-
C talking to Python

Hey, what's your
name?

G e @

Right, what a stupid question.
| apologize, silly me.
| recognize the logo now.

e ©e

But | can be a bit verbose too, all
this templating these days, am |
right? haha.

@ @ @ @

Sorry, bye! Python!

wow, how cold!

g e E

...Anyway, I'm C. So, er.. what's your
best quality? For me I'd say it's speed.

Carnegie Mellon

SECOND EDITION

I q

C Boot Camp

February 19, 2023 PROGRAMMING
" LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PRENTICE HALL SOFTWARE SERIES

Carnegie Mellon

Agenda

- CBasics MAN, | SUCK AT THIS GAME.
= Debugging Tools / Demo S
« C Standard Library (8:59%%%
- getopt m;msyou ox7sescsz£.
- stdio.h
- stdlib.h Qas& %
> string.h

Carnegie Mellon

C Basics Handout

ssh <andrewid>@shark.ics.cs.cmu.edu

cd ~/private
wget http://cs.cmu.edu/~213/activities/cbootcamp.tar.gz

tar xvpf
cbootcamp.tar.gz cd
cbootcamp

make

« Contains useful, self-contained C examples
« Slides relating to these examples will have the file

http://cs.cmu.edu/~213/activities/cbootcamp.tar.gz

Carnegie Mellon

C Basics

« The minimum you must know to do well in this class
= You have seen these concepts before
- Make sure you remember them.

= Summary:
= Pointers/Arrays/Structs/Casting
= Memory Management

- Function pointers/Generic Types
. Strings

Carnegie Mellon

. . . filel.c file2.c
Variable Declarations & Qualifiers
int a = 7 ;—77global variable main()
. void fun() {
=« Global Variables: Ty e
. Defined outside functions, seen by all files """ |

- Use “extern” keyword to use a :
global variable defined in another file

=« Const Variables:

global variable from one file can be used in other using extern keyword.

. For variables that won’t change o 0
static int count = 0;
= Stored in read-only data section | i S
« Static Variables:

{
printf("%d ", fun());
);

= For locals, keeps value between invocations printf("sd ", fun()

return 0;

. USE SPARINGLY *

- Note: static has a different meaning when
referring to functions (not visible outside of
object file) e

Output:

Casting

= Can convert a variable to a different type
= Rules for Casting Between Integer Types

= Integer Casting:

= Signed <-> Unsigned: Keep Bits - Re-Interpret

- Small -> Large: Sign-Extend MSB, preserve value
= Cautions:

« Cast Explicitly: int x = (int) y instead of intx =y

. Casting Down: Truncates data

- Casting across pointer types: Dereferencing a pointer may cause
undefined memory access

Carnegie Mellon

Pointers

m Stores address of a value in memory
m e.g.int*, char*, int**, elc
m Access the value by dereferencing (e.g. *a).

Can be used to read or write a value to

given address
m Dereferencing NULL causes undefined

behavior (usually a segfault)

PROGRAMMING B
LANGUAGE ~ | » E
mu

can hold so

Carnegie Mellon

Pointers

1000 1001

m Pointerto type A references a
block of sizeof (A) bytes TS

| Get the addreSS Of a Value |n 2000 2001 2002 2003
memory with the ‘&’ operator

m Pointers can be aliased, or T :
pointed to same address i o

U —
m_'[short—T ++

3000 3001 3002 3003 3004 3005 3006 3007

Carnegie Mellon

Pointer Arithmetic ./pointer arith

« Can add/subtract from an address to get a new address
= Only perform when absolutely necessary (e.g. malloclab)
- Result depends on the pointer type

« A+i,where A isapointer= 0x100,1 isan int

« int* A: A+1 = 0x100 + sizeof (int) * 1 = 0x100 + 4 * 1
« Char* A} A+i = 0x100 + sizeof(char) * i1 = 0x100 + 1 * 1
« 1nt** Al A+i = 0x100 + sizeof (int*) * i1 = 0x100 + 8 * 1

=« Rule of thumb: explicitly cast pointer to avoid confusion
Prefer ((char*) (A) + 1) to(A + 1), evenifA hastype char*

Carnegie Mellon

Pointer Arithmetic ./pointer arith

m The ‘pointer_arith’ program demonstrates how values of
different sizes can be written to and read back from the
memory.

m The examples are to show you how the type of the

pointer affects arithmetic done on the pointer.

m When adding x to a pointer A (i.e. A + x), the result is really
(A+ x * sizeof(TYPE_OF _PTR_A)).

m Run the ‘pointer_arith’ program
$./pointer arith

Call by Value vs Call by Reference

« Call-by-value: Changes made to arguments passed to a function
aren’t reflected in the calling function

« Call-by-reference: Changes made to arguments passed to a
function are reflected in the calling function

« Cis a call-by-value language

= [0 cause changes to values outside the function, use pointers
- Do not assign the pointer to a different value (that won’t be reflected!)

- Instead, dereference the pointer and assign a value to that address

void swap (int* a, int* b) { int x = 42;
int temp = *a; int y = 54;
*a = *b; swap (&x, &y);
*b = temp; printf (“%d\n”, x); // 54

} printf (“&d\n”, vy); // 42

Carnegie Mellon

Arrays/Strings

« Arrays: fixed-size collection of elements of the same type
= Can allocate on the stack or on the heap

int A[10]; // A is array of 10 int’s on the stack
int* A = calloc (10, sizeof(int)); // A is array of 10

int’s on the heap

« Strings: Null-character (\0’) terminated character arrays
= Null-character tells us where the string ends
- All standard C library functions on strings assume null-termination.
H e 1 1] o0 w o | r | 1/ d I 1 \o

48 65 6¢c | 6c | 6f | 20 | 77 | 6f | 72 | 6c 64 21 00

Carnegie Mellon

Structs ./structs

= Collection of values placed under one name in a single

block of memory
- Can put structs, arrays in other structs

« Given a struct instance, access the fields using the “.’

operator
« Given a struct pointer, access the fields using the ‘->’
operator
struct inner s { struct outer s { outer s out inst;
int 1i; char ar[10]; out inst.ar[0] = ‘a’;
char c; struct inner s in; out inst.in.i = 42;
}i I outer s* out ptr = &out inst;

out ptr->in.c = ‘b’;

Unions union Ul { "
char c; . :
int i[2]; =01 1001
. double v; b
. Slmlla_r to a strgct, s apt0 — "
occupies a region of
memory
. However, its fields struct S1 {
indicate multiple ways to char c;
interpret that region of ank; L2l
double v;
= Similar access syntax as
Structs <] | 1101 i[1] v

sp+0 sp+4 sp+8 sp+16 sp+24

C Program Memory Layout

(247 — 4096 =) 0000 7FFF FFFFF000

Unmapped

% Permanently unmapped
Read-onlyfile mapping

Copy-on-write file mapping

“Anonymous” RAM, read/write

2000000

600000

400000
1000

Carnegie Mellon

| randomized

Stack
1

randomized

Shared
Libraries

!
1

Heap

Zero-initialized globals (.bss|

Writable globals(.data)

Read-onlyglobak(.rodata)

Machine code (.text)

Stack vs Heap vs Data

« Local variables and function arguments are placed on the

stack

- deallocated after the variable leaves scope
= do not return a pointer to a stack-allocated variable!
= do not reference the address of a variable outside its scope!

« Memory blocks allocated by calls to malloc/calloc are
placed on the heap

« Example:

. int* a = malloc(sizeof(int));
- /lais a pointer stored on the stack to a memory block within the heap

Carnegie Mellon

Malloc, Free, Calloc

=« Handle dynamic memory allocation on HEAP

= void* malloc (size t size) :
- allocate block of memory of size bytes
- does not initialize memory
» void* calloc (size t num, size t size):
- allocate block of memory for array of num elements, each size bytes long
= initializes memory to zero
= void free(void* ptr):
. frees memory block, previously allocated by malloc, calloc, realloc, pointed by ptr
= use exactly once for each pointer you allocate
= size argument:
= number of bytes you want, can use the sizeof operator

- Sizeof: takes a type and gives you its size
« €.0.,, sizeof(int), sizeof (int*)

mem mgmt.c

Memory Management Rules ./mem valgrind.sh

= malloc whatyou free, free whatyoumalloc

- client should free memory allocated by client code
- library should free memory allocated by library code

= Number mallocs = Number frees
= Number mallocs > Number Frees: definitely a memory leak
= Number mallocs < Number Frees: definitely a double free

=« Free a malloc’ed block exactly once
- Should not dereference a freed memory block

=« Only malloc when necessary

- Persistent, variable sized data structures
= Concurrent accesses (we’ll get there later in the semester)

C Tools
GIT | Valgrind | GDB

Git Basics

= Most widely used version control system &

-

« Commands: | GIT SOME ““Pmk

eeeeee .org

= Clone: git clone <clone-repository-url>

m Add: git add . ORgit add <file-name>

m Push/Pull: git push/git pull

s Commit: git commit -m “your-commit-message”

= Good messages are key!

Git in 15-213/513

= Create an account
=« Click “Download handout” on Autolab

= [his creates a repository for your personal lab

m https://github.com/cmul5213-m22/<labname>-m22-<yourgithubid

= git clone

« Save - make - git add > git commit — git push

https://github.com/cmu15213-s22/cachelab-m22-yourgithubid

AUTULAB

» CacheLab

Cache Lab

$SS memories

Options

View handin history

View writeup

— Download handout

View scoreboard

(© Due: March 3rd 2022, 11:59 pm EST
a Last day to handin: March 6th 2022, 11:59 pm EST

We are no longer accepting
submissions for this
assessment.

= Gradebook

= Jobs

Renali ~

GitHub Classroom

You're ready to go!

You accepted the assignment, cachelab-s22.

Your assignment repository has been created:

B https://github.com/cmu15213-s22/cachelab-s22-renali-hub

We've configured the repository associated with this assignment (update).

Q@
=)

Join the GitHub Student
Developer Pack

Verified students receive
free GitHub Pro plus
thousands of dollars worth
of the best real-world tools
and training from GitHub
Education partners — for
free. Learn more

Apply

[NON i renali — ssh renal@shark.ics.cs.cmu.edu — 129x44

[renal@baskingshark:~/private/15213% cd cachelab
[renal@baskingshark:~/private/15213/cachelab$ make < EE—
Jusr/local/depot/llvm-7.8/bin/clang -std=c99 -01 -g -Wall -Wextra -Wpedantic -Wconversion -Wstrict-prototypes -Wwrite-strings —Wn
o-unused-parameter -Werror -c -o csim.o csim.c
/usr/local/depot/1lvm-7.8/bin/clang -o csim csim.o cachelab.o
tar cvf cachelab-handin.tar csim.c trans.c .clang-format traces/traces/trl.trace traces/traces/tr2.trace traces/traces/tr3.trace
csim.c
trans.c
.clang-format
traces/traces/tril.trace
traces/traces/tr2.trace
traces/traces/tr3.trace
CLANG_FORMAT=/usr/local/depot/llvm-7.8/bin/clang-format ./check-format csim.c trans.c
ERROR: Your code's formatting does not match clang-format.
For details, see https://www.cs.cmu.edu/~213/codeStyle.html
To reformat your code, run "make format".
You must fix this before submitting to Autolab.
Files needing reformatting:
csim.c

make: *#*% [.format-checked] Error 1

renal@baskingshark:~/private/15213/cachelab$ git add . ‘e
renal@baskingshark:~/private/15213/cachelab$ git commit -m "for bootcamp" (e s——
On branch main

[nothing to commit, working directory clean

[renal@baskingshark:~/private/15213/cachelab$ git push (S

warning: push.default is unset; its implicit value is changing in

Git 2.0 from 'matching' to 'simple'. To squelch this message

[and maintain the current behavior after the default changes, use:

git config --global push.default matching
To squelch this message and adopt the new behavior now, use:
git config --global push.default simple
See 'git help config' and search for 'push.default' for further information.

(the 'simple' mode was introduced in Git 1.7.11. Use the similar mode
'current' instead of 'simple' if you sometimes use older versions of Git)

Valgrind MEMIIIIY lEAKS

« Find memory errors, detect memory leaks ¢ e ((

= Common errors: M[Mﬂﬁ[ﬂ\l(s
. lllegal read/write errors EVERYWHERE

= Use of uninitialized values
= lllegal frees
= Overlapping source/destination addresses

= Typical solutions
= Did you allocate enough memory?
« Did you accidentally free stack variables or free something twice?

= Did you initialize all your variables?
= Did you use something that you just freed?

s ——leak-check=full

= Memcheck gives details for each definitely/possibly lost memory block (where it was
allocated

o
What’s wrong?

i (o) @ = renali — ssh renal@shark.ics.cs.cmu.edu — 118x44

[renal@Pangelshark:~/private/15213/cachelab$ valgrind —--leak-check=full ./csim -s @ —-E 1 -b @ -t traces/csim/wide.trace |
==3199== Memcheck, a memory error detector

==3199== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==3199== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info

==3199== Command: ./csim -s ©@ -E 1 -b @ -t traces/csim/wide.trace

==3199==

hits:1 misses:18 evictions:17 dirty_bytes_in_cache:1 dirty_bytes_evicted:6
==3199==

==3199== HEAP SUMMARY:

==3199== in use at exit: 8 bytes in 1 blocks

==3199== total heap usage: 5 allocs, 4 frees, 1,736 bytes allocated
==3199==

==3199== 8 bytes in 1 blocks are definitely lost in loss record 1 of 1
==3199== at Ox4C29F73: malloc (vg_replace_malloc.c:309)

==3199== by ©x400DD8: allocate_cache (csim.c:164)

==3199== by ©x400F30: run_simulation (csim.c:209)

==3199== by 0x401526: main (csim.c:443)

==3199==

==3199== LEAK SUMMARY:

==3199== definitely lost: 8 bytes in 1 blocks

==3199== indirectly lost: © bytes in @ blocks

==3199== possibly lost: © bytes in @ blocks

==3199== still reachable: © bytes in @ blocks

==3199== suppressed: @ bytes in @ blocks

==3199==

==3199== For lists of detected and suppressed errors, rerun with: -s
==3199== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: @ from 0)
renal@angelshark:~/private/15213/cachelab$ [J

o
What’s wrong?

i (o ® - renali — ssh renal@shark.ics.cs.cmu.edu — 118x44

[renalPangelshark:~/private/15213/cachelab$ valgrind —--leak-check=full ./csim -s @ -E 1 -b @ -t traces/csim/wide.trace |
==6015== Memcheck, a memory error detector

==6015== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==6015== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info

==6015== Command: ./csim -s @ -E 1 -b © -t traces/csim/wide.trace

==6015==

==6015== Invalid free() / delete / delete[] / realloc()

==6015== at 0x4C2BO6D: free (vg_replace_malloc.c:540)

==6015== by 0x40133F: run_simulation (csim.c:348)

==6015== by 0x401536: main (csim.c:444)

==6015== Address 0x52052c@ is O bytes inside a block of size 8 free'd
==6015== at Ox4C2B06D: free (vg_replace_malloc.c:540)

==6015== by Ox4@0QED9: free_cache (csim.c:191)

==6015== by 0x40133F: run_simulation (csim.c:348)

==6015== by 0x401536: main (csim.c:444)

==6015== Block was alloc'd at

==6015== at Ox4C29F73: malloc (vg_replace_malloc.c:309)

==6015== by 0x400DD8: allocate_cache (csim.c:164)

==6015== by Ox400F40: run_simulation (csim.c:210)

==6015== by 0x401536: main (csim.c:444)

==6015==

hits:1 misses:18 evictions:17 dirty_bytes_in_cache:1 dirty_bytes_evicted:é
==6015==

==6015== HEAP SUMMARY:

==6015== in use at exit: © bytes in @ blocks

==6015== total heap usage: 5 allocs, 6 frees, 1,736 bytes allocated
==6015==

==6015== All heap blocks were freed —— no leaks are possible

==6015==

==6015== For lists of detected and suppressed errors, rerun with: -s
==6015== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: © from 0)
renal@angelshark:~/private/15213/cachelab$ [J

@ @® ~ renali — ssh renal@shark.ics.cs.cmu.edu — 118x44

renalPangelshark:~/private/15213/cachelab$ valgrind --leak-check=full ./csim -s @ -E 1 -b @ -t traces/csim/wide.trace
==2980== Memcheck, a memory error detector

==2980== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==2980== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info

==2980== Command: ./csim -s @ -E 1 -b @ -t traces/csim/wide.trace

==2980==

hits:1 misses:18 evictions:17 dirty_bytes_in_cache:1 dirty_bytes_evicted:6

==2980==

==2980== HEAP SUMMARY:

==2980== in use at exit: @ bytes in © blocks - < -
==2980== total heap usage: 5 allocs, 5 frees, 1,736 bytes allocated | | - |
==2980==

==2980== All heap blocks were freed —— no leaks are possible

==2980==

==2980== For lists of detected and suppressed errors, rerun with: -s
==2980== ERROR SUMMARY: 0 errors from @ contexts (suppressed: @ from 0)
renal@angelshark:~/private/15213/cachelab$ [J

Hooray!

Carnegie Mellon

= No longer stepping through assembly! Some GDB commands
are different:

-« stepi/nexti — step/next

= break file.c:line num

« disas — list

. print <any var name> (in current frame)
. frame and backtrace still useful!

« Use TUlI mode (layout src)

- Nice display for viewing source/executing commands
- Buggy, so only use TUI mode to step through lines (no continue / finish)

Carnegie Mellon

C Libraries

Carnegie Mellon

<string.h>: Common String/Array Methods

= Used heavily in shell/proxy labs c
. Reminders: [m“t;jm;m
. ensure that all strings are ‘\ 0’ terminated!)
- ensure that dest is large enough to store
src!

- ensure that src actually contains n bytes!
- ensure that src/dest don't overlap!

<string.h>: Dealing with memory

m volid *memset (void *ptr, int val, size t n);
> Starting at ptr, write val to each of n bytes of memory
> Commonly used to initialize a value to all 0 bytes
> Be careful if using on non-char arrays

m voild *memcpy (void *dest, voilid *src, size t n);
> Copyn bytes of src into dest, returns dest
> dest and src should not overlap! see memmove ()

Whenever using these functions, a sizeof expression is in order, since
they only deal with lengths expressed in bytes. For example:

int arrayl[32];

memset (array, 0, sizeof (array)):;

memset (array, 0, 32 * sizeof (arrayl[0]));
memset (array, 0, 32 * sizeof (int));

<string.h>: Copying and concatenating strings

Many of the string functions in <string.h> have “n” versions which read
at most n bytes from src. They can help you avoid buffer overflows, but
their behavior may not be intuitive.

m char *strcpy (char *dest, char *src);

char *strncpy (char *dest, char *src, size t n);
> Copy the string src into dest, stopping once a ‘\0’ character

is encountered in src. Returns dest.

> Warning: strncpy will write at most n bytes to dest, including
the *\0’.If src is more than n-1 bytes long, n bytes will be
written, but no *\0’ will be appended!

Carnegie Mellon

<string.h>: Concatenating strings

On the other hand, strncat has somewhat nicer semantics than

strncpy, Since it always appends a terminating ‘*\0’. This is because it
assumes that dest is a null-terminated string.

m char *strcat (char *dest, char *src);
char *strncat (char *dest, char *src, size t n);

> Appends the string src to end of the string dest, stopping once a
‘\0’ character is encountered in src. Returns dest.

> Make sure dest Is large enough to contain both dest and src.

> strncat will read at most n bytes from src, and will append

those bytes to dest, followed by a terminating *\ 0.

Carnegie Mellon

<string.h>: Comparing strings

m 1int strcmp(char *strl, char *str2);
int strncmp (char *strl, char *str2, size t n);
> Compare strl and str2 using a lexicographical ordering. Strings

are compared based on the ASCII value of each character, and then
based on their lengths.

strcmp (strl, str2) < 0 means strl islessthan str2, etc.
strncmp Will only consider the first n bytes of each string, which

can be useful even if you don’t care about buffer overflows.

vV

Carnegie Mellon

<string.h>: Miscellaneous

B char *strstr (char *haystack, char *needle);
> Returns a pointer to first occurrence of needle in haystack, or

NULL if no occurrences were found.

m char *strtok (char *str, char *delimiters);
> Destructively tokenize str using any of the delimiter
characters provided in delimiters.

> Each call returns the next token. After the first call, continue calling
with str = NULL. Returns NULL if there are no more tokens.

> Not reentrant.
] size_t strlen (const char *str);

> Returns the length of the string str.
> Does not include the terminating ‘\ 0’ character.

Carnegie Mellon

What's wrong?

char *copy string(char *in str) {
size t len = strlen(in str);
char *out str = malloc(len * sizeof (char));
strcpy (out str, in str);

return out_str;

Carnegie Mellon

What's wrong?

char *copy string(char *in str) {
size t len = strlen(in str);
char *out str = malloc((len + 1) * sizeof (char));
strcpy (out str, in str);

return out_str;

m malloc should be paired with free if possible
m One-byte buffer overflow

Carnegie Mellon

<stdlib.h>: General Purpose Functions

m long strtol(char *str, char **endp, 1nt base);
> Parse string into integral value
> Error checking is finicky (see man-page)
> There’s also an unsigned long version

m int abs(int n);
> Returns absolute value of n
> See also: long labs (long n);

m vold exit (int status);
> Terminate calling process

> Return status to parent process

m void abort (void);
> Aborts process abnormally

Carnegie Mellon

<stdlib.h>: What's a size t, anyway?

m Unsigned type used by library functions to represent
memory sizes

m ssize t isits signed counterpart (used for
functions that return a size or -1)

Machine word size: 64 bits on Shark machines

int may not be able to represent size of large
arrays

warning: comparison between signed and unsigned
integer expressions [-Wsign-compare]
for (int 1 = 0; 1 < strlen(str); i++) {

/\

Carnegie Mellon

More standard library friends

<stdbool.h>
B Dool

<stdint.h>
m SIZE MAX, INT MIN, etc

<assert.h>

B vold assert(scalar expression);
> Aborts program if expression evaluates as false
> 122 wasn’t completely useless!

Carnegie Mellon

<stdio.h>: C standard library 1/O

s Used heavily in
cache/shell/proxy labs

Text terminal

s Functions:
> argument parsing
> file handling
> input/output [Display

[Keyboard
#0 stdin

#1 stdout

m printf, afan favorite,
comes from this library!

<stdio.h>: File 1/0O

m FILE *fopen (char *filename, char *mode);
> Open the file with specified filename
> Open with specified mode (read, write, append)
> Returns file object, or NULL on error

m int fclose (FILE *stream);
> Close the file associated with stream
> Returns EOF on error

m char *fgets (char *str, 1nt num, FILE
*stream) ;

> Read at most num-1 characters from stream into str
> Stops at newline or EOF; appends terminating *\ 0"
> Returns str, or NULL on error

Carnegie Mellon

<stdio.h>: scanf and friends

int scanf (char *format, ...);

int fscanf (FILE *stream, char *format, ...);

int sscanf (char *str, char *format, ...);

m Read data from stdin, another file, or a string

m Additional arguments are memory locations to read data into
m format describes types of values to read

m Return number of items matched, or EOF on failure

m Do not use in production! Error recovery is almost impossible

o Instead use strtok, strtol, regcomp, regexec, etc.
or lex and yacc

<stdio.h>: printf and friends

int printf (char *format, ...);
int fprintf (FILE *stream, char *format, ...);
int snprintf (char *str, size t n, char *format, ...);

m Write data to stdout, a file, or a string buffer
format describes types of argument values
m Return number of characters written
o snprintf truncates if not enough space, but returns number of
characters that would have been written
o cancall snprintf (NULL, 0, format, ...) tolearn how
much space you need
m Obsolete sprintf islike snprintf but doesn’t take size of
destination buffer — do not use

Carnegie Mellon

<stdio.h>: Format strings crash course

Placeholders Size specifiers
od: signed integer Us_ec_l to change the size of an
_ _ existing placeholder.
%u. unsigned integer m h:short
sx: hexadecimal m 1l long

m 11: long long

HE B B B B B B
o°
Hh

. floating-point m zsize t
%s: string (char *) For example, consider these
2« character modified placeholders:

' . m %1d for long
$p: pointer address m %1f for double

m %zu forsize t

Carnegie Mellon

What's wrong?

int parse int (char *str) { vold echo (void) {
int n; char buf[lo6];
sscanf (str, "%d", n); scant ("ss", buf);

printf (buf) ;
return n;

Carnegie Mellon

What's wrong?

int parse int (char *str) { void echo (void) {
int n; char buf[1l6];
scanf ("$15s", buf);

printf ("%s", buf);

sscanf (str, "%d", &n);

return n;

e Don’t forget to pass pointers to * 'sb\t\;i(;:dsgiz?fesrcoiszls\?v;ead
scanf, not uninitialized values! gs- :

e At least checking return value of e Need room for null terminator
scanf tells you if parsing failed e Never pass a non-constant string

— which you can’t do with atoi as the format string for printf!

Carnegie Mellon

getopt
int main(int argc, char **argv) {
int opt, x;
e Parses command-line arguments /* looping over arguments */
e Need toinclude unistd.h to use while ((opt = getopt(arge,argv,”x:")) 1= -1) {
e Typically called in a loop to retrieve
arguments
e Switch statement used to handle options

switch (opt) {
case 'x':
x = atoi (optarqg);

o Colon indicates required argument defaukl):ak'
o optarg is set to value of option printf ("wrong argument\n") ;
argument break;:
e Returns -1 when no more arguments }
e See recitation 6 slides for more }

exanuﬂes /* ... rest of program ... */

Carnegie Mellon

Note about Library Functions

= T hese functions can return error codes
= malloc could fail

» 1nt *Xx;
if (! (x = malloc(sizeof (int))))
printf (“Malloc failed!!!\n”);
- a file couldn’t be opened
= a string may be incorrectly parsed
« Remember to check for the error cases and handle the

errors accordingly

= Mmay have to terminate the program (eg malloc fails)
= Mmay be able to recover (user entered bad input)

Carnegie Mellon

Style
m Documentation
m file header, function header, comments

m Variable Names & Magic Numbers

m new cache size isgood, not new cacheSize or size
m Use #define CACHESIZE 128

m Modularity
m helper functions

m Error Checking

m malloc, library functions...

m Memory & File Handling

m free memory, close files
m Check style guide for detailed information

https://www.cs.cmu.edu/~213/codeStyle.html

Cache Lab Tips
m Start early!'!!l This is the first lab with actual
programming (besides lab0)
Read the entire writeup
m Create a “verbose” mode to help with debugging
m Debug with smaller traces first
m [If your simulator isn’t working, walk through your
code with the trace that fails
m Review and understand blocking

Carnegie Mellon

Additional Topics

e Headers files and header guards
e Macros

Header Files

= Includes C declarations and macro definitions to be shared

across multiple files
= Only include function prototypes/macros; implementation code goes in .c file!

« Usage: #include <header.h>

= #include <1ib> for standard libraries (eg #include <string.h>)
= f#include “file” for your source files (eg #include “header.h”)

= Never include .c files (bad practice)
// list.h // list.c // stacks.h

struct list node { #include “list.h” #include “list.h”

int data: struct stack head {
’ node new list () { node top;
struct list node* next; .
- // implementation node bottom;

by
typedef struct list node* node;
node new list(); void add node(int e, node 1) {

void add node(int e, node 1); // implementation
} void push(int e, stack S);

} };
typedef struct stack head* stack

stack new stack();

Header Guards

= Double-inclusion problem: include same header file twice

//father.h //child.h
#include “grandfather.h” #include “father.h”
#include “grandfather.h”

//grandfather.h

Error: child.h includes grandfather.h twice

= Solution: header guard ensures single inclusion

//grandfather.h //father.h //child.h
#lfndef GRANDFATHER_H #lfndef FATHER_H #lnClude “father.h”
#define GRANDFATHER H #define FATHER H

, #include “grandfather.h”
#include “grandfather.h”

#endif #endif

Okay: child.h only includes grandfather.h once

Carnegie Mellon

Macros extras/macros

=« A way to replace a name with its macro definition
- No function call overhead, type neutral
. Think “find and replace” like in a text editor

« Uses:

. defining constants (INT_MAX, ARRAY_SIZE)
. defining simple operations (MAX(a, b))
. 122-style contracts (REQUIRES, ENSURES)

« Warnings:
. Use parentheses around arguments/expressions, to avoid problems after
substitution

. Do not pass expressions with side effects as arguments to macros
#define INT MAX Ox7FFFFFFFF
#define MAX (A, B) ((A) > (B) ? (A) : (B))
#define REQUIRES (COND) assert (COND) #define
WORD SIZE 4
#define NEXT WORD(a) ((char*) (a) + WORD SIZE)

