
CS213,Spring1999
LabAssignmentL3: ImplementingaDynamicStorageAllocator

Assigned:Feb. 25,Due: Wed.,Mar. 10,11:59PM

SpirosPapadimitirou(spapadim+t a@cs. cmu.e du) is theleadpersonfor this lab.

Intr oduction

In this lab you will bewriting a dynamicstorageallocatorfor C programs,i.e., your own versionof the
malloc andfree routinesfrom thestandardC library. Yourtaskis to developanallocatorthatis correct,
memoryefficient,andfast. All implementationdecisionsareup to you! You will needto bevery creative
to write a goodallocator.

Logistics

As usual,youmaywork in a groupof up to 2 people.

Any clarificationsandrevisionsto theassignmentwill bepostedon theclassbboardandWWW page.

Your programswill beevaluatedby their correctnessandperformanceon theclassAlphas. However, you
candoyourcodedevelopmentonany machine(youmayneedto edittheMakefileif youchangeplatforms).

Thetarfile

/afs/cs.cmu .e du/ cl ass /a cad emic/ 15213-s 99/ L3/L3 .t ar

containsthefilesyou’ll needfor thisassignment.Youwill beturningin thefile malloc.c , afterfilling in
theemptyfunctionswith your implementation.

Youcanhandin theassignmentvia“gmake handin NAME=username”, with “VERSION=versi on_num”
if necessaryfor hand-insaftertheinitial one.

1



Details

Implementation

Yourdynamicstorageallocatorconsistsof thefollowing threefunctions,whicharedeclaredin malloc.h
anddefinedin malloc.c with emptyfunctionbodies.

int mm_init(v oid )
char *mm_malloc (si ze _t size);
void mm_free(v oid *block);

Youwill fill in theseemptyfunctionbodies(andpossiblydefineotherprivatefunctions)asyoursolutionto
this labassignment.You are not allowedto changethe interfaces,nor to call any systemroutinesthat
managedynamic storage(e.g., malloc, free, sbrk, etc.) Youarealsonotallowedto declareothervariables
to hold thecontroldatafor yourallocator;youshouldstorethesein theheaparea.

Yourdynamicstorageallocatorinteractswith anarbitraryapplicationprogramin thefollowingway: As part
of its initialization phase,theapplicationcallsyour mminit functionto performinitialization of theheap.
Youmustallocatethenecessaryinitial heapareaandinitialize all structuresyouneed.Theapplicationthen
makesaseriesof callsto mm mallocandmmfree.

Youareallowedto usethefollowing functionsfrom memlib.c in your allocator:

� memsbrk: You usethis function to expandtheheaparea. The lower andupperboundariesof the
heapareaarecontainedin dseg_lo anddseg_hi respectively. Youareonly allowedto readthese
variables,but you shouldnot modify themin any way. You mustcall memsbrk in orderto change
theupperbound.This functionacceptsa positiveintegerargument,which is theamountof bytesby
which theupperboundshouldbeexpanded.Thereturnvalueis thebegining of thenewly allocated
heaparea,or NULL if therewasn’t any memoryleft. The interfaceof memsbrk is very similar to
thatof thesbrksystemcall, but you shouldusememsbrk. You cannotdecreaseyour heapareain
size,only increaseit, sobecarefulhow you call memsbrk. In effect, eachtime you call memsbrk,
thevalueof dseg_hi is incrementedby theamountyou request,but theactualmemoryallocated
is alwaysin multiplesof thesystempagesize,so it might bea goodideato call memsbrkwith an
incrementthatis a multipleof thepagesize.

� mempagesize:This returnsthesystem’s pagesizein bytes. It maynot benecessaryto useit, but it
mighthelpyou in fine-tuningyourperformance.

� memusage:This is simplya shorthandthatreturnsthecurrentsizeof yourheapin bytes.

Thefunctionsyouneedto implementarethefollowing:

� mminit: Beforecalling mmmalloc or mmfree, the applicationprogramcalls mminit to perform
any necessaryinitializations,includingtheallocationof theinitial heaparea.Thereturnvalueshould
be -1 if therewas a problemin performingthe initialization, 0 otherwise. We will gradeyour
implementationin severalphases.To facilitateour testing,write mminit suchthatit reinitializesall
statewhenit is called.We will useit to reinitializeyourdynamicstorageallocatorbetweeneachtest
phase.

� mmmalloc: Themm mallocroutinereturnsa pointerto anallocatedregion of at leastsize bytes.
Thepointermustbealignedto 8 bytes,andtheentireallocatedregion shouldlie within thememory
region from dseg_lo to dseg_hi .

2



� mmfree: The mm free routineis only guaranteedto work when it is passedpointersto allocated
blocksthatwerereturnedby previouscallsto mm malloc. Themm freeroutineshouldaddtheblock
to thepoolof unallocatedblocks,makingthememoryavailableto futuremmmalloccalls.

Testdriver

Thefile driver.c containstheactualdriver programwe will useto testyour allocator. You shouldnot
changethis, but feel freeto useany othertestingmethodyou wish, while developingyour code. Thetest
driver shouldprovide you with someusefulinformationfor debuggingyour program.Thecommandline
optionsit acceptsareasfollows:

-f tracefile ����� Useparticulartracefilefor testing;canrepeatthis optionto loadmultiple tracefiles.
If no tracefilesarespecified,a list of defaulttracefileswill beused.

-v Verbosemode;printsout somedetaileddebugginginfo (default).
-q Quietmode.
-t tolerance Specifyanerrortolerancefor thetime measurements(default:0.02)

Grading Criteria

Your dynamicstorageallocatorwill be evaluatedin four areas:correctness,memoryefficiency, running
time,andstyle. Thereareatotal of 60points.

Correctness(20points)

To be correct,your mm malloc routinemustreturnNULL if it cannotfind a sufficiently large freeblock.
Otherwise,it mustreturna pointer, alignedto 8 bytes,to anallocatedblock of at leasttherequestedsize
(theblock might belargerbecauseof alignmentconstraintsor placementpoliciesin your allocator). The
block mustbe locatedwithin the allocatedheap(betweendseg_lo anddseg_hi ), andno part of the
blockmaybereturnedby subsequentcallsto mm mallocuntil it hasbeenreleasedby acall to mm free.

The correctnesscriteria areall or nothing. If your implementationis correctby this definition,you will
receive all 20 points,otherwiseyouwill receive 0 points.

Performance(35points)

Therearetwo mainaspectsto theperformanceof thememoryallocator: memoryefficiency andrunning
time. Your implementationwill be evaluatedboth on memoryutilization as well as speed. A number
of traceswill be usedto testyour allocator;someareartificially generatedfor thepurposeof testingthe
behaviour of your codein varioussituationsandothershave beenobtainedfrom real-worldapplications.
We will provide you with someof thetracesthat we will usefor evaluatingyour allocator. You will find
thesein /afs/cs/ aca demic /cl as s/1 5213- s9 9/L 3/ tra ce s/ ; pleasecheckfor possibleupdates
in thisdirectory.

Thereareseveral factorsthat influencememoryefficiency. Oneof the most importantis the allocation
policy. You shouldtry to pick an allocationpolicy that minimizesfragmentation.An importantstepin
ensuringthatfragmentationdoesnot getout of handis implementingcoalescingof freeblocks. You may
eitherdo immediatecoalescingin mmfree, or do lazy coalescing- aslongasmm mallocnever fails when
enoughmemoryis availablein consecutive free blocks. Finally, memoryefficiency is influencedby the
amountof overhead.

3



The memorymanageris sucha critical part of a runtimesystemthat it is very importantto optimizein
every way possible.We will bemeasuringthespeedof your implementationusinga numberof different
workloads. You shouldthink abouthow to write the codein sucha way as to minimize the numberof
instructionsrequiredfor thecommoncase.Whendesigningyour implementation,try to makechoicesthat
simplify thecode,e.g. thatresultin fewer instructions,needfewerconditionals,etc.

You shouldtry to do well both in termsof speedandmemoryefficiency. Do not optimize speedat the
expenseof memory overhead,or vice-versa.Oneof themostchallengingaspectsof thisassignmentswill
beto achieve a properbalancebetweenthosetwo. Your gradewill dependbothuponspaceaswell astime
overheadof your implementation.We will measurebothover a setof traces;someof thesetraceswill be
providedto youin orderto helpyoutestyour implementation.Thesemeasurementswill beaveragedusing
a setof weightswhich will reflecttherelative significanceof eachtrace;we will determinetheseweights
shortly.

Bothspaceandtimeoverheadswill bemeasuredasthedifferencebetweenthespaceandtimeyoursolution
usesversusan optimal estimate.For space,the optimal estimatewill be the maximumof total memory
allocatedat any one instant. No allocatorcan achieve this bound (at leastwithout foreknowledgeof
the future, which in reality is impossible),but you shouldbe able to comequite close. For time, the
optimalestimatewill beanidealoperationthat is performed“instantaneously”(ie. a blankfunction). The
performanceindex will dependon both overheads,so you shouldtry to minimizeboth. The formula for
estimatingoverall spaceoverheadwill beof thefollowing form:

�
1�
1

� �
2�
2

�������	� ��

��


where��� is yourspaceoverheadfor trace 
 and ��� is therespective weight(containedin thetracefile).The
formula for time overheadis similar. The overall performanceindex will be a weightedsumof the two
overheads.

Feelfreeto modify driver.c to do your own testinganddebugging,but it wouldbea goodideaif you
useddriver.c locatedin /afs/cs/a ca demic /cl as s/1 5213- s9 9/L 3/ src / for yourfinal tests.

The final gradingwill be doneon a curve, afterwe have reviewed theperformanceresultsfrom all your
implementations.You can seehow good your implementationis by checkingthe statisticsweb page;
you shoulddefinitely do this. Note that if you fail the correctnesstests,you will not get any points for
performance.

Style (5 points)

Your codeshouldbe readableandcommented.Definemacrosor subroutinesasnecessaryto makethe
codemore understandable.Keepin mind that when your codegetsmore andmore complicated,your
performanceis likely to suffer. Smartdesigndecisionsand optimizationswill tend to makeyour code
smaller.

AutomatedTesting/GradingSystem

We will have anautomatedtestingandgradingsystem.Youcansubmityourmalloc.c file in adirectory
by doing“gmake update NAME=username”. Yourcodewill betestedfor theabove criteria,andthe
resultswill bepostedto a webpageevery few minutes.This will allow you to checkyour implementation
for correctnessandto gaugetheperformanceof your implementationagainstthoseof othergroups.

4



Hints

Dynamicmemoryallocatorsarenotoriouslytricky beaststo programcorrectlyandefficiently. They are
difficult to programcorrectlybecausethey involvealot of (void *) pointerreferences.They aredifficult
to programefficiently becauserunning time is influencedby a numberof factors,including the degree
of fragmentation,thebehavior of theapplication,theplacementpolicy of theallocator, andthe low-level
mechanismsthatimplementtheplacementpolicy.

To helpyou betterunderstandthebehavior of your program,you might find a programcalledAtomto be
helpful. Atom providesa simplebut extremelypowerful andgeneralmechanismfor building tools that
navigateandinstrumentexecutableAlpha objectfiles. You canwrite your own Atom tools from scratch
(not recommendedfor thisLab),or youcanuseawidevarietyof existingAtom tools. Examplesinclude:

� gprof: procedure-level executiontime profiling.

� iprof: procedure-level instructionprofiling.

� liprof: basic-blocklevel instructionprofiling.

� syscall:systemcall performancesummary.

� 3rd: the3rd Degreememorycheckerandleakfinder(similar to Purify).

� pixie: basicblockprofiling (like thepixie(1)command).

See/afs/cs. cmu.e du/ cl ass /ac ademi c/ 15213-s9 9/ L3/ at om for documentationandanex-
ampleof anAtomtool (ptrace),whichproducesaninstrumentedversionof “hello,world” (hello.ptra ce )
thattraceseveryprocedurecall.

5


