
Recitation 11:
I/O Problems

Andrew Faulring
15213 Section A

18 November 2002

Logistics

• faulring@cs.cmu.edu

• Office hours
– NSH 2504
– Permanently moving to Tuesday 2–3

• What’s left
– Lab 6 Malloc: due on Thursday, 21 Nov
– Lab 7 Proxy: due on Thursday, 5 Dec
– Final Exam: 8:30am on Tuesday,

17 Dec, in Porter Hall 100

Today’s Plan

• Robust I/O
• Chapter 11 Practice Problems

Why Use Robust I/O
• Handles interrupted system calls

– Signal handlers

• Handles short counts
– Encountering end-of-file (EOF) on reads (disk files)
– Reading text lines from a terminal
– Reading and writing network sockets or Unix pipes

• Useful in network programs
– Subject to short counts
– Internal buffering constraints
– Long network delays
– Unreliable

Rio: Unbuffered Input/Output

• Transfer data directly between memory and a file
• No application level buffering
• Useful for reading/writing binary data to/from networks

– (Though text strings are binary data.)

ssize_t rio_readn(int fd, void* usrbuf, size_t n)
– Reads n bytes from fd into usrbuf
– Only returns short on EOF

ssize_t rio_writen(int fd, void* usrbuf, size_t n)
– Writes n bytes from usrbuf to file fd
– Never returns short count

Rio: Buffered Input
void rio_readinitb(rio_t* rp, int fd);

– Called only once per open file descriptor
– Associates fd with a read buffer rp

ssize_t rio_readlineb(rio_t* rp, void* usrbuf, size_t maxlen);
– For reading lines from a text file only
– Read a line (stop on ‘\n’) or maxlen-1 chars from file rp to usrbuf
– Terminate the text line with null (zero) character
– Returns number of chars read

ssize_t rio_readnb(rio_t* rp, void* usrbuf, size_t n);
– For both text and binary files
– Reads n bytes from rp into usrbuf
– Result string is NOT null-terminated!
– Returns number of chars read

rio_readlineb
ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen)
{

int n, rc;
char c, *bufp = usrbuf;

for (n = 1; n < maxlen; n++) {
if ((rc = rio_read(rp, &c, 1)) == 1) {

*bufp++ = c;
if (c == '\n')

break;
} else if (rc == 0) {

if (n == 1)
return 0; /* EOF, no data read */

else
break; /* EOF, some data was read */

} else
return -1; /* error */

}
*bufp = 0;
return n;

}

Do not interleave

• Do not interleave calls on the same
file descriptor to these two sets of
functions

• Why?

rio_readinitb

rio_readlineb

rio_readnb

rio_readn
rio_writen

Rio Error Checking

• All functions have upper case equivalents
(Rio_readn …), which call unix_error if
the function encounters an error

– Short reads are not errors
– Also handles interrupted system calls

– But does not ignore EPIPE errors, which are
not fatal errors for Lab 7

Problems from Chapter 11

• 11.1–11.5
• Handout contains the problems

Problem 11.1

What is the output of the following
program?
#include "csapp.h"

int main()
{

int fd1, fd2;
fd1 = Open("foo.txt", O_RDONLY, 0);
Close(fd1);
fd2 = Open("baz.txt", O_RDONLY, 0);
printf("fd2 = %d\n", fd2);
exit(0);

}

Answer to 11.1

• Default file descriptors:
– stdin (descriptor 0)
– stdout (descriptor 1)
– stderr (descriptor 2)

• open always returns lowest, unopened descriptor
• First open returns 3. close frees it.
• So second open also returns 3.

• Program prints:
fd2 = 3

Kernel Structure for Open Files

• Descriptor table
– One per process
– Children inherit from parents

• File Table
– The set of all open files
– Shared by all processes
– Reference count of number of file descriptors pointing to

each entry

• V-node table
– Contains information in the stat structure
– Shared by all processes

Problem 11.2

Suppose that the disk file foobar.txt consists of
the 6 ASCII characters "foobar". Then what is the
output of the following program?
#include "csapp.h"

int main()
{

int fd1, fd2;
char c;
fd1 = Open("foobar.txt", O_RDONLY, 0);
fd2 = Open("foobar.txt", O_RDONLY, 0);
Read(fd1, &c, 1);
Read(fd2, &c, 1);
printf("c = %c\n", c);
exit(0);

}

Answer to 11.2
• Two descriptors fd1 and fd2
• Two open file table entries, each with their own

file positions for foobar.txt

• The read from fd2 also reads the first byte of
foobar.txt

• So, the output is

c = f

and not

c = o

Problem 11.3

As before, suppose the disk file foobar.txt
consists of 6 ASCII characters "foobar". Then what
is the output of the following program?

#include "csapp.h"

int main()
{

int fd;
char c;
fd = Open("foobar.txt", O_RDONLY, 0);
if(Fork() == 0) {

Read(fd, &c, 1);
exit(0);

}
Wait(NULL);
Read(fd, &c, 1);
printf("c = %c\n", c);
exit(0);

}

Answer to 11.3

• Child inherits the parent’s descriptor
table.

• Child and parent share an open file
table entry (refcount == 2).

• Hence they share a file position!

• The output is
c = o

Problem 11.4

• How would you use dup2 to redirect
standard input to descriptor 5?

• int dup2(int oldfd, int newfd);
–Copies descriptor table entry oldfd to

descriptor table entry newfd

Answer to 11.4

dup2(5,0);

or

dup2(5,STDIN_FILENO);

Problem 11.5

Assuming that the disk file foobar.txt consists of
6 ASCII characters "foobar". Then what is the
output of the following program?

#include "csapp.h"

int main()
{

int fd1, fd2;
char c;
fd1 = Open("foobar.txt", O_RDONLY, 0);
fd2 = Open("foobar.txt", O_RDONLY, 0);
Read(fd2, &c, 1);
Dup2(fd2, fd1);
Read(fd1, &c, 1);
printf("c = %c\n", c);
exit(0);

}

Answer to 11.5

• We are redirecting fd1 to fd2. So the
second Read uses the file position
offset of fd2.

c = o

	Recitation 11:I/O Problems
	Logistics
	Today’s Plan
	Why Use Robust I/O
	Rio: Unbuffered Input/Output
	Rio: Buffered Input
	rio_readlineb
	Do not interleave
	Rio Error Checking
	Problems from Chapter 11
	Problem 11.1
	Answer to 11.1
	Kernel Structure for Open Files
	Problem 11.2
	Answer to 11.2
	Problem 11.3
	Answer to 11.3
	Problem 11.4
	Answer to 11.4
	Problem 11.5
	Answer to 11.5

