR(f̂ , f ∗) =

∥∥∥f̂ − f ∗
∥∥∥2
2
.

Let f0 be the projection of f ∗ onto F , and let fd be the projection of f ∗ (or f0) onto Fd.
Apparently, fd is the best predictor of f ∗ in Fd. However, with only finite samples, we
might not find fd, so there will be a gap between f̂ and fd. Figure 1 illustrates the above
analysis, which produces the following decomposition:

R(f̂ , f ∗) =
∥∥∥f̂ − f ∗

∥∥∥2
2
= ∥f0 − f ∗∥22 + ∥fd − f0∥22 +

∥∥∥f̂ − fd

∥∥∥2
2
. (1)

The sum of the first two terms, equal to ∥fd − f ∗∥22, measures the risk of the best
predictor in Fd, and is called the approximation error. The last term measures how close
we can get to this best predictor with finite samples, and is called the estimation error.

Note that f0 depends on f ∗ and F (which comes from our prior knowledge), nei-
ther of which we can control, so ∥f0 − f ∗∥22 is an overhead term we have no power over.
We are going to bound the other two terms in our generalization results. From this de-
composition, we can also see that the representation dimension d controls the following
trade-off: A larger dmakes the second term smaller because Fd can cover more parts of
F , but also makes the third term larger as it increases the complexity of Fd.

Finally, the functional space F is defined with our prior knowledge on the down-
stream task instead of a big model. The complexity of a big model is astronomical, so
defining F with a big model could lead to vacuous and even misleading results. The
main type of prior knowledge of similarity we are going to consider is similarity. This
could be the similarity between two samples, a sample and its corrupted version, or two
corrupted samples.
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3.1 Induced RKHS and Soft Invariance
We study a large class of popular self-supervised learning methods based on data aug-
mentation. Two popular self-supervised learning algorithms based on data augmenta-
tion are multi-view learning and reconstruction tasks. In multi-view learning, for each
sampleX , we randomly augment it twice toA andA+, and call them two views of sample
X . We enforce the encoder to give similar embeddings to A and A+. In reconstruction,
we augment X → A, and trains an encoder and a decoder by asking them to recon-
structX from A. Let X be the input space, and A be the augmented space that contains
augmentations of the original samples. Let PX be the data distribution.

We want to understand why big models can learn generalizable representations,
while classical learning theory says that big models can overfit easily. The key is what
function class we choose to use. Classical learning theory chooses the function class to
be the one induced by themodel, and its complexity naturally depends on the size of the
model. So for big models, these generalization bounds become vacuous. On the other
hand, we define the function class with the data augmentation used to pretrain the en-
coder, and this function class is independent of the model size and architecture. More
specifically, we view the big model as an algorithmic model instead of a data model [5].
The optimal representation to be learned is determined by the augmentation, and the
role of the big model is to approximate that representation. The bigger the model is, the
easier it can approximate the ideal representation.

The data augmentation incorporates the following prior knowledge: Two views aug-
mented from the same sample should be similar. More formally, we assume g satisfies

1

2
EX∼PXEA,A+∼p(·|X)

[
(g(A)− g(A+))2

]
≤ ϵ∥g∥2PA

, for some ϵ ∈ (0, 1). (2)

This is a soft invariance condition, which says that on average, g(A) ≈ g(A+). Let the
ground truth function be f ∗. Note that f ∗ is a function on X , while g is a function on A.
Thus, we assume that there exists g∗ that satisfies Eqn. (2), and

f ∗(x) =

∫
g∗(a)p(a|x)da, (3)

where p(a|x) is given by the data augmentation. The function class of interest is the
set of all f ∗ that satisfies the above condition. We show that this function class can be
characterized by an induced RKHS. Define the following kernel:

KX(x1, x2) =

∫
p(a|x1)p(a|x2)

PA(a)
da, (4)

where PA(a) =
∫
p(a|x)dPX (x). Assume that this is a Mercer kernel. Let HΓ be the

RKHS associated with this kernel. Then, we can show that the above condition of f ∗ is
equivalent to the following isometry property:

(1− ϵ)∥f ∗∥2HΓ
≤ ∥f ∗∥2PX

≤ ∥f ∗∥2HΓ
. (5)

Let the eigenvalues of HΓ be λ1 ≥ λ2 ≥ · · · ≥ 0, with eigenfunctions ϕ1, ϕ2, · · · that
form an orthonormal basis (ONB) of the L2 function space w.r.t. PX . We can show that
λ1 ≤ 1. Thus, this isometry property implies that f ∗ can be roughly approximated by
the top few eigenfunctions ofHΓ. In what follows, we provide two sets of generalization
results. The first one holds for an arbitrary encoder, and the second one considers the
near-optimal d-dimensional encoder.
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3.2 Generalization Bound for an Arbitrary Encoder
We focus on the least-squares regression problem, where the loss is the mean squared
error (MSE). Let ∥·∥PX

be the L2 norm. The problem is formally stated as follows:
Problem. Given unlabeled samples x̃1, · · · , x̃m and labeled samples x1, · · · , xn i.i.d. sampled
from PX , and labels yk = f ∗(xk) + νk for k ∈ [n] and random noise νk, find a predictor f̂ ∈
L2(PX ) with a low prediction error err(f̂ , f ∗) := ∥f̂ − f ∗∥2PX

= EPX [(f̂(X)− f ∗(X))2].
We assume that the scale of f ∗ is bounded as ∥f ∗∥PX

≤ B. Then, by Eqn. (5), we have
∥f ∗∥HΓ

≤ B√
1−ϵ

. Thus, we consider the following linear probe predictor:
Definition 1. The final predictor is the nonparametric least-squares estimate defined as

f̂ := argmin
f :f=w⊤Φ̂,∥f∥HΓ

≤ B√
1−ϵ

{
1

n

n∑
k=1

(yk − f(xk))
2

}
.

We next introduce two key ingredients crucial to our analyses. The first ingredient is
what we term the augmentation complexity, which takes the role of the model complexity.
Definition 2. Define the augmentation complexity as κ := ∥KX∥1/2∞ , that is for PX -almost
all x, it holds that

KX(x, x) =
∑
i

λiϕi(x)
2 =

∫
p(a|x)2

PA(a)
da ≤ κ2.

Our second ingredient is the trace gap that captures the quality of the encoder. It is
based on the notion of the ratio trace. We assume that ϕ̂1, · · · , ϕ̂d are linearly independent.
Definition 3. Define covariance matrices F ,G as F (i, j) = ⟨ϕ̂i, ϕ̂j⟩PX = ⟨Γ∗ψ̂i,Γ

∗ψ̂j⟩PX and
G(i, j) = ⟨ψ̂i, ψ̂j⟩PA . Then, the ratio trace is defined as Tr(G−1F ).

Ratio trace is a classical quantity in linear discriminant analysis (LDA) [24]. Themax
ratio trace of a d-dimensional encoder is λ1 + · · ·+ λd. Denote Sλ(d) = λ1 + · · ·+ λd.
Definition 4. Define the trace gap of encoder Φ̂, with linearly independent ϕ̂1, · · · , ϕ̂d, as

τ 2 := inf
d′≤d

inf
h1,··· ,hd′

{
Sλ(d

′ + 1)− Tr(G−1
h Fh)

∣∣∣ hi = w⊤
i Φ̂
}
,

where τ ≥ 0,Gh = (⟨hi, hj⟩PA)i,j∈[d′], and Fh = (⟨Γ∗hi,Γ
∗hj⟩PX )i,j∈[d′].

We now state our first main result, assuming the noise to be i.i.d. Gaussian.
Theorem 5. Let ν1, · · · , νn be i.i.d. N (0, σ2) variates. Let f̂ be given by Definition 1. If Ψ̂ has
d dimensions and τ < 1 (d can be∞), then there are universal constants c0, c1, c2 such that with

probability at least 1− c1 exp

(
− c2

√
2nSλ(d+1)

κ

)
− exp

(
−
√

2nκ2B2

1−ϵ

)
, there is

∥f̂ − f ∗∥2PX
≤ 9τ 2(τ + ϵ)B2

(1− τ 2)(1− ϵ)
+
c0κ(B

2 + σB)

1− ϵ

√
Sλ(d+ 1)

n
for all f ∗ ∈ FB(Γ; ϵ).

This bound consists of two terms. The first term bounds the approximation error en-
tailed by the limited capacity of the d-dimensional encoder, and the second term bounds
the estimation error entailed by finite labeled samples, as we discussed in Eqn. (1). The
number of unlabeled samples m does not appear in this bound, since this bound is for
an arbitrary encoder that can be trained on any amount of data. In a typical pretraining
setup, the trace gap τ 2 in the first term depends on m. Moreover, the first term might
not vanish asm,n→ ∞, since τ 2 is lower bounded by λd+1; for instance, if d is too small,
then Fd cannot cover the entirety of F and the approximation error can never be zero.
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3.3 Generalization Results for the Near-Optimal Encoder
Let F be the set of all f ∗ that satisfies Eqn. (5), and ∥f ∗∥PX

≤ B. We first show that the
optimal top-d encoder consists of the top-d eigenfunctions ofHΓ. Here “optimal” means
that the encoder minimizes the worst-case approximation error over F , defined as

err(Φ̂;F) := sup
f∈F

min
w∈Rd

err(w⊤Φ̂, f) = sup
f∈F

min
w∈Rd

∥w⊤Φ̂− f∥2PX
.

Proposition 6. Suppose λd+1

1−λd+1

ϵ
1−ϵ

≤ 1
2
. For any Φ̂ = [ϕ̂1, · · · , ϕ̂d] where ϕ̂i ∈ L2(PX ), there is

err(Φ̂;F) ≥ λd+1

1− λd+1

ϵ

1− ϵ
B2.

To attain equality, it is sufficient for ĤΦ̂, the linear space spanned by Φ̂, to contain all ofϕ1, · · · , ϕd;
and this is also necessary if λd+1 < λd.

However, we cannot obtain this optimal encoder with only finite samples, because
the eigenfunctions of HΓ depend on the real data distribution PX which we have no
access to. Given samples x̃1, · · · , x̃m, what we can access is the empirical distribution
P̂X , defined as the uniform distribution over thesem samples. We can also define P̂A as
P̂A(a) = 1

m

∑m
k=1 p(a|x̃k). With finite samples, Γ∗ will still be the same (because p(a|x)

does not change for any a, x), but Γ will be the following empirical version:

(Γ̄f)(a) =
1

m

m∑
k=1

f(x̃m)p(a|x̃m)
P̂A(a)

.

Let the eigenvalues and eigenfunctions of Γ∗Γ̄ be {(λ̄i, ϕ̄i)}. We define the near-
optimal d-dimensional encoder as [ϕ̄1, · · · , ϕ̄d]. Then, we can prove the following result:
Theorem 7. Let F ,G be the covariance matrices in Definition 3. Let γG := λmax(G)/λmin(G)
be the condition number of G, where λmax(G), λmin(G) are the largest and smallest eigenvalues
ofG. For any δ > 0, it holds for the near-optimal encoder with probability at least 1− δ that

τ 2 ≤ Sλ(d+ 1)− Tr(G−1F ) ≤ λd+1 +

(
2 +

√
2 log

2

δ

)
(λ−1

d + λ̄−1
d γ

1/2
G + 2)κ2√
m

d.

3.4 Variational Objectives Extracting Top-d Eigenfunctions
We have shown that the optimal encoder consists of the top-d eigenfunctions. The re-
maining question is how to extract them. It turns out that we do not need to explicitly
compute KX , which would not be scalable. Instead, there are a couple of pretraining
objectives that are (uniquely) optimized by the top-d eigenfunctions. Thus, assuming
perfect optimization, optimizing these objectives naturally gives us the top-d eigenfunc-
tions. Here are two examples:

• Spectral contrastive loss [9]: −2E
[
⟨Ψ̂(A), Ψ̂(A+)⟩

]
+ E

[
⟨Ψ̂(A), Ψ̂(A−)⟩2

]
.

• Barlow twins [28]: min E
[∥∥∥Ψ̂(A)

∥∥∥2
2

]
s.t. Cov[Ψ̂] = I .

The spectral contrastive loss can be applied tomulti-modalmodels likeCLIP [18]. Let
X be the image and A be the text. Let Φ̂ be the image encoder and Ψ̂ be the text encoder.
Define the spectral CLIP loss asL(Φ̂, Ψ̂) = −2E[⟨Φ̂(X), Ψ̂(A+)⟩]+E[⟨Φ̂(X), Ψ̂(A−)⟩2]. We
can show that the Φ̂ that minimizes this loss is also the top-d eigenfunctions.
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3.5 Spectrally Transformed Kernels
We can extend the top-d eigenfunctions to a more general formulation called the spec-
trally transformed kernels. Let k(x, x′) be a kernel that encodes inter-sample similarity.
Let its eigen-decomposition be k(x, x′) =

∑
i λiϕi(x)ϕi(x

′). Its spectrally transformed
kernel (STK) is given by

ks(x, x
′) =

∑
i:λi>0

s(λi)ϕi(x)ϕi(x
′), (6)

for a monotonically non-decreasing transformation function s : [0,+∞) → [0,+∞).
When s(λ) = λp for p ≥ 1, we denote ks = kp, and it is easy to show that kp+1(x, x′) =∫
kp(x, z)k(z, x′)dPX (z). {kp}p≥1 are called diffusion kernels. Moreover, when s(λi) =

λi1i≤d is the top-d truncation function, ks only contains the top-d eigenfunctions, and
recovers the previous section. Doing regression with an STK, which we call STKR, is a
very general and principled way of learning with labeled and unlabeled data.

Suppose we have full access to k and s, and s(λ) =
∑

i πis
i is a polynomial. In this

case, however, we still cannot compute ks with finite samples, because we cannot access
ϕi. To implement STKR, we need to construct a new kernel k̂s to approximate ks, and this
is where the unlabeled data becomes useful. More specifically, for each positive integer
p, we will construct k̂p to approximate kp, and then k̂s =

∑
p πpk̂

p.
Consider how we can approximate k2. Recall that k2(x, x′) = ∫ k(x, z)k(x′, z)dPX (z).

A natural method is Monte-Carlo approximation, where we replace the integral with
the average over the finite samples. Thus, k̂2(x, x′) = 1

n+m

∑n+m
i=1 k(x, xi)k(x

′, xi). We can
then construct k̂p similarly. Define vk(x) ∈ Rn+m as vk(x)[i] = k(x, xi) for i ∈ [n + m].
Then, define k̂1 = k; and for p ≥ 2, define k̂p(x, x′) =

vk(x)
⊤Gp−2

k vk(x
′)

(n+m)p−1 . With full access
to k, one can compute k̂p for any p. Note that the unlabeled data is leveraged when we
compute k̂p, becauseGk is the Gram matrix over both labeled and unlabeled samples.

When s is not a polynomial but the top-d truncation function, we can approximate ks
using kernel PCA. And then, we can prove statistical bounds for STKR with polynomial
or top-d truncation transformation similar to the previous section. For application, we
can apply STKR to node classification tasks, which we omit here.

4 LearningTransferableModels under SubpopulationShift:
Challenges and Solutions

It iswell known that standard empirical riskminimization (ERM) can empirically achieve
high test performance with big models on a variety of tasks. However, its performance
could downgrade when the train and test data distributions are different, which is a
common scenario in practice. If a model trained on distribution P can still work well on
another distribution Q, then we say that this model has out-of-distribution (OOD) gener-
alization. Particularly, here we focus on the subpopulation shift problem where Q ≪ P ,
which means that P (A) = 0 always impliesQ(A) = 0. A foundation model is pretrained
on a very generic data set such asWikipedia, so it is natural to assume that the upstream
data set contains all downstream data.

OOD generalization is a very important topic, and various approaches to learning
models robust against subpopulation shift have beenproposed. Most of these approaches
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are based on reweighting, which minimizes a weighted average of the model’s losses on
the training samples. Despite their popularity, thesemethods have twomajor challenges:

• Sensitivity to outliers: The idea of reweighting is to give more weights to “harder”
samples, that is samples on which the model has higher losses. However, real data
sets have outliers, and intuitively the model has higher losses on these outliers.
Thus, reweighting gives more weights to outliers, which downgrades the perfor-
mance.

• Overfitting: [20] empirically showed that reweighting requires a much larger reg-
ularization than ERM. Moreover, [8] conducted a large-scale empirical study and
found that no reweightingmethod is significantly better thanERM.Why is reweight-
ing more prone to overfitting, and is it better than ERM?

4.1 Generalized Reweighting (GRW)
Let the input space be X ⊆ Rd and the output space be Y ⊆ R. For simplicity we
assume Y to be one-dimensional, though our results can be easily extended to the multi-
class scenario. We assume that every x ∈ X satisfies ∥x∥2 ≤ 1. We have a training set
{zi = (xi, yi)}ni=1 i.i.d. sampled from an underlying distribution P over X × Y . Denote
X = (x1, · · · ,xn) ∈ Rd×n, and Y = (y1, · · · , yn) ∈ Rn. For any function g : X 7→ Rm, we
overload notation and denote g(X) = (g(x1), · · · , g(xn)) ∈ Rm×n.

ERM trains a model by minimizing its expected risk R(f ;P ) = Ez∼P [ℓ(f(x), y)] via
minimizing the empirical risk R̂(f) = 1

n

∑n
i=1 ℓ(f(xi), yi), where ℓ : Y × Y → [0, 1] is

the loss function. On the other hand, at iteration t, generalized reweighting (GRW)
minimizes the weighted empirical risk given by

R̂q(t)(f) =
n∑

i=1

q
(t)
i ℓ(f(xi), yi), (7)

where q(t) = (q
(t)
1 , · · · , q(t)n ) is the sample weight vector, such that q(t)1 + · · · + q

(t)
n = 1. It

is called “generalized” because in a standard reweighting algorithm, the sample weight
q
(t)
i does not change with time t; we call this static GRW. If q(t)i can change with t, then
we call it dynamic GRW. Note that ERM is a special case of static GRW.

A classical static GRW method is importance weighting (IW) [22]. Suppose the up-
stream data set contains K downstream domains of interest. Denote their training sub-
sets by D1, · · · ,DK , and let nk be the size of Dk. The problem of ERM is that it will have
a low performance on very small domains. To solve this, IW sets q(t)i ≡ qi = (Knk)

−1 for
all zi ∈ Dk, so that the weighted empirical risk has equal weights on all domains.

The most popular family of dynamic GRWmethods is distributionally robust optimiza-
tion (DRO). In DRO, we use the train distribution P to specify an uncertain set U(P ),
which is a set of distributions we believe the test distribution Q should belong to. One
way to define the uncertainty set is to use a divergence function D(Q ∥ P ). For subpop-
ulation shift, we can define U(P ) = {Q | Q≪ P,D(Q ∥ P ) ≤ ρ} for some ρ > 0. Then,
DRO minimizes the worst-case expected risk defined as

RD,ρ(f ;P ) = sup
Q

{EQ[ℓ(f(x), y)] | Q≪ P,D(Q ∥ P ) ≤ ρ}.

Moreover, in the domain-aware setting where we know the domains D1, · · · ,DK ,
then we can define the uncertainty set to be {P1, · · · , PK}, where Pk(z) = P (z|z ∈ Dk).
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Figure 2: Comparison between DRO and DORO.

Then, the worse-case expected risk essentially becomes the worst-group risk:

Rmax(f ;P ) = max
k=1,··· ,K

R(f ;Pk) = max
k=1,··· ,K

Ez∼P [ℓ(f(x), y)|z ∈ Dk]. (8)

Group DRO [20] is a popular method of minimizing the worst-group risk. The
method uses bi-level optimization, where the lower level updates the model to mini-
mize the expected risk over Q, and the upper level updates Q to maximize the expected
risk. Denote the empirical risk over group k by R̂k(f), and the model at time t by f (t).
For all k ∈ [K], group DRO iteratively sets q(t)i = g

(t)
k /nk for all zi ∈ Dk, where g(t)k is the

group weight that is updated as

g
(t)
k ∝ g

(t−1)
k exp

[
νR̂k

(
f (t−1)

)]
for some ν > 0. The group weights are normalized so that q(t)1 + · · · + q

(t)
n = 1. [20]

showed (in their Proposition 2) that for convex settings, the Group DRO risk of iterates
converges to the global minimum with the rate O(t−1/2) if ν is sufficiently small.

In a nutshell, the idea of GRW is to give larger weights to domains that are “harder”
to learn, such as small domains, or domains where the current model has a high risk.

4.2 Mitigating Sensitivity to Outliers
Consider GRW algorithms that assign larger weights to samples where the model has
higher loss. One family of such algorithms is distributionally robust optimization (DRO),
which defines an uncertainty set U(P ) = {Q | D(Q ∥ P ) ≤ ρ} for some divergence func-
tion D and some ρ > 0. Then, DRO minimizes the worst-case expected risk defined as
RD,ρ(h;P ) = supQ

{
E(X,Y )∼Q[ℓ(h(X), Y )]

∣∣ D(Q ∥ P ) ≤ ρ
}. We also call this the DRO

risk. The uncertainty set contains distributions that are close to the training distribution,
and DRO trains the model on the worst distribution in the uncertainty set.

The problem is that real data sets contain outliers, and intuitivelymodels have higher
loss on outliers. As a result, DROpaysmore attention to outliers during training, causing
instability and a performance drop. Prior work [10, 12, 29] has already observed that
DRO is highly sensitive to outliers. In my work, I also use experiments to showcase that
DRO methods are very sensitive to outliers in real data sets.

To this end, we propose a method called DORO, which stands for Distributionally
and Outliers Robust Optimization. The idea of DORO is to ignore the samples where
the model has the highest loss, because these samples are potential outliers. Figure 2
compares between DRO and DORO. DRO gives more weights to the samples with the
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highest loss, as labeled by “DRO”, but there are lots of outliers within these samples.
On the other hand, DOROwill ignore a small portion of the worst samples (for example
10%) and then apply DRO, so it essentially gives more weights to samples in the middle,
as labeled by “DORO”.

Now let us formulate DORO. Consider the Huber’s ϵ-contamination model P =
(1 − ϵ)P ′ + ϵP̃ ′, where P is the observed training distribution, P ′ is the “clean” train-
ing distribution without outliers, and P̃ ’ is an arbitrary distribution. DORO trains the
model on the “easiest” P ′ that satisfies this model and minimizes the risk. Specifically,
the expected ϵ-DORO risk is defined as

RD,ρ,ϵ(h;P ) = inf
P ′

{
RD,ρ(h;P )

∣∣∣ ∃ P̃ ′ s.t. P = (1− ϵ)P ′ + ϵP̃ ′
}
. (9)

Here ϵ is a hyperparameter, and we only need to make sure that it is not less than the
real noise level. It is easy to show that this risk corresponds to Figure 2.

One might ask what if the model has low loss on some outliers, and high loss on
some inliers? Will DORO still work in this case? The answer is positive, and we prove
two theoretical results:

• Theminimizer of theDORO risk on the contaminated distribution achieves a close-
to-minimumDRO risk on the clean distribution assuming the Huber’s contamina-
tion model. We also show that this bound is information-theoretically optimal.

• The DORO risk is a surrogate loss of Rmax defined in Eqn. (8). Specifically, Rmax

on the clean distribution is upper bounded by the DORO risk on the contaminated
distribution multiplied by a constant factor.

We test the proposed DORO algorithm on real data sets, including COMPAS, CelebA
and CivilComments-Wilds. On all data sets, we find that DORO can lead to more stable
training and better performance than DRO and ERM.

4.3 Is GRW Better than ERM?
Prior work empirically showed that GRWneeds a much larger regularization than ERM,
and is not better than ERM on a variety of tasks. In this part, we focus on a comparison
between GRW and ERM. We will show for both regression and classification tasks, and
for both linear models andwide neural networks that GRW is not necessarily better than
ERM. This negative result is shown from an optimization perspective. Specifically, we
will show that when starting from the same initialization, GRW and ERMwill converge
to two very close points, and thus GRW cannot be better.

Let us start from regression with the squared loss ℓ(ŷ, y) = 1
2
(ŷ−y)2. We first demon-

strate this negative result on linear models, thereby providing a key proof intuition. Let
the linearmodel be denoted by f(x) = ⟨θ,x⟩, where θ ∈ Rd. We consider the overparam-
eterized setting where d > n. The weight update rule of GRW under gradient descent
(GD) is θ(t+1) = θ(t)− η

∑n
i=1 q

(t)
i (f (t)(xi)− yi)xi. Therefore, θ(t+1)− θ(t) is always a linear

combination of x1, · · · ,xn. Suppose that x1, · · · ,xn are linearly independent. Then, if
θ(t) → θ∗, then θ∗ − θ(0) ∈ span{x1, · · · ,xn}.

Meanwhile, since optimizing the squared loss for a linear model is a convex problem,
given that q(t)i → qi for some qi as t→ ∞, we know that θ(t) will always converge to some
θ∗. And if qi > 0, then this θ∗ should achieve zero squared loss, which means that it is
an interpolator such that ⟨θ∗,xi⟩ = yi for all i ∈ [n].

10



Now here is the key. We know that θ∗ − θ(0) ∈ span{x1, · · · ,xn}, which is an n-
dimensional linear space. We also know that ⟨θ∗,xi⟩ = yi for all i ∈ [n], which are n linear
equations. By Cramer’s rule, there is exactly one θ∗ that satisfies both conditions. This
unique θ∗ does not depend on the sample weights q(t)i . Also note that ERM is a special
case of GRW, with q(t)i ≡ 1/n. Thus, we have essentially proved for this setting that GRW
and ERM will always converge to the same model, given that there is no regularization
and no early stopping. We can extend the above result to wide neural networks in the
NTK regime [13], since these networks can be approximated by their linearized version.

Moreover, we also study the effect ofL2 regularization, withwhich the GRW learning
objective becomes

R̂µ

q(t)(f) =
n∑

i=1

q
(t)
i ℓ(f(xi), yi) +

µ

2

∥∥θ − θ(0)
∥∥2
2
. (10)

Adding regularizationdoesmake adifference regardless of howbigµ is. For instance,
for the linear model case we discussed earlier, with regularization the problem is still
convex, so θ will converge to the global minimum θ∗ that satisfies ∇θR̂µ

q(t)(f(x; θ
∗)) = 0.

For static GRW, the solution is θ∗ = θ(0) + (XQX⊤ + µI)−1XQ(Y − f (0)(X)), where
Q = diag(q1, · · · , qn). Clearly, θ∗ depends on the sample weights.

Our argument, however, is that the regularization must be large enough to signifi-
cantly lower the training performance, or the final model would still be close to the unregu-
larized ERM model. Specifically, we prove that if the empirical training risk of the final
model can go below ϵ for some ϵ > 0, then for all x such that ∥x∥2 ≤ 1, we have

lim sup
t→∞

∣∣∣f (t)
REG(x)− f

(t)
ERM(x)

∣∣∣ = O(d−1/4
w +

√
ϵ) → O(

√
ϵ) as dw → ∞.

Here, f (t)
REG is the regularizedGRWmodel, fERM is the ERMmodel, and dw is thewidth

of the network. This means that if ϵ is very small, then f (t)
REG(x) ≈ fERM(x) for all x, and

thus regularized GRW cannot be better than ERM.
We now move on to classification. For simplicity we focus on binary classification

where Y = {+1,−1}, but our results can be easily extended to multi-class classification.
Let the loss be the logistic loss ℓ(ŷ, y) = log(1+exp(−ŷy)). The big difference here is that
the logistic loss does not have finite minimizers. The logistic loss converging to zero means
that the model weight “explodes” to infinity instead of converging to a finite point.

Let us again provide the key proof intuition by looking at the linear model f(x) =
⟨θ,x⟩. We show that when the training error goes to zero, θ(t) will converge to the
max-margin classifier defined as θ̂MM = argmaxθ:∥θ∥2=1 {mini=1,··· ,n yi · ⟨θ,xi⟩}, as long as
lim inft→∞ q

(t)
i > 0. Note that θ̂MM only depends on the training samples, and does not

depend on either the initial point or the sample weights. Thus, again we have shown
that all GRW, including ERM, will converge to the same final model, and thus GRW is
no better than ERM.

Similarly, we can extend this negative result to wide neural networks, and regular-
ized logistic loss. Define the max-margin linearized NN as fMM(x) =

〈
θ̂MM,∇θf

(0)(x)
〉
,

where θ̂MM = argmax∥θ∥2=1

{
mini=1,··· ,n yi ·

〈
θ,∇θf

(0)(xi)
〉}. Under the same conditions

as the previous result, we can show that if the training error can converge to somewhere
less than ϵ, then for any x such that |fMM(x)| = Ω(

√
− log 2ϵ), the output of the wide neu-

ral network trained with the regularized loss will have the same sign as fMM(x), which
means that they predict the same class.
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4.4 Enhancing the OOD Generalization
We have shown the sobering result that for both regression and classification, for both
linear models and wide neural networks, and for both unregularized and regularized
loss that does not significantly lower the training performance, GRWdoes not have better
OOD generalization than ERM. The natural following question is how we can improve
this. While this is still an open problem at this moment and we have called upon our
community to look into this issue more deeply, here we list three approaches that could
help enhance the OOD performance.

The first approach is to create more synthetic data with data augmentation or gener-
ative models. We have shown that giving more weights to small domains does not actu-
ally help, but instead we can enlarge these small domains with synthetic data. There has
been a huge breakthrough in generative models recently, and people have been trying
to apply them to OOD generalization [21, 26].

For classification tasks, there are two other approaches. The second approach is to
design a new class of algorithms other than GRW, such as logit adjustment [17]. We have
proved that for classification, all GRW models converge to the max-margin classifier.
The idea of logit adjustment is to adjust the margin of each domain, such that smaller
domains have larger margins. The way to achieve this is instead of multiplying the sam-
pleweights to the loss on the samples, wemultiply it to the logits predicted by themodel.
If wemultiply a small number to the logits of one particular domain, then themodel will
be encouraged to have a large margin on this domain.

The third approach is to stay within the class of GRW algorithms, but to use a new
family of loss functions. For instance, [25] showed that by changing an exponentially
tailed loss such as the logistic loss to a polynomially-tailed loss such as

ℓα,β(ŷ, y) =


ℓleft(ŷy) , if ŷy < β;

1

[ŷy − (β − 1)]α
, if ŷy ≥ β,

where ℓleft is a suitable function that makes this loss monotonic and smooth, then GRW
will converge to a different point than ERM. However, being different does not neces-
sarily mean that GRW is actually better than ERM. [25] showed for a toy example that
GRW is better, but for a more general case this is still unknown.

5 Proposed Future Work
As summarized above, my prior work studied the generalization and transferability of
representation learning especially with big models, figured out some issues and chal-
lenges of existing methods, and proposed several new methods. In my last year of PhD,
I intend to apply these newmethods to practical applications, especially on tabular data.
I will investigate how to combine multiple sources of prior knowledge, how to extract
eigenfunctions of kernels via variational objectives, and how to evaluate representations.

5.1 Representation Learning on Tabular Data
Despite the great success of deep learning, tabular data remains a bastion it has yet to
conquer. Tabular data is the most common type of data in industrial applications. How-
ever, at this point, the state-of-the-art method on tabular data is still gradient boosted
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decision trees (GBDT), as shown in recent empirical studies [7, 16]. Real-world tabu-
lar data has a number of complexities, such as categorical features, missing values, etc.
Moreover, the relationship between the response and the predictor variables is not nec-
essarily smooth, inwhich case neural networks cannot perform as good as decision trees.

On the other hand, using deep models to learn representations for tabular data is a
promising direction to explore. Using deep models for prediction might be bad due to
the non-smoothness of the underlying pattern, but using them for representation learn-
ing could extract useful information that helps improve the performance.

Current progress. My team has already built the infrastructure for large-scale experi-
ments, with over 200 data sets, 5 benchmarks, and a number of baselines. We have im-
plemented contrastive and non-contrastive learning for tabular data, such as SCARF [1],
VICReg [2], global contrastive learning [27], etc. We have also implemented some recent
deep learning based methods such as TabPFN [11]. At this point, GBDT still achieves
the best performances on all benchmarks, but by combining more features learned by
neural networks, we are confident that we can achieve further improvement.

5.2 Extracting Eigenfunctions of a General Kernel
Let k(·, ·) be aMercer kernel. Mywork showed that the top eigenfunctions of k constitute
a good representation. The problem is how to extract the eigenfunctions of k in a scalable
way. The classical algorithm is kernel PCA, which proceeds by constructing a gigantic
Gram matrix of k on all samples, and then computing its eigenvectors. Clearly, kernel
PCA is not scalable, and we want a new method that uses big models.

Let us assume that we have cheap access to k(x, x′) for all x, x′, and k is non-negative.
Then, we can use an algorithm similar to non-contrastive learning. For each step:

1. Sample a batch {x1, · · · , xm}.

2. Compute the degree of xi for all i ∈ [m]: D(xi) =
∑m

j=1 k(xi, xj).

3. Compute the conditional probability P+(xj|xi) = k̃(xi, xj) =
k(xi,xj)

D(xi)
.

4. Sample x+i , x++
i ∼ P+(·|xi) independently.

5. Minimize 1
m

∑m
i=1

∥∥Φ(x+i )− Φ(x++
i )
∥∥2
2
, subject to CovP (X+)(Φ) = I .

Note that in the final step, the covariance is computed onX+ ∼ P+(·|X), whereX ∼
PX . My prior work showed that the minimizer of this loss is the top-d eigenfunctions. It
remains to investigate the optimization behavior of this algorithm, and apply it to some
real data sets and see its performance.

There are two other questions that need to be studied. First, what if k is not always
non-negative, in which case we cannot define the conditional probability P+? Second,
what if we cannot access k(x, x′) for all x, x′?

5.3 Combining Multiple Sources of Prior Knowledge
Let k be a similarity kernel, such as the contrastive kernel. Non-contrastive learning
can be formulated as maximizing 〈k,ΦΦ⊤〉 subject to Cov(Φ) = I . What if we have
multiple kernels k1, · · · , kr, where each kernel encodes one piece of prior knowledge?
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For instance, there are multiple types of data augmentation the target function should
be invariant to, and they induce multiple contrastive kernels.

Themost classical way of learningwithmultiple kernels is using a linear combination
k =

∑r
j=1wjkj , where w = (w1, · · · , wr) is on the r-dimensional unit simplex ∆r. Then,

we can maximize minw

〈∑
j wjkj,ΦΦ

⊤
〉
, which can be done via a bi-level optimization

procedure, similar to an EM algorithm. For each step, we first update Φ just like the
single kernel case; then, we updatew, probably using an exponential update algorithm.

Apart from linear combination, we can also consider kernel convolution. Formally,
for two kernels k1 and k2, we define (k1 ⋆ k2)(x, x

′) =
∫
k1(x, z)k2(z, x

′)dPX (z). This is
not symmetric, but we can always consider k1 ⋆ k2 + k2 ⋆ k1. This gives us more types of
interaction between the kernels.

5.4 NewWays of Evaluating Representations
At this point, the most widely used way of evaluating an encoder is to test it on a bunch
of downstream tasks. Such evaluation, on its own, is innocuous since after all, high
downstreamperformance iswhatwewant. However, the problem emergeswhenpeople
start to optimize their pretraining algorithm towards the downstream performance. It
is widely reported that tricks that work well on some downstream tasks might not work
well on others, so it is hard to justify using these tricks to train foundation models when
we don’t know what the real downstream tasks would be.

Therefore, we need more general ways of evaluating and comparing pretrained rep-
resentations. [14] discussed several ways of comparing representations, such as CCA
and CKA. However, these metrics only compare the similarity between two representa-
tions, but when they are not similar, these metrics say nothing about which one is better.

There are some existing principles regarding the quality of a representation. For in-
stance, InfoMax [15] states that a good representation should have high mutual infor-
mation with the input, and contrastive learning is derived from InfoMax. There are two
problems here. First, estimating the mutual information is notoriously hard. Second,
when both signal and noise exist in the data, a high mutual information contain both,
and it says little about the signal-to-noise ratio of the representation, which is crucial for
applications where the data contains lots of noise such as financial data.

In this direction, I plan to investigate InfoMax more deeply. Specifically, I want to
know why InfoMax is a good principle, whether it leads to identifiable representations,
and how to estimate the mutual information for a pretrained encoder.
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