
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bits, Bytes and Integers – Part 1

15-213/14-513/15-513: Introduction to Computer Systems
2nd Lecture, Thu, Jan 19, 2023

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Announcements
¢ Shark problems update

 A misconfigured limit prevented qtest from running [fixed]
 Some SSH issues [fixed]
 Missing autolab command [facilities is on it, not needed now

anyway]

¢ Linux Boot Camp Sunday (Jan 22), 7–9pm EDT

¢ Lab 0
 Grab it from Autolab to make sure you have the most recent

version
 Scp the TAR file to the shark machines, NOT the folder

 Due Tuesday Jan 24, 11:59pm EDT
 No grace days
 No late submissions
 Should take you less than five hours

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

¢ Representations in memory, pointers, strings

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Everything is bits
¢ Each bit is 0 or 1
¢ By encoding/interpreting sets of bits in various ways

 Computers determine what to do (instructions)
 … and represent and manipulate numbers, sets, strings, etc…

¢ Why bits? Electronic Implementation
 Easy to store with bistable elements
 Reliably transmitted on noisy and inaccurate wires

0.0V
0.2V

0.9V
1.1V

0 1 0

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

An Amazing & Successful Abstraction.

(which we won’t dig into in 213)

Everything is bits
¢ Each bit is 0 or 1
¢ By encoding/interpreting sets of bits in various ways

 Computers determine what to do (instructions)
 … and represent and manipulate numbers, sets, strings, etc…

¢ Why bits? Electronic Implementation

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

¢ on board: the binary numbers up to 11
¢ Do activity problems 1-5

 solutions on board

¢ Hex; note correspondence between 4 bits and a hex digit
¢ Do activity problems 6-9 (don’t do 10 yet)

 solutions on board

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit

char 1 1

short 2 2

int 4 4

long 4 8

float 4 4

double 8 8

pointer 4 8

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit

char 1 1

short 2 2

int 4 4

long 4 8

float 4 4

double 8 8

pointer 4 8

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit

char 1 1

short 2 2

int 4 4

long 4 8

float 4 4

double 8 8

pointer 4 8

“ILP32” “LP64”

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

¢ Representations in memory, pointers, strings

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Boolean Algebra
¢ Developed by George Boole in 19th Century
 Algebraic representation of logic
 Encode “True” as 1 and “False” as 0

And
A&B = 1 when both A=1 and B=1

Or
A|B = 1 when either A=1 or B=1 or both

Not
~A = 1 when A=0

Exclusive-Or (Xor)
A^B = 1 when A=1 or B=1, but not both

& 0 1

0 0 0

1 0 1

| 0 1

0 0 1

1 1 1

^ 0 1

0 0 1

1 1 0

~ 0 1

1 0

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Boolean Algebras
¢ Operate on Bit Vectors
 Operations applied bitwise

¢ All of the Properties of Boolean Algebra Apply

01101001
& 01010101
01000001

01101001
| 01010101
01111101

01101001
^ 01010101
00111100

~ 01010101
1010101001000001 01111101 00111100 10101010

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Sets of Small Integers

¢ Width 𝒘 bit vector represents subsets of {𝟎, 𝟏, … ,𝒘 − 𝟏}
 Let 𝑎 be a bit vector representing set 𝐴, then bit 𝑎! = 1 if 𝑗 ∈ 𝐴
 Examples:

 01101001 { 0, 3, 5, 6 }
76543210

 01010101 { 0, 2, 4, 6 }
76543210

¢ Operations
 & Intersection 01000001 { 0, 6 }
 | Union 01111101 { 0, 2, 3, 4, 5, 6 }
 ^ Symmetric difference 00111100 { 2, 3, 4, 5 }
 ~ Complement 10101010 { 1, 3, 5, 7 }

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bit-Level Operations in C

¢ Operations &, |, ~, ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned
 View arguments as bit vectors
 Arguments applied bit-wise

¢ Activity question 10!0x7D
 011010012 | 010101012 → 011111012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

¢ Do activity question 10
 answers on board

¢ the last one is a technique for datalab

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Contrast: Logic Operations in C
¢ Contrast to Bit-Level Operators
 Logic Operations: &&, ||, !

 View 0 as “False”
 Anything nonzero as “True”
 Always return 0 or 1
 Early termination

¢ Examples (char data type)
 !0x41 → 0x00
 !0x00 → 0x01
 !!0x41→ 0x01

 0x69 && 0x55 → 0x01
 0x69 || 0x55 → 0x01
 p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)…
Super common C programming pitfall!

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shift Operations
¢ Left Shift: x << y
 Shift bit-vector x left y positions

– Throw away extra bits on left
 Fill with 0’s on right

¢ Right Shift: x >> y
 Shift bit-vector x right y positions

 Throw away extra bits on right
 Logical shift

 Fill with 0’s on left
 Arithmetic shift

 Replicate most significant bit on left

¢ Undefined Behavior
 Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

¢ Representations in memory, pointers, strings
¢ Summary

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding Integers

short int x = 15213;
short int y = -15213;

¢ C does not mandate using two’s complement
 But, most machines do, and we will assume so

¢ C short 2 bytes long

¢ Sign Bit
 For 2’s complement, most significant bit indicates sign

0 for nonnegative
 1 for negative

B2T (X) = -xw-1 ×2
w-1 + xi ×2

i

i=0

w-2

åB2U(X) = xi ×2
i

i=0

w-1

å
Unsigned Two’s Complement

Sign Bit

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
y -15213 C4 93 11000100 10010011

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two-complement: Simple Example

10 =
-16 8 4 2 1

0 1 0 1 0

-10 =
-16 8 4 2 1

1 0 1 1 0

8+2 = 10

-16+4+2 = -10

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two-complement Encoding Example (Cont.)
x = 15213: 00111011 01101101
y = -15213: 11000100 10010011

Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0

16 0 0 1 16
32 1 32 0 0
64 1 64 0 0

128 0 0 1 128
256 1 256 0 0
512 1 512 0 0

1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0

16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Numeric Ranges
¢ Unsigned Values

 UMin = 0
000…0

 UMax = 2w – 1
111…1

¢ Two’s Complement Values
 TMin = –2w–1

100…0
 TMax = 2w–1 – 1

011…1
 Minus 1

111…1

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111
TMax 32767 7F FF 01111111 11111111
TMin -32768 80 00 10000000 00000000
-1 -1 FF FF 11111111 11111111
0 0 00 00 00000000 00000000

Values for W = 16

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Values for Different Word Sizes

¢ Observations
 |TMin | = TMax + 1

 Asymmetric range
 UMax = 2 * TMax + 1
 Question: abs(TMin)?

 W
 8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

¢ C Programming
 #include <limits.h>
 Declares constants, e.g.,

 ULONG_MAX
 LONG_MAX
 LONG_MIN

 Values platform specific

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned & Signed Numeric Values
¢ Equivalence

 Same encodings for nonnegative
values

¢ Uniqueness
 Every bit pattern represents

unique integer value
 Each representable integer has

unique bit encoding

¢ Þ Can Invert Mappings
 U2B(x) = B2U-1(x)

 Bit pattern for unsigned
integer

 T2B(x) = B2T-1(x)
 Bit pattern for two’s comp

integer

X B2T(X)B2U(X)
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

–88
–79
–610
–511
–412
–313
–214
–115

1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/24383/quizzes/67213

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

¢ Representations in memory, pointers, strings

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x uxX

Mapping Between Signed & Unsigned

U2T
U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

ux x
X

¢ Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Signed « Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T
T2U

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Signed « Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

+ + + + + +• • •

- + + + + +• • •

ux
x

w–1 0

Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x uxX

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized
¢ 2’s Comp. ® Unsigned

 Ordering Inversion
 Negative ® Big Positive

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed vs. Unsigned in C
¢ Constants

 By default are considered to be signed integers
 Unsigned if have “U” as suffix

0U, 4294967259U

¢ Casting
 Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

 Implicit casting also occurs via assignments and procedure calls
tx = ux; int fun(unsigned u);
uy = ty; uy = fun(tx);

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0 0U == unsigned
-1 0 < signed
-1 0U > unsigned
2147483647 -2147483648 > signed
2147483647U -2147483648 < unsigned
-1 -2 > signed
(unsigned) -1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

Casting Surprises
¢ Expression Evaluation

 If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

 Including comparison operations <, >, ==, <=, >=
 Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

¢ Constant1 Constant2 Relation Evaluation
0 0U
-1 0
-1 0U
2147483647 -2147483647-1
2147483647U -2147483647-1
-1 -2
(unsigned)-1 -2
2147483647 2147483648U
2147483647 (int) 2147483648U

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
Casting Signed ↔ Unsigned: Basic Rules
¢ Bit pattern is maintained
¢ But reinterpreted
¢ Can have unexpected effects: adding or subtracting 2w

¢ Expression containing signed and unsigned int
 int is cast to unsigned!!

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

¢ Representations in memory, pointers, strings

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension
¢ Task:

 Given w-bit signed integer x
 Convert it to w+k-bit integer with same value

¢ Rule:
 Make k copies of sign bit:
 X ¢ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X ¢ • • • • • •

• • •

w

wk

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

10 =

-32 16 8 4 2 1

0 0 1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

-32 16 8 4 2 1

1 1 0 1 1 0-10 =

Positive number Negative number

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Larger Sign Extension Example

¢ Converting from smaller to larger integer data type
¢ C automatically performs sign extension

short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Truncation
¢ Task:

 Given k+w-bit signed or unsigned integer X
 Convert it to w-bit integer X’ with same value for “small enough” X

¢ Rule:
 Drop top k bits:
 X ¢ = xw–1 , xw–2 ,…, x0

• • •

• • •X ¢
w

X • • • • • •
wk

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Truncation: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

6 =

-8 4 2 1

0 1 1 0

Sign change

2 =

-16 8 4 2 1

0 0 0 1 0

2 =

-8 4 2 1

0 0 1 0

-6 =

-16 8 4 2 1

1 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

No sign change

10 mod 16 = 10U mod 16 = 10U = -6

-10 mod 16 = 22U mod 16 = 6U = 6

2 mod 16 = 2

-6 mod 16 = 26U mod 16 = 10U = -6

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary:
Expanding, Truncating: Basic Rules
¢ Expanding (e.g., short int to int)

 Unsigned: zeros added
 Signed: sign extension
 Both yield expected result

¢ Truncating (e.g., unsigned to unsigned short)
 Unsigned/signed: bits are truncated
 Result reinterpreted
 Unsigned: mod operation
 Signed: similar to mod
 For small (in magnitude) numbers yields expected behavior

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Today: Bits, Bytes, and Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting

¢ Representations in memory, pointers, strings
¢ Summary

