
Recitation 8:
Signals & Shells

Andrew Faulring
15213 Section A
28 October 2002



Andrew Faulring

• faulring@cs.cmu.edu
• Office hours:

– NSH 2504 (lab) / 2507 (conference room)
– Thursday 5-6

• Lab 5
– due Thursday, 31 Oct @ 11:59pm

•Halloween Night … happy reaping!



Today’s Plan

• Process IDs & Process Groups
• Process Control
• Signals
• Preemptive Scheduler

– Race hazards
• Reaping Child Processes



Lab 5: Shell

• tshref
– Use as a guide for output
– You shell should have same behavior



How Programmers Play with 
Processes

• Process: executing copy of program
• Basic functions

– fork() spawns new process
– exit() terminates calling process
– wait() and waitpid() wait for and reap 

terminated children
– execl() and execve() run a new 

program in an existing process



Process IDs & Process Groups
• Each process has its own, unique process ID

– pid_t getpid();
• Each process belongs to exactly one 

process group
– pid_t getpgid();

• To which process group does a new process 
initially belong?
– Its parent’s process group

• A process can make a process group for 
itself and its children
– setpgid(0, 0);



Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Child Child

pid=20
pgid=20

pid=21
pgid=20

pid=22
pgid=20

pid=10
pgid=10 Shell

pid=32
pgid=32

pid=40
pgid=40

Background
process group 32

Backgroud
process group 40

Foreground
process group 20



Signals

• Section 8.5 in text
– Read at least twice … really!

• A signal tells our program that some 
event has occurred
– For instance, a child process has 

terminated
• Can we use signals to count events?

– No



Important Signals

• SIGINT
– Interrupt signal from keyboard (ctrl-c)

• SIGTSTP
– Stop signal from keyboard (ctrl-z)

• SIGCHLD
– A child process has stopped or 

terminated

Look at Figure 8.23 for a complete list of Linux signals



Sending a Signal
• Send a signal

– Sent by either the kernel
– Or another process

• Why is a signal sent?
– The kernel detects a system event.

• Divide-by-zero (SIGFPE)
• Termination of a child process (SIGCHLD)

– Another process invokes a system call.
• kill(pid_t pid, int SIGINT)

– kill(1500, SIGINT)
» Send SIGINT to process 1500

– kill(-1500, SIGINT)
» Send SIGINT to progress group 1500

• alarm(unsigned int secs)



Receiving a Signal
• Default action

– The process terminates [and dumps core]
– The process stops until restarted by a SIGCONT 

signal
– The process ignore the signal

• Can modify the default action with the 
signal function
– Additional action: “Handle the signal”

• void sigint_handler(int sig);
• signal(SIGINT, sigint_handler);

– Cannot modify action for SIGSTOP and SIGKILL



Receiving a Signal

• pending: bit vector: bit k is set when 
signal type k is delivered, clear when 
signal received

• blocked: bit vector of signals that 
should not be received

• Only receive non-blocked, pending 
signals
– pending & ~blocked



Synchronizing Processes
• Preemptive scheduler run multiple 

programs “concurrently” by time slicing
– How does time slicing work? 
– The scheduler can stop a program at any point
– Signal handler code can run at any point, too

• Program behaviors depend on how the 
scheduler interleaves the execution of 
processes

• Racing condition between parent and child!
– Why? 



Race Hazard

• Different behaviors of program 
depending upon how the schedule 
interleaves the execution of code.



Parent & Child Race Hazard
sigchld_handler() {
pid = waitpid(…);
deletejob(pid);

}

eval() {
pid = fork();
if(pid == 0)
{ /* child */
execve(…);

}
/* parent */
/* signal handler might run BEFORE addjob() */
addjob(…);

}



An Okay Schedule
Signal Handler ChildShelltime

fork()
addjob()

execve()
exit()

sigchld_handler()
deletejobs()



A Problematic Schedule
Signal Handler ChildShelltime

fork()

execve()
exit()

sigchld_handler()
deletejobs()

addjob()

Job added to job list after the signal handler tried to delete it!



Solution to Race Hazard
sigchld_handler() {
pid = waitpid(…);
deletejob(pid);

}

eval() {
sigprocmask(SIG_BLOCK, …)
pid = fork();
if(pid == 0)
{ /* child */

sigprocmask(SIG_UNBLOCK, …)
execve(…);

}
/* parent */
/* signal handler might run BEFORE addjob() */
addjob(…);
sigprocmask(SIG_UNBLOCK, …)

}

More details 8.5.6 (page 633)



Reaping Child Process
• Child process becomes zombie when terminates

– Still consume system resources
– Parent performs reaping on terminated child

• Using either wait or waitpid syscall
• Where to wait children processes to terminate?

– Two waits
• sigchld_handler
• eval: for foreground processes

– One wait
• sigchld_handler
• But what about foreground processes?



Busy Wait
void eval() {

…
/* parent */
addjob(…);
while(fg process still alive){

;
}

}

sigchld_handler() {
pid = waitpid(…);
deletejob(pid);

}



Pause
void eval() {

…
/* parent */
addjob(…);
while(fg process still alive){

pause();
}

}

sigchld_handler() {
pid = waitpid(…);
deletejob(pid);

}

If signal handled (SIGCHLD) before call 
to pause, then pause will not return



Sleep
void eval() {

…
/* parent */
addjob(…);
while(fg process still alive){

sleep(1);
}

}

sigchld_handler() {
pid = waitpid(…);
deletejob(pid);

}



waitpid

• Used for reaping zombied child 
processes

• pid_t waitpid(pid_t pid, int *status, int
options)
– pid: wait until child process with pid has terminated

• -1: wait for any child process
– status: tells why child terminated
– options:

• WNOHANG: return immediately if no children have exited 
(zombied)
– waitpid returns -1

• WUNTRACED: report status of stopped children too



waitpid’s status
• int status;
waitpid(pid,&status, NULL)

• WIFEXITED(status): child exited normally
– WEXITSTATUS(status): return code when child exits

• WIFSIGNALED(status): child exited because a 
signal was not caught
– WTERMSIG(status): gives the number of the terminating 

signal

• WIFSTOPPED(status): child is stopped
– WSTOPSIG(status): gives the number of the stop signal



Summary
• Process provides applications with the 

illusions of: 
– Exclusively use of the processor and the main 

memory
• At the interface with OS, applications can:

– Creating child processes
– Run new programs
– Catch signals from other processes

• Use man if anything is not clear!


	Recitation 8:Signals & Shells
	Andrew Faulring
	Today’s Plan
	Lab 5: Shell
	How Programmers Play with Processes
	Process IDs & Process Groups
	Signals
	Important Signals
	Sending a Signal
	Receiving a Signal
	Receiving a Signal
	Synchronizing Processes
	Race Hazard
	Parent & Child Race Hazard
	An Okay Schedule
	A Problematic Schedule
	Solution to Race Hazard
	Reaping Child Process
	Busy Wait
	Pause
	Sleep
	waitpid
	waitpid’s status
	Summary

