
CS213,Fall 1999
LabAssignmentL3: ImplementingaDynamicStorageAllocator

Assigned:Thur., Oct.7, Due:Wed.,Oct.20,11:59PM

Khalil Amiri (amiri+@cs.cmu.edu) is theleadpersonfor this lab.

Intr oduction

In this lab you will be writing a dynamicstorageallocatorfor C programs,i.e., your own versionof the
malloc andfree routinesfrom thestandardC library. Your taskis to developanallocatorthatis correct,
memoryefficient, andfast. All implementationdecisionsareup to you! You will needto bevery creative
to write a goodallocator.

Logistics

As usual,youmaywork in agroupof up to 2 people.

Any clarificationsandrevisionsto theassignmentwill bepostedon theclassbboardandWWW page.

Your programswill beevaluatedby their correctnessandperformanceon the“fish” cluster. However, you
candoyourcodedevelopmentonany machine(youmayneedto edit theMakefileif youchangeplatforms).

Thetarfile

/afs/cs.cmu.edu/class/academic/15213-f99/L3/L3.tar

containsthefiles you’ll needfor thisassignment.Youwill beturningin thefile malloc.c, afterfilling in
theemptyfunctionswith your implementation.

Youcanhandin theassignmentvia “gmake handin NAME=username” , with “VERSION=version_num”
if necessaryfor hand-insaftertheinitial one.

1

Specification

Yourdynamicstorageallocatorconsistsof thefollowing threefunctions,whicharedeclaredin malloc.h
anddefinedin malloc.c with emptyfunctionbodies.

int mm_init(void)
char *mm_malloc(size_t size);
void mm_free(void *block);

Youwill fill in theseemptyfunctionbodies(andpossiblydefineotherprivatefunctions)asyoursolutionto
this lab assignment.You are not allowed to changethe interfaces,nor to call any systemroutinesthat
managedynamic storage (e.g. malloc, free, sbrk, etc.) You arealsonot allowed to declareother
variablesto hold thecontroldatafor yourallocator;you shouldstorethesein theheaparea.

Your dynamicstorageallocatorinteractswith an arbitraryapplicationprogramin the following way: As
partof its initialization phase,theapplicationcallsyourmm init functionto performinitialization of the
heap.Youmustallocatethenecessaryinitial heapareaandinitialize all structuresyouneed.Theapplication
thenmakesaseriesof callsto mm malloc andmm free.

Youareallowedto usethefollowing functionsfrommemlib.c in yourallocator:

� mem sbrk: You usethis function to expandthe heaparea. The lower andupperboundariesof
theheapareaarecontainedin dseg_lo anddseg_hi respectively. You areallowedto readthese
variables,but you shouldnot modify themin any way. You mustcall mem sbrk in orderto change
theupperbound.This functionacceptsa positiveintegerargument,which is theamountof bytesby
which theupperboundshouldbeexpanded.Thereturnvalueis thebegining of thenewly allocated
heaparea,or NULL if therewasn’t any memoryleft. The interfaceof mem sbrk is very similar to
thatof thesbrk systemcall, but you shouldusemem sbrk. You cannotdecreasetheheapareain
size,only increaseit, sobecarefulhow youcallmem sbrk. In effect,eachtimeyoucallmem sbrk,
thevalueof dseg_hi is incrementedby the amountyou request,but the actualmemoryallocated
is alwaysin multiplesof thesystempagesize,soit might bea goodideato call mem sbrk with an
incrementthatis amultipleof thepagesize.Youcancall mem_pagesize() to find out thesystem
pagesize.

� mem usage: This is simply ashorthandthatreturnsthecurrentsizeof theheapin bytes.

Thefunctionsyouneedto implementarethefollowing:

� mm init: Before calling mm malloc or mm free, the applicationprogramcalls mm init to
performany necessaryinitializations, including the allocationof the initial heaparea. The return
valueshouldbe -1 if therewas a problemin performingthe initialization, 0 otherwise. We will
gradeyour implementationin several phases.To facilitate our testing,write mm init suchthat it
reinitializesall statewhenit is called. We will useit to reinitializeyour dynamicstorageallocator
betweeneachtestphase.

� mm malloc: The mm malloc routinereturnsa pointer to an allocatedregion of at leastsize
bytes. The pointermustbealignedto 8 bytes,andthe entireallocatedregion shouldlie within the
memoryregion from dseg_lo to dseg_hi.

� mm free: Themm free routineis only guaranteedto work whenit is passedpointersto allocated
blocksthat werereturnedby previous calls to mm malloc. Themm free routineshouldaddthe
block to thepoolof unallocatedblocks,makingthememoryavailableto futuremm malloc calls.

2

Testdriver

Thefile driver.c containstheactualdriver programwe will useto testyour allocator. Feelfree to use
any othertestingmethodyou wish while developingyour code. The testdriver shouldprovide you with
someusefulinformationfor debuggingyourprogram.Thecommandline optionsit acceptsareasfollows:

-f tracefile. . . Useaparticulartracefilefor testing;canrepeatthisoptionto loadmultipletracefiles.
If no tracefilesarespecified,thedefaultsetof tracefilesis used.

-v Verbosemode;print outsomedetaileddebugginginfo (default).
-q Quietmode.
-h Printahelp(usage)message.
-c Run thesystem(libc) malloc in additionto yoursandreportthe throughputstats

for both.
-C Runthesystemmallocby itself andreportits throughputstats.
-d Generatea dumpof your allocator’s internaloperation(e.g. the pointersit returns

andthemem_sbrk callsit initiates)into a text file.
-t tolerance Specifyanerrortolerancefor thetimemeasurements(default:0.05)

Pleaseavoid excessive useof the -c and-C flags especiallywhen a lot of usersare sharingthe same
machinefor development.Theseoptionsareimplementedto provide you with a basisfor comparisonand
shouldbe avoidedunderhigh load. Becausethey causethe programto consumea significantamountof
memory, their excessive usecanmakemachinesharinginconvenientwhenthenumberof concurrentusers
is high.

Grading Criteria

Your dynamicstorageallocatorwill be evaluatedin four areas:correctness,memoryefficiency, running
time,andstyle.Therearea totalof 60points.

Correctness(20points)

To becorrect,your mm malloc routinemustreturnNULL if it cannotfind a sufficiently large freeblock.
Otherwise,it mustreturnapointer, alignedto 8 bytes,to anallocatedblockof at leasttherequestedsize(the
block might belargerbecauseof alignmentconstraintsor placementpoliciesin yourallocator).Theblock
mustbelocatedwithin theallocatedheap(betweendseg_lo anddseg_hi), andnopartof theblockmay
bereturnedby subsequentcallsto mm malloc until it hasbeenreleasedby a call tomm free.

The correctnesscriteria areall or nothing. If your implementationis correctby this definition, you will
receive all 20points,otherwiseyou will receive 0 points.

Performance(35points)

Therearetwo mainaspectsto theperformanceof thememoryallocator:spaceutilizationandrunningtime.
Yourimplementationwill beevaluatedbothonspaceutilizationaswell asthroughput(operationscompleted
per unit time). A numberof traceswill be usedto testyour allocator;someareartificially generatedfor
thepurposeof testingthebehaviour of yourcodein varioussituationsandothershave beenobtainedfrom
real-worldapplications.We areproviding you with all thetracesthatwewill useto evaluateyourallocator.
Thesecanbefoundat/afs/cs/academic/class/15213-f99/L3/traces/.

3

We will usetwo performancemetricsto evaluateyourallocator. Thefirst metricis spaceutilizationandthe
secondis throughput.

Spaceutilization is definedastheaggregateamountof memoryrequestedby thedriver (via mm_malloc)
andnot yet freed(via mm_free) to the sizeof the heapusedby your allocator(dseg_hi-dseg_lo).
Spaceutilization fluctuatesduring the executionof the testsas the heapis expandedandas memoryis
allocatedandfreed. The performancemetric we will usefor spaceutilization is the peakutilization,

�
,

definedasthemaximumamountof memoryallocated(andnot yet freed)by theapplicationatany point in
timeduringits executionto thefinal heapsize.

The optimal spaceutilization is, of course,
�������	��

, which correspondsto ��
 spacelost to overhead
andfragmentation.Although

�������
is unachievable,you shouldcomequite closeto it. Thereareseveral

factorsthatinfluencespaceutilization,themostimportantof which is theallocationpolicy. Yourallocation
policy shouldminimizefragmentation.Oneway to ensurethatfragmentationdoesnot getoutof handis to
coalesceadjacentfreeblocks.Youcaneitherdo immediatecoalescingin mm free, or do lazy coalescing
- aslong asmm malloc never fails whenenoughmemoryis availablein consecutive free blocks. Space
utilization is alsoinfluencedby the amountof overhead,the spaceusedby your allocatorfor its internal
housekeeping.

The secondmetric is throughput,� , definedasthe total numberof operationspersecond.To do well on
this metric, you have to expenda minimal numberof instructionswhenallocatingand freeingmemory
in the commoncase.The memorymanageris a critical part of the runtimesystem.Therefore,it is very
importantto optimize it in every way possible.We will be measuringthe speedof your implementation
usinga numberof differentworkloads.You shouldthink abouthow to write thecodein sucha way asto
minimizethenumberof instructionsrequiredfor thecommoncase.Whendesigningyour implementation,
try to makechoicesthatsimplify the code,e.g. that resultin fewer instructions,needfewer conditionals,
etc.

Theperformanceof your allocatoris summarizedby a performanceindex, � , which is a linearsumof the
utilizationandthroughputmetrics.Theindex is slightly biasedtowardsthefirst (default � �������):

� � �
�
� ���������
�� � �"!$#&% �
�' ��)(+*-,�. �

� � � �/�
0� � �"!$#&% �
�' ��)(+*-,�. �

Thefirst partof theperformanceindex, �21 � , is thecontribution of thespaceutilization metric. At best,
this termis equalto � , which occurswhenyourspaceutilization

�
is

.

Thesecondpartof the index, �
 � � �314!�#5% �
�'76698;:�<>= � is contributedby the throughputmetric. � (;*-,�. is the
throughputof libc malloc.At best,whenyour throughputequalsor exceedsthatof libc, �)(+*-,�. , thispart
is equalto

0� � . Thus,ideally theperformanceindex is � � � �/�
0� �?� �@
 or

 ����
 .

The reasonfor the !�#5% in the secondterm is to makesurethata very fast solutionthat exceedslibc’s
throughputwhile doingpoorly on spaceutilizationdoesnot geta high performanceindex. Themotivation
is that spaceand time areboth expensive resourcesandyour solultion shouldbe balancedin optimzing
for both. Becausethesummaryperformanceindex dependsbothon thespaceandtime performance,you
should not optimize speedat the expenseof memory overhead,or vice-versa.Oneof thechallenging
aspectsof thisassignmentwill beto achievea properbalancebetweenthosetwo.

Thedriverprogramreportstheperformanceindex, � , of yourallocatorasapercentage.

Over theentiresetof defaulttraces,your throughputshouldapproximate� (+*-,�. . Thelibc allocatorincurs
substantiallymoreoverheadin theoperatingsystemthanyourallocator. Yourallocatorusessimulatedsbrk
callswhich aremuchfasterthantherealcalls invokedby libc malloc. Moreover, thelibc allocatoris
allocatingthe memoryusedby the driver program. Therefore,a smartimplementationshouldbe ableto

4

comecloseto � (+*A,�. andevensupercedeit.

The final gradingwill be doneon a curve, after we have reviewed the performanceresultsfrom all your
implementations.You canseehow goodyour implementationis by checkingthestatisticswebpage.Note
thatif you fail thecorrectnesstests,you will notgetany pointsfor performance.

Style (5 points)

Yourcodeshouldbereadableandcommented.Definemacrosor subroutinesasnecessaryto makethecode
moreunderstandable.Keepin mindthatwhenyourcodegetsmoreandmorecomplicated,yourperformance
is likely to suffer. Smartdesigndecisionsandoptimizationswill tendto makeyourcodesmaller.

AutomatedTesting/GradingSystem

Feelfree to modify driver.c to do your own testinganddebugging,but it would bea goodideaif you
useddriver.c locatedin /afs/cs/academic/class/15213-f99/L3/src/ for yourfinal tests.

Youcanevaluatetheperformanceof yourallocatorby runningthetestslocally. Notethatdueto variability
in load on the clustermachines,the performancereportedby the local driver may be inaccurate(usually
slightly slower)thanwhatit wouldbewhenyoursolutionis graded.

We will be usinga Web-basedautomatedtestingandgradingsystem.You cansubmityour malloc.c
to this testingand grading systemat any time, and as many times as you wish, by doing a “gmake
update NAME=username” . Your codewill be testedfor the above criteria, and the resultswill be
postedto a webpageevery few minutes.This will allow you to checkyour implementationfor correctness
andto gaugetheperformanceof your implementationagainstthoseof othergroups.

Youcanhandin yourassignmentbydoing“gmake handin user=USERNAME”, with version=VERSION”
if necessaryfor hand-insaftertheinitial one.

Hints

� Debugging: Dynamicmemoryallocatorsarenotoriouslytricky beaststo programcorrectlyandef-
ficiently. They aredifficult to programcorrectlybecausethey involve a lot of (void *) pointer
references.It maybehelpful to write functionsthatprint thestateof your allocator’sdatastructures
whichyou canusewhendebuggingyourprogram.

� Dumps:For debuggingpurposes,you mayfind the-d optionhelpful. Feelfreeto modify thedump
routinesto reportmoreinformationif you like.

� Traces:During initial development,usingshortertracesmay simplify debuggingand testing. We
have placedtwo shorttracefiles in L3/traces/short/short{1,2}.rep thatyou canuseby
invokingthe-f optionof thedriver.

� Performance:Whenoptimizingperformance,you mayfind thegprof tool helpful. This tool pro-
ducesanexecutionprofileof yourprogram.It calculatestheamountof timespentin eachroutine.To
usegprof, youwill needto turn on thegprof flagswhencompilingyourprogram:

bass>gmake clean
bass>gmake GPROF=-pg
bass>gmake GPROF=-pg

5

Whenyou run your executable,saymalloc, a file namedgmon.out is createdin your current
working currentdirectory. To view the profile informationin this file, you caninvoke gprof as
follows:

bass>gprof malloc gmon.out

6

