Recitation 6:
Cache Access Patterns

Andrew Faulring
15213 Section A
14 October 2002



Andrew Faulring

- faulring@cs.cmu.edu

.- Office hours:
- NSH 2504 (lab) / 2507 (conference room)
- Wednesday 5-6

- Lab 4
- due Thursday, 24 Oct @ 11:59pm



Today’s Plan

- Optimization

- Amdahl’s law

- Cache Access Patterns

- Practice problems 6.4, 6.15-17
- Lab 4

- Horner’s Rule, including naive code



Amdahl’s law

Old program (unenhanced)
e T e b T
2 be enhanced.

Oldtime: T=T, + T,

T, = time that can be
enhanced.
New program (enhanced)

N > <=T T, = time after the
2 2 enhancement.

New time: T' =T, + T,’

Speedup: Sgueran =T/ T’

Key idea: Amdahl’s law quantifies the general notion
of diminishing returns. It applies to any activity, not
just computer programs.



Example: Amdahl’s law

- You plan to visit a friend in Normandy France
and must decide whether it is worth it to take
the Concorde SST ($3,100) ora 747 ($1,021)
from NY to Paris, assuming it will take 4 hours
Pgh to NY and 4 hours Paris to Normandy.

time NY->Paris total trip time speedup over 747
747 8.5 hours 16.5 hours ]
SST 3.75 hours 11.75 hours 1.4

- Taking the SST (which is 2.2 times faster) speeds
up the overall trip by only a factor of 1.4!



Amdahl’s law (cont)

- Trip example: Suppose that for the New York to
Paris leg, we now consider the possibility of taking
a rocket ship (15 minutes) or a handy rip in the
fabric of space-time (0 minutes):

time NY->Paris total trip time speedup over 747
747 8.5 hours 16.5 hours 1
SST 3.75 hours 11.75 hours 1.4
rocket 0.25 hours 8.25 hours 2.0
rip 0.0 hours 8 hours 2.1

Moral: It is hard to speed up a program.
Moral++ : It is easy to make premature optimizations.



Locality

- Temporal locality: a memory location
that is referenced once is likely to be
reference again multiple times in the
near future

- Spatial locality: if a memory location is
referenced once, then the program is
likely to reference a nearby memory
location in the near future



Practice Problem 6.4

int summary3d(int a[N] [N] [N])
{
int 1, j, k, sum = 0;
for (1 = 0; 1 < N; i++) {
for (J = 0; k < N; j++ ) {
for (k = 0; k < N; k++ ) {
sum += al[k][1][]]~
}
}
}

return sum;



Answer

int summary3d(int a[N] [N] [N])
{
int 1, j, k, sum = 0;
for (k = 0;, kK < N; k++) {
for (i = 0;, i < N; i++ ) {
for (j = 0, j < N; j++ ) {
sum += al[k][1][]]~
}
}
}

return sum;



Cache Access Patterns

- Spend the next fifteen minutes
working on Practice Problems 6.15-17

- Handout is a photocopy from the text



Practice Problem 6.15-17

sizeof (algae position) = 8

- Each block (16 bytes) holds two
algae position structures

- The 16Xx16 array requires 2048 bytes

of memory
- Twice the size of the 1024 byte cache



Practice Problem 6.15-17

- Rows: 16 items (8 blocks, 128 bytes)

- Columns: 16 items

- Yellow block: Tk; Orange block Tk




Row major access pattern

6.15

Al Al A




Stride of 2 words

6.15

ing just xX’s

- First loop, access




Stride of 2 words

15

6

t X'S

INg jus

irst loop, accessi

F




Stride of 2 words

6.15

- Second loop, accessing just the y’s

- Same miss pattern because accessing the orange
area flushed blocks from the yellow area

Lx [y [ x]y]

Lx [y [ x]y]

Lx [y [ x]y]
Lx [y [ x]y]
Lx [y [ x]y]
Lx [y [ x]y]
Lx [y [ x]y]
Lx [y [ x]y]
Lx [y [ x]y]

Lx [y [ x [y [ x]y | x]ylJ[x]y][]Xx]y]
Lx [y [ x [y [ x]y | x]ylJ[x]y][]Xx]y]
Lx [y [ x [y [ x]y | x]ylJ[x]y][]Xx]y]
Lx [y [ x [y [ x]y | x]ylJ[x]y][]Xx]y]
Lx [y [ x [y [ x]y | x]ylJ[x]y][]Xx]y]
Lx [y [ x [y [ x]y | x]ylJ[x]y][]Xx]y]
Lx [y [ x [y [ x]y | x]ylJ[x]y][]Xx]y]

[ x | vy [ x]y]
[ x | vy [ x]y]
[ x | vy [ x]y]
[ x | vy [ x]y]
[ x | vy [ x]y|]
[ x | vy [ x]y]
[ x | vy [ x]y]
[ x | vy [ x]y]

[ x |y [ x ]y I x ]y | x]y]J[x]y]Xx]y]
[ x |y [ x ]y I x ]y | x]y]J[x]y]Xx]y]
[ x |y [ x ]y I x ]y | x]y]J[x]y]Xx]y]
[ x |y [ x ]y I x ]y | x]y]J[x]y]Xx]y]
[ x |y [ x ]y I x ]y | x]y]J[x]y]Xx]y]
[ x |y [ x ]y I x ]y | x]ylJ[x]y]Xx]y]
[ x |y [ x ]y I x ]y | x]ylJ[x]y]Xx]y]
[ x |y [ x ]y I x ]y | x]ylJ[x]y]Xx]y]




Stride of 2 words

6.15:

Second loop, access

Same m

g the orange
area

S
N

attern because access

t they’

Ing jus

iISs p
area flushed blocks from the yellow




Answers to 6.15

- A: 512
- 2 for each of 256 array elements
- B: 256

- Every other array element experiences a
Mmiss

- C: 50%



Column major access pattern

New access removes first cache line contents before its

were used




Column major access pattern

New access removes first cache line contents before its
were used




Answers to 6.16

- A: 512
- B: 256
- C: 50%



Column major access pattern

No misses on second access to each block, because
the entire array fits in the cache.




Answers to 6.16

- A: 512
- B: 256
- C: 50%
- D: 25%



Stride of 1 word

in row major order

- Access both x and y




Stride of 1 word

.+ Access both x and y in row major order




Answers to 6.17

- A: 512
- B: 128
- All are compulsory misses
- C: 25%
- D: 25%

- Cache size does not matter since all
misses are compulsory

- Though the block size does matter



Lab 4: Horner’s Rule

Polynomial of degree d (d+1
coefficients)

P(x)=a,+a;x+a,x2+-+a x4

P(xX)=ay+(a;+(a,+(-+(ay_; +agX)X-)X)X)X



Naive code for Horner’s Rule

/* Horner's rule */
int poly evalh(int *a, int degree, int x)
{

int result = a[degree];

int 1;

for (i = degree-1; i >= 0; i--)

result = result*x+a[i];
return result;



	Recitation 6:Cache Access Patterns
	Andrew Faulring
	Today’s Plan
	Amdahl’s law
	Example: Amdahl’s law
	Amdahl’s law (cont)
	Locality
	Practice Problem 6.4
	Answer
	Cache Access Patterns
	Practice Problem 6.15–17
	Practice Problem 6.15–17
	6.15: Row major access pattern
	6.15: Stride of 2 words
	6.15: Stride of 2 words
	6.15: Stride of 2 words
	6.15: Stride of 2 words
	Answers to 6.15
	Column major access pattern
	Column major access pattern
	Answers to 6.16
	Column major access pattern
	Answers to 6.16
	Stride of 1 word
	Stride of 1 word
	Answers to 6.17
	Lab 4: Horner’s Rule
	Naïve code for Horner’s Rule

