

Carnegie Mellon

C Boot Camp

February 19, 2023

Carnegie Mellon

Agenda

■ C Basics
■ Debugging Tools / Demo

■ C Standard Library
○ getopt
○ stdio.h
○ stdlib.h
○ string.h

Carnegie Mellon

C Basics Handout

ssh <andrewid>@shark.ics.cs.cmu.edu
cd ~/private
wget http://cs.cmu.edu/~213/activities/cbootcamp.tar.gz

tar xvpf
cbootcamp.tar.gz cd
cbootcamp
make

■ Contains useful, self-contained C examples
■ Slides relating to these examples will have the file

names in the top-right corner!

http://cs.cmu.edu/~213/activities/cbootcamp.tar.gz

Carnegie Mellon

C Basics

■ The minimum you must know to do well in this class
■ You have seen these concepts before
■ Make sure you remember them.

■ Summary:
■ Pointers/Arrays/Structs/Casting
■ Memory Management
■ Function pointers/Generic Types
■ Strings

Carnegie Mellon

Variable Declarations & Qualifiers
■ Global Variables:

■ Defined outside functions, seen by all files
■ Use “extern” keyword to use a

global variable defined in another file
■ Const Variables:

■ For variables that won’t change
■ Stored in read-only data section

■ Static Variables:
■ For locals, keeps value between invocations
■ USE SPARINGLY
■ Note: static has a different meaning when

referring to functions (not visible outside of
object file)

Carnegie Mellon

Casting

■ Can convert a variable to a different type
■ Rules for Casting Between Integer Types
■ Integer Casting:

■ Signed <-> Unsigned: Keep Bits - Re-Interpret
■ Small -> Large: Sign-Extend MSB, preserve value

■ Cautions:
■ Cast Explicitly: int x = (int) y instead of int x = y
■ Casting Down: Truncates data
■ Casting across pointer types: Dereferencing a pointer may cause

undefined memory access

Carnegie Mellon

Pointers

■ Stores address of a value in memory
■ e.g.int*, char*, int**, etc
■ Access the value by dereferencing (e.g. *a).

Can be used to read or write a value to
given address

■ Dereferencing NULL causes undefined
behavior (usually a segfault)

Carnegie Mellon

Pointers

■ Pointer to type A references a
block of sizeof(A) bytes

■ Get the address of a value in
memory with the ‘&’ operator

■ Pointers can be aliased, or
pointed to same address myint

Carnegie Mellon

Pointer Arithmetic

■ Can add/subtract from an address to get a new address
■ Only perform when absolutely necessary (e.g. malloclab)
■ Result depends on the pointer type

■ A+i, where A is a pointer = 0x100, i is an int
■ int* A: A+i = 0x100 + sizeof(int) * i = 0x100 + 4 * i
■ char* A: A+i = 0x100 + sizeof(char) * i = 0x100 + 1 * i
■ int** A: A+i = 0x100 + sizeof(int*) * i = 0x100 + 8 * i

■ Rule of thumb: explicitly cast pointer to avoid confusion
■ Prefer ((char*)(A) + i) to (A + i), even if A has type char*

./pointer_arith

Carnegie Mellon

Pointer Arithmetic ./pointer_arith

■ The ‘pointer_arith’ program demonstrates how values of
different sizes can be written to and read back from the
memory.

■ The examples are to show you how the type of the
pointer affects arithmetic done on the pointer.

■ When adding x to a pointer A (i.e. A + x), the result is really
(A + x * sizeof(TYPE_OF_PTR_A)).

■ Run the ‘pointer_arith’ program
$./pointer_arith

Carnegie Mellon

Call by Value vs Call by Reference
■ Call-by-value: Changes made to arguments passed to a function

aren’t reflected in the calling function
■ Call-by-reference: Changes made to arguments passed to a

function are reflected in the calling function
■ C is a call-by-value language
■ To cause changes to values outside the function, use pointers

■ Do not assign the pointer to a different value (that won’t be reflected!)
■ Instead, dereference the pointer and assign a value to that address

void swap(int* a,
int temp = *a;

int* b) { int x = 42;
int y = 54;

*a = *b; swap(&x, &y);
*b = temp; printf(“%d\n”, x); // 54

} printf(“%d\n”, y); // 42

Carnegie Mellon

Arrays/Strings

■ Arrays: fixed-size collection of elements of the same type
■ Can allocate on the stack or on the heap
■ int A[10]; // A is array of 10 int’s on the stack
■ int* A = calloc(10, sizeof(int)); // A is array of 10

int’s on the heap

■ Strings: Null-character (‘\0’) terminated character arrays
■ Null-character tells us where the string ends
■ All standard C library functions on strings assume null-termination.

H e l l o w o r l d ! \0

48 65 6c 6c 6f 20 77 6f 72 6c 64 21 00

Carnegie Mellon

Structs

■ Collection of values placed under one name in a single
block of memory

■ Can put structs, arrays in other structs
■ Given a struct instance, access the fields using the ‘.’

operator
■ Given a struct pointer, access the fields using the ‘->’

operator
struct inner_s { struct outer_s { outer_s out_inst;

int i; char ar[10]; out_inst.ar[0] = ‘a’;
char c; struct inner_s in; out_inst.in.i = 42;

}; }; outer_s* out_ptr = &out_inst;
out_ptr->in.c = ‘b’;

./structs

Unions

■ Similar to a struct,
occupies a region of
memory

■ However, its fields
indicate multiple ways to
interpret that region of
memory

■ similar access syntax as
Structs

Carnegie Mellon

C Program Memory Layout

Carnegie Mellon

Stack vs Heap vs Data

■ Local variables and function arguments are placed on the
stack

■ deallocated after the variable leaves scope
■ do not return a pointer to a stack-allocated variable!
■ do not reference the address of a variable outside its scope!

■ Memory blocks allocated by calls to malloc/calloc are
placed on the heap

■ Example:
■ int* a = malloc(sizeof(int));
■ //a is a pointer stored on the stack to a memory block within the heap

Carnegie Mellon

Malloc, Free, Calloc
■ Handle dynamic memory allocation on HEAP
■ void* malloc (size_t size):

■ allocate block of memory of size bytes
■ does not initialize memory

■ void* calloc (size_t num, size_t size):
■ allocate block of memory for array of num elements, each size bytes long
■ initializes memory to zero

■ void free(void* ptr):
■ frees memory block, previously allocated by malloc, calloc, realloc, pointed by ptr
■ use exactly once for each pointer you allocate

■ size argument:
■ number of bytes you want, can use the sizeof operator
■ sizeof: takes a type and gives you its size
■ e.g., sizeof(int), sizeof(int*)

Carnegie Mellon

Memory Management Rules

■ malloc what you free, free what you malloc
■ client should free memory allocated by client code
■ library should free memory allocated by library code

■ Number mallocs = Number frees
■ Number mallocs > Number Frees: definitely a memory leak
■ Number mallocs < Number Frees: definitely a double free

■ Free a malloc’ed block exactly once
■ Should not dereference a freed memory block

■ Only malloc when necessary
■ Persistent, variable sized data structures
■ Concurrent accesses (we’ll get there later in the semester)

mem_mgmt.c
./mem_valgrind.sh

Carnegie Mellon

C Tools
GIT | Valgrind | GDB

Git Basics
■ Most widely used version control system

■ Commands:

■ Clone: git clone <clone-repository-url>

■ Add: git add . OR git add <file-name>

■ Push / Pull: git push / git pull

■ Commit: git commit -m “your-commit-message”

■ Good messages are key!

Git in 15-213/513
■ Create an account

■ Click “Download handout” on Autolab

■ This creates a repository for your personal lab
■ https://github.com/cmu15213-m22/<labname>-m22-<yourgithubid>

■ git clone

■ Save → make → git add → git commit → git push

https://github.com/cmu15213-s22/cachelab-m22-yourgithubid

Carnegie Mellon

Valgrind
■ Find memory errors, detect memory leaks
■ Common errors:

■ Illegal read/write errors
■ Use of uninitialized values
■ Illegal frees
■ Overlapping source/destination addresses

■ Typical solutions
■ Did you allocate enough memory?
■ Did you accidentally free stack variables or free something twice?
■ Did you initialize all your variables?
■ Did you use something that you just freed?

■ --leak-check=full
■ Memcheck gives details for each definitely/possibly lost memory block (where it was

allocated

What’s wrong?

What’s wrong?

Hooray!

Carnegie Mellon

GDB
■ No longer stepping through assembly! Some GDB commands

are different:
■ stepi / nexti → step / next
■ break file.c:line_num
■ disas → list
■ print <any_var_name> (in current frame)
■ frame and backtrace still useful!

■ Use TUI mode (layout src)
■ Nice display for viewing source/executing commands
■ Buggy, so only use TUI mode to step through lines (no continue / finish)

Carnegie Mellon

C Libraries

Carnegie Mellon

<string.h>: Common String/Array Methods

■ Used heavily in shell/proxy labs

■ Reminders:
■ ensure that all strings are ‘\0’ terminated!
■ ensure that dest is large enough to store

src!
■ ensure that src actually contains n bytes!
■ ensure that src/dest don’t overlap!

Carnegie Mellon

<string.h>: Dealing with memory

■ void *memset (void *ptr, int val, size_t n);
➢ Starting at ptr, write val to each of n bytes of memory
➢ Commonly used to initialize a value to all 0 bytes
➢ Be careful if using on non-char arrays

■ void *memcpy (void *dest, void *src, size_t n);
➢ Copy n bytes of src into dest, returns dest
➢ dest and src should not overlap! see memmove()

Whenever using these functions, a sizeof expression is in order, since
they only deal with lengths expressed in bytes. For example:

int array[32];
memset(array, 0, sizeof(array));
memset(array, 0, 32 * sizeof(array[0]));
memset(array, 0, 32 * sizeof(int));

Carnegie Mellon

<string.h>: Copying and concatenating strings

Many of the string functions in <string.h> have “n” versions which read
at most n bytes from src. They can help you avoid buffer overflows, but
their behavior may not be intuitive.

■ char *strcpy (char *dest, char *src);
char *strncpy (char *dest, char *src, size_t n);
➢ Copy the string src into dest, stopping once a ‘\0’ character

is encountered in src. Returns dest.
➢ Warning: strncpy will write at most n bytes to dest, including

the ‘\0’. If src is more than n-1 bytes long, n bytes will be
written, but no ‘\0’ will be appended!

Carnegie Mellon

<string.h>: Concatenating strings
On the other hand, strncat has somewhat nicer semantics than
strncpy, since it always appends a terminating ‘\0’. This is because it
assumes that dest is a null-terminated string.

■ char *strcat (char *dest, char *src);
char *strncat (char *dest, char *src, size_t n);
➢ Appends the string src to end of the string dest, stopping once a

‘\0’ character is encountered in src. Returns dest.
➢ Make sure dest is large enough to contain both dest and src.
➢ strncat will read at most n bytes from src, and will append

those bytes to dest, followed by a terminating ‘\0’.

Carnegie Mellon

<string.h>: Comparing strings

■ int strcmp(char *str1, char *str2);
int strncmp (char *str1, char *str2, size_t n);
➢ Compare str1 and str2 using a lexicographical ordering. Strings

are compared based on the ASCII value of each character, and then
based on their lengths.

➢ strcmp(str1, str2) < 0 means str1 is less than str2, etc.
➢ strncmp will only consider the first n bytes of each string, which

can be useful even if you don’t care about buffer overflows.

Carnegie Mellon

<string.h>: Miscellaneous

■ char *strstr (char *haystack, char *needle);
➢ Returns a pointer to first occurrence of needle in haystack, or

NULL if no occurrences were found.

■ char *strtok (char *str, char *delimiters);
➢ Destructively tokenize str using any of the delimiter

characters provided in delimiters.
➢ Each call returns the next token. After the first call, continue calling

with str = NULL. Returns NULL if there are no more tokens.
➢ Not reentrant.

■ size_t strlen (const char *str);
➢ Returns the length of the string str.
➢ Does not include the terminating ‘\0’ character.

Carnegie Mellon

What’s wrong?

char *copy_string(char *in_str) {
size_t len = strlen(in_str);
char *out_str = malloc(len * sizeof(char));

strcpy(out_str, in_str);

return out_str;
}

Carnegie Mellon

What’s wrong?

char *copy_string(char *in_str) {
size_t len = strlen(in_str);
char *out_str = malloc((len + 1) * sizeof(char));

strcpy(out_str, in_str);

return out_str;
}

■ malloc should be paired with free if possible
■ One-byte buffer overflow

Carnegie Mellon

<stdlib.h>: General Purpose Functions
■ long strtol(char *str, char **endp, int base);

➢ Parse string into integral value
➢ Error checking is finicky (see man-page)
➢ There’s also an unsigned long version

■ int abs(int n);
➢ Returns absolute value of n
➢ See also: long labs(long n);

■ void exit(int status);
➢ Terminate calling process
➢ Return status to parent process

■ void abort(void);
➢ Aborts process abnormally

Carnegie Mellon

■ Unsigned type used by library functions to represent
memory sizes

■ ssize_t is its signed counterpart (used for
functions that return a size or -1)

■ Machine word size: 64 bits on Shark machines
■ int may not be able to represent size of large

arrays

warning: comparison between signed and unsigned
integer expressions [-Wsign-compare]

for (int i = 0; i < strlen(str); i++) {

^

<stdlib.h>: What’s a size_t, anyway?

Carnegie Mellon

More standard library friends

<stdbool.h>
■ bool

<stdint.h>
■ SIZE_MAX, INT_MIN, etc

<assert.h>
■ void assert(scalar expression);

➢ Aborts program if expression evaluates as false
➢ 122 wasn’t completely useless!

Carnegie Mellon

<stdio.h>: C standard library I/O

■ Used heavily in
cache/shell/proxy labs

■ Functions:
➢ argument parsing
➢ file handling
➢ input/output

■ printf, a fan favorite,
comes from this library!

Carnegie Mellon

■ FILE *fopen (char *filename, char *mode);
➢ Open the file with specified filename
➢ Open with specified mode (read, write, append)
➢ Returns file object, or NULL on error

■ int fclose (FILE *stream);
➢ Close the file associated with stream
➢ Returns EOF on error

■ char *fgets (char *str, int num, FILE
*stream);
➢ Read at most num-1 characters from stream into str
➢ Stops at newline or EOF; appends terminating ‘\0’
➢ Returns str, or NULL on error

<stdio.h>: File I/O

Carnegie Mellon

<stdio.h>: scanf and friends

int scanf (char *format, ...);
int fscanf (FILE *stream, char *format, ...);
int sscanf (char *str, char *format, ...);

■ Read data from stdin, another file, or a string
■ Additional arguments are memory locations to read data into
■ format describes types of values to read
■ Return number of items matched, or EOF on failure

■ Do not use in production! Error recovery is almost impossible
○ Instead use strtok, strtol, regcomp, regexec, etc.

or lex and yacc

Carnegie Mellon

<stdio.h>: printf and friends

int printf (char *format, ...);
int fprintf (FILE *stream, char *format, ...);
int snprintf (char *str, size_t n, char *format, ...);

■ Write data to stdout, a file, or a string buffer
■ format describes types of argument values
■ Return number of characters written

○ snprintf truncates if not enough space, but returns number of
characters that would have been written

○ can call snprintf(NULL, 0, format, ...) to learn how
much space you need

■ Obsolete sprintf is like snprintf but doesn’t take size of
destination buffer — do not use

Carnegie Mellon

<stdio.h>: Format strings crash course

Placeholders
■ %d: signed integer
■ %u: unsigned integer
■ %x: hexadecimal
■ %f: floating-point
■ %s: string (char *)
■ %c: character
■ %p: pointer address

Size specifiers
Used to change the size of an
existing placeholder.
■ h: short
■ l: long
■ ll: long long
■ z: size_t

For example, consider these
modified placeholders:
■ %ld for long
■ %lf for double
■ %zu for size_t

Carnegie Mellon

What’s wrong?

int parse_int(char *str) {
int n;
sscanf(str, "%d", n);

return n;

}

void echo(void) {
char buf[16];
scanf("%s", buf);
printf(buf);

}

Carnegie Mellon

What’s wrong?

void echo(void) {
char buf[16];
scanf("%15s", buf);
printf("%s", buf);

}

● Avoid using scanf to read
strings: buffer overflows.

● Need room for null terminator

● Never pass a non-constant string
as the format string for printf!

int parse_int(char *str) {
int n;
sscanf(str, "%d", &n);

return n;

}

● Don’t forget to pass pointers to
scanf, not uninitialized values!

● At least checking return value of
scanf tells you if parsing failed
– which you can’t do with atoi

Carnegie Mellon

getopt

● Parses command-line arguments
● Need to include unistd.h to use
● Typically called in a loop to retrieve

arguments
● Switch statement used to handle options

○ Colon indicates required argument
○ optarg is set to value of option

argument
● Returns -1 when no more arguments
● See recitation 6 slides for more

examples

int main(int argc, char **argv) {
int opt, x;
/* looping over arguments */
while ((opt = getopt(argc,argv,"x:")) != -1) {

switch(opt) {
case 'x':

x = atoi(optarg);
break;

default:
printf("wrong argument\n");
break;

}
}
/* ... rest of program ... */

}

Carnegie Mellon

Note about Library Functions

■ These functions can return error codes
■ malloc could fail
■ int *x;

if (!(x = malloc(sizeof(int))))
printf(“Malloc failed!!!\n”);

■ a file couldn’t be opened
■ a string may be incorrectly parsed

■ Remember to check for the error cases and handle the
errors accordingly

■ may have to terminate the program (eg malloc fails)
■ may be able to recover (user entered bad input)

Carnegie Mellon

Style
■ Documentation

■ file header, function header, comments
■ Variable Names & Magic Numbers

■ new_cache_size is good, not new_cacheSize or size
■ Use #define CACHESIZE 128

■ Modularity
■ helper functions

■ Error Checking
■ malloc, library functions...

■ Memory & File Handling
■ free memory, close files

■ Check style guide for detailed information

https://www.cs.cmu.edu/~213/codeStyle.html

Cache Lab Tips
■ Start early!!!!!!! This is the first lab with actual

programming (besides lab0)
■ Read the entire writeup
■ Create a “verbose” mode to help with debugging
■ Debug with smaller traces first

■ If your simulator isn’t working, walk through your
code with the trace that fails

■ Review and understand blocking

Carnegie Mellon

Additional Topics

● Headers files and header guards
● Macros

Carnegie Mellon

Header Files

■ Includes C declarations and macro definitions to be shared
across multiple files

■ Only include function prototypes/macros; implementation code goes in .c file!

■ Usage: #include <header.h>
■ #include <lib> for standard libraries (eg #include <string.h>)
■ #include “file” for your source files (eg #include “header.h”)
■ Never include .c files (bad practice)

// list.h

struct list_node {

int data;

struct list_node* next;
};

typedef struct list_node* node;
node new_list();

void add_node(int e, node l);

// list.c
#include “list.h”

node new_list() {

// implementation

}

void add_node(int e, node l) {

// implementation

}

// stacks.h
#include “list.h”
struct stack_head {

node top;

node bottom;

};
typedef struct stack_head* stack

stack new_stack();

void push(int e, stack S);

Carnegie Mellon

Header Guards

■ Double-inclusion problem: include same header file twice

Error: child.h includes grandfather.h twice

■ Solution: header guard ensures single inclusion

//grandfather.h
//father.h

#include “grandfather.h”

//child.h

#include “father.h”

#include “grandfather.h”

//grandfather.h
#ifndef GRANDFATHER_H
#define GRANDFATHER_H

#endif #endif

Okay: child.h only includes grandfather.h once

//father.h
#ifndef FATHER_H
#define FATHER_H
#include “grandfather.h”

//child.h

#include “father.h”

#include “grandfather.h”

Carnegie Mellon

Macros

■ A way to replace a name with its macro definition
■ No function call overhead, type neutral
■ Think “find and replace” like in a text editor

■ Uses:
■ defining constants (INT_MAX, ARRAY_SIZE)
■ defining simple operations (MAX(a, b))
■ 122-style contracts (REQUIRES, ENSURES)

■ Warnings:
■ Use parentheses around arguments/expressions, to avoid problems after

substitution
■ Do not pass expressions with side effects as arguments to macros

#define INT_MAX 0x7FFFFFFFF
#define MAX(A, B) ((A) > (B) ? (A) : (B))
#define REQUIRES(COND) assert(COND) #define
WORD_SIZE 4
#define NEXT_WORD(a) ((char*)(a) + WORD_SIZE)

extras/macros

