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Announcements

m Reminder: Malloc checkpoint due TODAY at midnight

= Malloc final is due exactly one week later

m We're collecting mid-semester feedback

= Help us make the course better: fill out the form at
https://forms.gle/BmdpNxRFXKYfMNS8X9
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Review: Virtual Addressing

m Each process has its own virtual address space
m Page tables map virtual to physical addresses
m Physical memory can be shared among processes

0 Address 0

Virtual lati Physical
Address VP1 w Address
Space for VP 2 PP 2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
e library code)
: 0
Virtual PP 8
Address VP 1
Space for
Process 2: T
VP k

N-1 M-1
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Review: Memory Accesses without VM

CPU sends physical
address to cache

\ 4

Cache sends
data to CPU
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Review: Memory Accesses with VM

CPU sends virtual
address to MMU

\ 4

MMU looks up
physical address in
page table

\ 4

MMU sends physical
address to cache

\ 4

Cache sends
data to CPU
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Review: Memory Accesses with VM

CPU sends virtual
address to MMU

\ 4

MMU looks up
physical address in
page table

No

Yes

MMU sends physical
address to cache

\ 4

Cache sends
data to CPU

MMU triggers
page fault
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OS takes control and
does stuff we’ll discuss
in next 2 classes
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Review: Memory Accesses with VM

CPU sends virtual
address to MMU

\ 4

MMU looks up OS recovers, tells
physical address in [« MMU to retry
page table
No MMU triggers | OS takes control and
page fault tries to recover
Yes

OS cannot recover

MMU sends physical v
address to cache

OS terminates
malfunctioning
process

\ 4

Cache sends
data to CPU
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Today

m Multi-level page tables
m Translation lookaside buffers
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The problem (with one-level page tables)

O0O007FFFFFFFFFFF

N Stack 1
One 64-bit array element
for each 4096-byte page
248 pyte 248 8h
= . tes
address Shared / _ 39/4096 y
space Libraries =277 bytes
= 512 gigabytes
4 for one page table
Heap / J
Data
v
Text
400000
000000
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A Two-Level Page Table Hierarchy

32-bit address space, 4-byte PTEs, 4096-byte pages
(one-level page table: 4MB)

AN

PTE 0 (null) / PTEO
VP 0...1023
PTEL (unmapped)
PTE 2 PTE 1023
VP 1024
PTEO
1020 more VP 2048
null PTEs PTE 1023 \.
VP 3072
1023
null PTEs
VP 3073...
PTE 1023 PTE 1023 1048575
(unmapped)
Level 1 Level 2
page table page tables VP 1048576
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memory

1024 unallocated pages

2048 allocated pages
for code and data

1021 - 1024 + 1023
unallocated pages

1 allocated page
for the stack

10



Carnegie Mellon

Translating with a two-level page table

CPU sends virtual
address to MMU

\ 4

MMU divides VA
into VPN top, VPN
bottom, and VPO

\ 4

MMU looks up VPN | Not present

top half in 15t-level > Page fault
page table

| Present

A

MMU looks up VPN | Not present
bottom half in 2"d- »(  Page fault

level page table
Present

Ul

\ 4

MMU sends physical
address to cache
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Translating with a k-level Page Table

Page table
base register
(PTBR)
n-1 VIRTUAL ADDRESS o1 0

VPN 1 VPN 2 VPN k VPO
the Level 1 aLevel 2 a Level k

page table page table page table

: PPN} —

m'1 v p'1 v 0
PPN PPO
PHYSICAL ADDRESS
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The problem (with k-level page tables)

Page table
base register
(PTBR)
N1 VIRTUAL ADDRESS o-1 0
VPN 1 VPN 2 . VPN k VPO
the Level 1 a Level 2 a Level k
page table page table page table
> PP
/ | /_N }
Cache Cache Cache Cache
miss! miss! miss! miss!
; | z//ﬁ_ Cache

miss!
PPN PP
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Speeding up Translation with a TLB

B Page table entries (PTEs) are cached
like any other memory word
= PTEs may be evicted by other data references
= PTE hit still costs cache delay

B Solution: Translation Lookaside Buffer (TLB)

= Dedicated cache for page table entries
= TLB hit = page table not consulted
= (Can be fairly small: one TLB entry covers 4k or more
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Translating with a TLB

CPU sends virtual
address to MMU

\ 4

MMVU divides VA
into VPN and VPO

\ 4

MMU looks up VPN | Not present MMU looks up Not present
. > . > Page fault
in TLB VPN in page table

Present Present

\ 4

MMU sends physical
address to cache
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Accessing the TLB

B MMU uses the VPN portion of the virtual address to
access the TLB:

T =2t sets
VPN
TLBT matchestag  — —— —
of line within set n-1 p+t p+t-1 p p-1 0

TLB tag (TLBT) | TLB index (TLBI) VPO

Set O v tqg_l PTE v tag_l PTE
TLBI selects the set
Set1l v tag PTE v tag PTE <
[ ]
[ ]
[ ]
SetT-1 |[|v] | tag || PTE v| | tag | | PTE
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TLB Hit

CPU Chip .
Q“ PTE
VPN e
(1
VA \ PA .
CPU > MMU G > Cache/

Memory

Data

A TLB hit eliminates memory accesses to the page table
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TLB Miss

CPU Chip
TLB
A A a
a PTE
VPN
VA \ PTEA \
CPU >  MMU Cache/
‘ PA .| Memory
Data

A TLB miss incurs additional memory accesses (PTE lookup)
Fortunately, TLB misses are rare. Why?
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Today

Conceptual Quiz
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Conceptual Quiz: 1

For a simple system with a one-level page table, what sub-
steps does the MMU take when it fetches a PTE from a page

table?

The MMU has to split the virtual address into VPN and VPO.
The VPN can then be used to index directly into the page
table.
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Conceptual Quiz: 2

The MMU must know the physical address of the page table
in order to read page table entries from memory. Why does
it need a physical address?

If the MMU knew only a virtual address for the page table,
then, in order to read from the page table, it would first need
to look up the physical address of the page table, in the page
table, ...
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Conceptual Quiz: 3

Why are one-level page tables impractical and how do multi-
level page tables fix this problem?

A single-level page table covering the entire address space of
a typical system would be much too large. For instance, with
4kB pages, a 48-bit addres space, and a 8-byte PTE, a single-

level page table would occupy 512 gigabytes, which is more
RAM than most computers have.
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Conceptual Quiz: 4

Why is memory access slower with a multi-level page table
than with a single-level page table?

A k-level page table requires k memory loads in order to

determine the physical address. There is no spatial locality to
these loads.
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Conceptual Quiz: 5

What is the Translation Lookaside Buffer (TLB), what
problem does it solve, and when is it used?

The TLB is a small cache dedicated to storing mappings from

virtual to physical addresses. It avoids the cost of lookups in a
multi-level page table.

The MMU consults the TLB for each address as its first action;

if there is a TLB hit, it does not need to fetch anything from
the page table.
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Conceptual Quiz: 6

How does virtual memory interact with the memory
cache(s)?

The cache’s function is to speed up access to whatever data is
most frequently used. The MMU sits “in between” the CPU
and the cache; the cache works only with physical addresses.
This means data from multiple processes may coexist in the
cache (or compete for cache space).
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O

o

o

m Concrete examples of virtual memory systems
= “Simple memory system” from CSAPP 9.6.4
= |ntel Corei7

o
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Simple Memory System Example

m Addressing

= 14-bit virtual addresses
= 12-bit physical address
= Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

A

A

VPN > VPO ——*
Virtual Page Number Virtual Page Offset

11 10 9 8 7 6 5 4 3 2 1 0

<— PPN > PPO——

Physical Page Number Physical Page Offset
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Simple Memory System TLB

m 16 entries
m 4-way associative

< TLBT — < TLBl >
13 12 11 10 9 8 7 6 5 4 3 2 1 0

0O 0j]O0O(O0O|1]1]0]1
VPN

A

<
o
o

VPN = 0b1101 = 0x0D

Translation Lookaside Buffer (TLB)

Set Tag PPN | Valid | Tag PPN | Valid | Tag PPN | Valid | Tag PPN | Valid
0 03 - 0 09 oD 1 00 - 0 07 02 1
1 03 2D 1 02 - 0 04 - 0 0A - 0
2 02 - 0 08 - 0 06 - 0 03 - 0
3 07 - 0 03 oD 1 0A 34 1 02 - 0
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Simple Memory System Page Table

m Only showing the first 16 entries (out of 256)

VPN | PPN | Valid VPN | PPN | Valid
00 28 1 08 13 1
01 - 0 09 17 1
02 33 1 0A 09 1
03 02 1 0B - 0
04 - 0 oc - 0
05 16 1 (0]D) 2D 1 Ox0D — 0Ox2D
06 - 0 OE 11 1
07 - 0 OF oD 1
TLBT <+— TLBI —
3 12 m o1 s 8 7 6 s 4 3 2 1 o0 nw o1 9 8 7 6 s 4 3 2 1 o
[o0foJoJo[afaJo[a[ [ [T [ T [ | wesmp [af0J2T2[0]2] [ [ [ [ T ]
VPN VPO PPN PPO
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Simple Memory System Cache

m 16 lines, 4-byte cache line size

m Physically addressed
V[0b00001101 ] = V[0x369]

m Direct mapped b1 /y1o1 0\ P[0xB69] = Ox15

< cT co —
1 0 9 8 7 6 / \e\
1/0(1|1|]0|1 |1 0 1 0 0

<— PPN > PPO——

ldx Tag Valid BO B1 B2 B3 Idx Tag Valid B0 B1 B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - - B 0B 0 - - - -
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 oD 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 11 Cc2 DF 03 F 14 0 - - - -
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Address Translation Example

Virtual Address: 0x03D4

< TLBT >< TLBI =
13 12 11 10 9 8 7 6 5 4 3 2 1 0

0/0[{0|/O0f1]1[1/1/0]1[0(1]0]0

< VPN > VPO ————
VPN OxOF TLBI 0x3 TLBT 0x03 TLBHit? Y  PageFault? N  PPN: 0xOD

TLB Set Tag PPN | Valid | Tag PPN | Valid | Tag PPN | Valid | Tag PPN | Valid
0 03 - 0 09 oD 1 00 - 0 07 02 1
1 03 2D 1 02 - 0 04 - 0 0A - 0
2 02 - 0 08 - 0 06 - 0 03 - 0
3 07 - 0 03 oD 1 0A 34 1 02 - 0
Physical Address

11 10 9 8 7 6 5 4 3 2 1 0

0O/l0(1/1/0/1/0/1/0[1]0/[0

< PPN > PPO—
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Intel Core i7 Memory System

Processorpackage _ _ __
\  Core x4 |
' Reaisters Instruction MMU E
: g fetch (addr translation) !
1 A A |
| L1 d-cache L1 i-cache L1d-TLB L1i-TLB !
: 32 KB, 8-way 32 KB, 8-way 64 entries, 4-way 128 entries, 4-way :
1 A A 1
' v A v :: !
! L2 unified cache L2 unified TLB !
! 256 KB, 8-way 512 entries, 4-way !
. X '
! » To other
| QuickPath interconnect > cores
4links @ 25.6 GB/seach | | i 1010
! 3 I 3 : bridge
: L3 unified cache DDR3 Memory controller !
: 8 MB, 16-way ¢ > 3 x 64 bit @ 10.66 GB/s :
: (shared by all cores) 32 GBIs total (shared by all cores) |
! /Y Y 1
L e e e e e e e e e S |
Main memory
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End-to-end Core i7 Address Translation

32/64
cPU < Result | L2, L3, and
% Virt*:zal address (VA) X main memory
\ 4 Y
|, VPN |VPO, 11 L1
32 I 4 hit miss
TLBT| TLBI
I L1 d-cache
v v v v TLB (64 sets, 8 lines/set)
> hit b
TLB > ! <
s SR S I — — N
A A A A
L1 TLB (16 sets, 4 entries/set)
= 2 : 9 40 vy v 12 40 6] 6
VPN1 | VPN2 | VPN3 | VPN4 PPN PPO l T orlco
T T 4 Physical
CR3 J > J J address
PTEl »{PTE| B{PTE '»{PTE (PA)

Page tables
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Core i7 Level 1-3 Page Table Entries

63 62 52 51 12 11 9 8 7 6 5 4 3 2 1 o0
XD Unused Page table physical base address Unused G | PS A | CD [ WT |U/S [R/W]|P=1
Available for OS (page table location on disk) P=0

Each entry references a 4K child page table. Significant fields:

P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.
U/S: user or supervisor (kernel) mode access permission for all reachable pages.
WT: Write-through or write-back cache policy for the child page table.

A: Reference bit (set by MMU on reads and writes, cleared by software).

PS: Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

Page table physical base address: 40 most significant bits of physical page table
address (forces page tables to be 4KB aligned)

XD: Disable or enable instruction fetches from all pages reachable from this
PTE.
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Core i7 Level 4 Page Table Entries

63 62 52 51 1211 9 8 7 6 5 4 3 2 1 0
XD | Unused Page physical base address Unused G D| A |CD|WT|U/S[R/W|P=1
Available for OS (page location on disk) P=0

Each entry references a 4K child page. Significant fields:

P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)
D: Dirty bit (set by MMU on writes, cleared by software)

G: Global page (don’t evict from TLB on task switch)

Page physical base address: 40 most significant bits of physical page address
(forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.
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Core i7 Page Table Translation

9 9 9 9 12 .
VPN 1 VPN 2 VPN 3 VPN 4 VPO | Virtual
address
L1PT L2 PT L3PT L4 PT
Page global Page upper Page middle Page
40| directory 40 directory 40 directory |40 table
CR3 T » A
Physical
address Offset into
of L1 PT 12 physical and
—» L1PTE —» L2 PTE —» L3 PTE L » L4PTE [— virtual page
Physical
address
512GB 1GB 2MB 4KB of page
region region region region
per entry per entry per entry per entry
40
T
40 v 12 A

' |Physical
address

PPN PPO
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Cute Trick for Speeding Up L1 Access

J— L > Tag Check
40 6 6 Ar Ar A A Ar Ar A A
Physical cTé |c|co
address
(PA) PPN PPO
* d0[e[eToJeTefeTe]
Address No ¥
Virtual Translation Cha"ge.,:"l
address ° d
(VA) VPN Vm L1
36 12 Cache

m Observation
= Bits that determine Cl identical in virtual and physical address
= Canindex into cache while address translation taking place
= Generally we hit in TLB, so PPN bits (CT bits) available quickly
= “Virtually indexed, physically tagged”
® Cache carefully sized to make this possible
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Today

m Nifty things virtual memory makes possible
= Paging/swapping (disk as extra RAM)
= Memory-mapped files (RAM as cache for disk)
= Copy-on-write sharing
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Paging (aka Swapping)

m Use (part of) disk as additional working memory
m Adds another layer to the memory hierarchy, but...

= “Main memory” is 10—1000x slower than the caches
= Disk is 10,000x slower than main memory
" Enormous miss penalty drives design

m Consequences

= large page (block) size: 4KB and bigger
= Always write-back and fully associative

"= Managed entirely in software

= Plenty of time to execute complex replacement algorithms
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Locality to the Rescue Again!

m Paging is terribly inefficient
m Only works because of locality

m At any point in time, programs tend to access a set of
active virtual pages called the working set
® Programs with good temporal locality will have small working sets

m If working set size < main memory size
" Good performance after compulsory misses
m If working set size > main memory size

® Thrashing: Performance meltdown, computer spends most of its
time copying pages in and out of RAM

" |n the worst case, no forward progress at all (livelock)
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Memory-Mapped Files

m Paging = every page of a program’s physical RAM is
backed by some page of disk*

m Normally, those pages belong to swap space
m But what if some pages were backed by ... files?

* This is how it used to work 20 years ago.
Nowadays, not always true.
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Memory-Mapped Files

Process Physical
virtual memory memory

) .
4’ ‘NN
” ~§
3
4’ ~
.
)
) .
- Swap space
) )
- ~~
)
)
.
)
S~

- ~

File on disk
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Memory-Mapped Files

Process 2 Process 1 Physical
virtual memory  virtual memory memory

Swap space

File on disk
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Copy-on-write sharing

m fork creates a new Parent Physical
process by copying the virtual memory memory
entire address space i
of the parent process . T ] Swap space
" That sounds slow
= Itis slow T | | File ondisk

m Clever trick:

= Just duplicate the page tables
= Mark everything read only
= Copy only on write faults
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Copy-on-write sharing

Child Parent Physical
virtual memory virtual memory memory

_______ File on disk

m Clever trick:

= Just duplicate the page tables
= Mark everything read only
= Copy only on write faults
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Copy-on-write sharing

Child Parent Physical
virtual memory virtual memory memory

chid | — QW oo l e ! Swap space
—_r T D D - ———— -—’—)-—t-————— —_——— e m m =
wroteto ([ @ T —t------------- ECEEEEEEET ma d bR E P
thispage | | |  ____] t--° [ovr e

_______ File on disk

m Clever trick:

= Just duplicate the page tables
= Mark everything read only
= Copy only on write faults
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Summary

m Multi-level page tables reduce total memory
consumption of page tables

m Translation lookaside buffers reduce time cost of
translation

m Real systems have 3 to 5 levels of page table

m Virtual memory makes nifty things possible
= Memory protection and process isolation
= Paging/swapping (disk as extra RAM)
= Memory-mapped files (RAM as cache for disk)
= Copy-on-write sharing
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