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Announcements

 Reminder: Malloc checkpoint due TODAY at midnight
▪ Malloc final is due exactly one week later

 We’re collecting mid-semester feedback
▪ Help us make the course better: fill out the form at 

https://forms.gle/BmdpNxRFXKYfMN8X9

https://forms.gle/BmdpNxRFXKYfMN8X9
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Review: Virtual Addressing

 Each process has its own virtual address space

 Page tables map virtual to physical addresses

 Physical memory can be shared among processes

Virtual 
Address 
Space for 
Process 1:

Physical 
Address 
Space 
(DRAM)

0

N-1

(e.g., read-only 
library code)

Virtual 
Address 
Space for 
Process 2:

VP 1
VP 2
...

0

N-1

VP 1

VP k

...

PP 2

PP 6

PP 8

...

0

M-1

Address 
translation
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Review: Memory Accesses without VM

CPU sends physical
address to cache

Cache sends 
data to CPU
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Review: Memory Accesses with VM

CPU sends virtual 
address to MMU

MMU looks up 
physical address in 

page table

MMU sends physical 
address to cache

Cache sends 
data to CPU
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Review: Memory Accesses with VM

CPU sends virtual 
address to MMU

MMU looks up 
physical address in 

page table

Present?
MMU triggers 

page fault

OS takes control and 
does stuff we’ll discuss 

in next 2 classes

MMU sends physical 
address to cache

Cache sends 
data to CPU

No

Yes
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Review: Memory Accesses with VM

CPU sends virtual 
address to MMU

MMU looks up 
physical address in 

page table

Present?
MMU triggers 

page fault

OS terminates 
malfunctioning 

process

OS takes control and 
tries to recover

MMU sends physical 
address to cache

Cache sends 
data to CPU

No

Yes

OS cannot recover

OS recovers, tells
MMU to retry
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Today

 Multi-level page tables

 Translation lookaside buffers

 Conceptual Quiz

 Concrete examples of virtual memory systems
▪ “Simple memory system” from CSAPP 9.6.4

▪ Intel Core i7

 Nifty things virtual memory makes possible
▪ Paging/swapping (disk as extra RAM)

▪ Memory-mapped files (RAM as cache for disk)

▪ Copy-on-write sharing
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The problem (with one-level page tables)

248 byte 
address 
space

One 64-bit array element

for each 4096-byte page

= ൗ248
4096 ⋅ 8 bytes

= 239 bytes 

= 512 gigabytes

for one page table
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A Two-Level Page Table Hierarchy

Level 1

page table

Level 2

page tables

VP 1024

...

VP 2047

VP 2048

...

VP 3072

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023
null PTEs

PTE 1023

VP 1048576

Virtual

memory

1020 more
null PTEs 

PTE 1

PTE 2

PTE 0 (null)

PTE 1023

2048 allocated pages
for code and data

1021 · 1024 + 1023 
unallocated pages

1 allocated page
for the stack

VP 0…1023
(unmapped)

VP 3073… 
1048575

(unmapped)

1024 unallocated pages

32-bit address space, 4-byte PTEs, 4096-byte pages
(one-level page table: 4MB)
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Translating with a two-level page table

CPU sends virtual 
address to MMU

MMU divides VA 
into VPN top, VPN 
bottom, and VPO

Not present

Present

MMU looks up VPN 
top half in 1st-level

page table
Page fault

MMU looks up VPN 
bottom half in 2nd-

level page table

Present

MMU sends physical 
address to cache

Not present

Page fault
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Translating with a k-level Page Table

Page table 
base register

(PTBR)

VPN 1

0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1

PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

the Level 1

page table

a Level 2

page table

a Level k

page table
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The problem (with k-level page tables)

Page table 
base register

(PTBR)

VPN 1

0p-1n-1

VPOVPN 2 ... VPN k

PP

N

PPOPPN

VIRTUAL ADDRESS

... ...

the Level 1

page table

a Level 2

page table

a Level k

page table

Cache 
miss!

Cache 
miss!

Cache 
miss!

Cache 
miss!

Cache 
miss!
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Speeding up Translation with a TLB

⬛ Page table entries (PTEs) are cached
like any other memory word

▪ PTEs may be evicted by other data references

▪ PTE hit still costs cache delay

⬛ Solution: Translation Lookaside Buffer (TLB)
▪ Dedicated cache for page table entries

▪ TLB hit = page table not consulted

▪ Can be fairly small: one TLB entry covers 4k or more
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Translating with a TLB

CPU sends virtual 
address to MMU

MMU divides VA 
into VPN and VPO

Not presentMMU looks up VPN 
in TLB

MMU looks up 
VPN in page table

Present

MMU sends physical 
address to cache

Not present
Page fault

Present
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Accessing the TLB

⬛ MMU uses the VPN portion of the virtual address to 
access the TLB:

TLB tag (TLBT) TLB index (TLBI)

0p-1pn-1

VPO

VPN

p+t-1p+t

PTEtagv

…
PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet T-1

T = 2t sets

TLBI selects the set

TLBT matches tag 
of line within set
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TLB Hit

MMU
Cache/
Memory

CPU

CPU Chip

VA

1

PA

4

Data

5

A TLB hit eliminates memory accesses to the page table

TLB

2

VPN

PTE

3
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TLB Miss

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

A TLB miss incurs additional memory accesses (PTE lookup)
Fortunately, TLB misses are rare. Why?



Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Multi-level page tables

 Translation lookaside buffers

 Conceptual Quiz

 Concrete examples of virtual memory systems
▪ “Simple memory system” from CSAPP 9.6.4

▪ Intel Core i7

 Nifty things virtual memory makes possible
▪ Paging/swapping (disk as extra RAM)

▪ Memory-mapped files (RAM as cache for disk)

▪ Copy-on-write sharing
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Conceptual Quiz: 1

For a simple system with a one-level page table, what sub-
steps does the MMU take when it fetches a PTE from a page 
table?

The MMU has to split the virtual address into VPN and VPO.  
The VPN can then be used to index directly into the page 
table.
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Conceptual Quiz: 2

The MMU must know the physical address of the page table 
in order to read page table entries from memory.  Why does 
it need a physical address?

If the MMU knew only a virtual address for the page table, 
then, in order to read from the page table, it would first need 
to look up the physical address of the page table, in the page 
table, …
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Conceptual Quiz: 3

Why are one-level page tables impractical and how do multi-
level page tables fix this problem?

A single-level page table covering the entire address space of 
a typical system would be much too large.  For instance, with 
4kB pages, a 48-bit addres space, and a 8-byte PTE, a single-
level page table would occupy 512 gigabytes, which is more 
RAM than most computers have.
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Conceptual Quiz: 4

Why is memory access slower with a multi-level page table 
than with a single-level page table?

A k-level page table requires k memory loads in order to 
determine the physical address. There is no spatial locality to 
these loads.
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Conceptual Quiz: 5

What is the Translation Lookaside Buffer (TLB), what 
problem does it solve, and when is it used?

The TLB is a small cache dedicated to storing mappings from 
virtual to physical addresses.  It avoids the cost of lookups in a 
multi-level page table.

The MMU consults the TLB for each address as its first action; 
if there is a TLB hit, it does not need to fetch anything from 
the page table.
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Conceptual Quiz: 6

How does virtual memory interact with the memory 
cache(s)?

The cache’s function is to speed up access to whatever data is 
most frequently used.  The MMU sits “in between” the CPU 
and the cache; the cache works only with physical addresses.  
This means data from multiple processes may coexist in the 
cache (or compete for cache space).
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Today

 Multi-level page tables

 Translation lookaside buffers

 Conceptual Quiz

 Concrete examples of virtual memory systems
▪ “Simple memory system” from CSAPP 9.6.4

▪ Intel Core i7

 Nifty things virtual memory makes possible
▪ Paging/swapping (disk as extra RAM)

▪ Memory-mapped files (RAM as cache for disk)

▪ Copy-on-write sharing
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Simple Memory System Example

 Addressing
▪ 14-bit virtual addresses

▪ 12-bit physical address

▪ Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

Virtual Page Number Virtual Page Offset

Physical Page Number Physical Page Offset
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0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Simple Memory System TLB

 16 entries

 4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0 0 0 0 1 1 0 1

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Translation Lookaside Buffer (TLB)

VPN = 0b1101 = 0x0D
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Simple Memory System Page Table

 Only showing the first 16 entries (out of 256)

10D0F

1110E

12D0D

0–0C

0–0B

1090A

11709

11308

ValidPPNVPN

0–07

0–06

11605

0–04

10203

13302

0–01

12800

ValidPPNVPN

0x0D → 0x2D
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Simple Memory System Cache

 16 lines, 4-byte cache line size

 Physically addressed

 Direct mapped
V[0b00001101101001] = V[0x369]
P[0b101101101001] = P[0xB69] = 0x15

1
11

0
10

1
9

1
8

0
7

1
6 5 4 3 2 1 0

PPOPPN

COCICT

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

B3B2B1B0ValidTagIdx

1 0 1 0 0 1

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

B3B2B1B0ValidTagIdx
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TLB

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

Address Translation Example

Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __        PPN: ____

Physical Address
11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN
0001010 11010

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet
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Intel Core i7 Memory System

L1 d-cache

32 KB, 8-way

L2 unified cache

256 KB, 8-way

L3 unified cache

8 MB, 16-way 

(shared by all cores)

Main memory

Registers

L1 d-TLB

64 entries, 4-way

L1 i-TLB

128 entries, 4-way

L2  unified TLB

512 entries, 4-way

L1 i-cache

32 KB, 8-way

MMU 

(addr translation)

Instruction

fetch

Core x4

DDR3 Memory controller

3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath interconnect

4 links @ 25.6 GB/s each

To other 

cores

To I/O

bridge
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End-to-end Core i7 Address Translation

CPU

VPN VPO

36 12

TLBT TLBI

432

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2

99

PTE

CR3

PPN PPO

40 12

Page tables

TLB

miss

TLB

hit

Physical

address 

(PA)

Result

32/64

...

CT CO

40 6

CI

6

L2, L3, and 

main memory

L1 d-cache 

(64 sets, 8 lines/set)

L1

hit

L1

miss

Virtual address (VA)

VPN3 VPN4

99

PTE PTE PTE
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Core i7 Level 1-3 Page Table Entries

Page table physical base address Unused G PS A CD WT U/S R/W P=1

Each entry references a 4K child page table. Significant fields:

P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.

U/S: user or supervisor (kernel) mode access permission for all reachable pages.

WT: Write-through or write-back cache policy for the child page table. 

A:  Reference bit (set by MMU on reads and writes, cleared by software).

PS:  Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

Page table physical base address: 40 most significant bits of physical page table 
address (forces page tables to be 4KB aligned)

XD: Disable or enable instruction fetches from all pages reachable from this 
PTE.

51 12 11 9 8 7 6 5 4 3 2 1 0

UnusedXD

Available for OS (page table location on disk) P=0

526263
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Core i7 Level 4 Page Table Entries

Page physical base address Unused G D A CD WT U/S R/W P=1

Each entry references a 4K child page. Significant fields:

P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software) 

D: Dirty bit (set by MMU on writes, cleared by software)

G: Global page (don’t evict from TLB on task switch)

Page physical base address: 40 most significant bits of physical page address 
(forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

51 12 11 9 8 7 6 5 4 3 2 1 0

UnusedXD

Available for OS (page location on disk) P=0

526263
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Core i7 Page Table Translation

CR3

Physical  

address

of page

Physical 

address

of L1 PT

9

VPO

9 12 Virtual 

address

L4 PT

Page 

table

L4 PTE

PPN PPO

40 12
Physical 

address

Offset into 

physical and 

virtual page

VPN 3 VPN 4VPN 2VPN 1

L3 PT

Page middle

directory

L3 PTE

L2 PT

Page upper

directory

L2 PTE

L1 PT

Page global

directory

L1 PTE

99

40
/

40
/

40
/

40
/

40
/

12/

512 GB 

region 

per entry

1 GB 

region 

per entry

2 MB 

region 

per entry

4 KB

region 

per entry
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Cute Trick for Speeding Up L1 Access

 Observation
▪ Bits that determine CI identical in virtual and physical address

▪ Can index into cache while address translation taking place

▪ Generally we hit in TLB, so PPN bits (CT bits) available quickly

▪ “Virtually indexed, physically tagged”

▪ Cache carefully sized to make this possible

Physical 

address 

(PA)

CT CO

40 6

CI

6

Virtual 

address 

(VA)
VPN VPO

36 12

PPOPPN

Address

Translation

No

Change

CI

L1 
Cache

CT Tag Check
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Today

 Multi-level page tables

 Translation lookaside buffers

 Conceptual Quiz

 Concrete examples of virtual memory systems
▪ “Simple memory system” from CSAPP 9.6.4

▪ Intel Core i7

 Nifty things virtual memory makes possible
▪ Paging/swapping (disk as extra RAM)

▪ Memory-mapped files (RAM as cache for disk)

▪ Copy-on-write sharing
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Paging (aka Swapping)

 Use (part of) disk as additional working memory

 Adds another layer to the memory hierarchy, but…
▪ “Main memory” is 10–1000x slower than the caches

▪ Disk is 10,000x slower than main memory

▪ Enormous miss penalty drives design

 Consequences
▪ Large page (block) size: 4KB and bigger

▪ Always write-back and fully associative

▪ Managed entirely in software

▪ Plenty of time to execute complex replacement algorithms
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Locality to the Rescue Again!

 Paging is terribly inefficient

 Only works because of locality

 At any point in time, programs tend to access a set of 
active virtual pages called the working set
▪ Programs with good temporal locality will have small working sets

 If working set size < main memory size
▪ Good performance after compulsory misses

 If working set size > main memory size
▪ Thrashing: Performance meltdown, computer spends most of its 

time copying pages in and out of RAM

▪ In the worst case, no forward progress at all (livelock)
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Memory-Mapped Files

 Paging = every page of a program’s physical RAM is 
backed by some page of disk*

 Normally, those pages belong to swap space

 But what if some pages were backed by … files?

* This is how it used to work 20 years ago.
Nowadays, not always true.
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Memory-Mapped Files

Swap space

Physical

memory

Process

virtual memory

File on disk
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Memory-Mapped Files

Swap space

Physical

memory

Process 1

virtual memory

File on disk

Process 2

virtual memory
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Copy-on-write sharing

 fork creates a new 
process by copying the 
entire address space
of the parent process
▪ That sounds slow

▪ It is slow

Swap space

Physical

memory

Parent

virtual memory

File on disk

 Clever trick:
▪ Just duplicate the page tables

▪ Mark everything read only

▪ Copy only on write faults 
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Copy-on-write sharing

Swap space

Physical

memory

Parent

virtual memory

File on disk

Child

virtual memory

 Clever trick:
▪ Just duplicate the page tables

▪ Mark everything read only

▪ Copy only on write faults 
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Copy-on-write sharing

 Clever trick:
▪ Just duplicate the page tables

▪ Mark everything read only

▪ Copy only on write faults 

Swap space

Physical

memory

Parent

virtual memory

File on disk

Child

virtual memory

Child 
wrote to 
this page
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Summary

 Multi-level page tables reduce total memory 
consumption of page tables

 Translation lookaside buffers reduce time cost of 
translation

 Real systems have 3 to 5 levels of page table

 Virtual memory makes nifty things possible
▪ Memory protection and process isolation

▪ Paging/swapping (disk as extra RAM)

▪ Memory-mapped files (RAM as cache for disk)

▪ Copy-on-write sharing


