
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory: Details

15-213/14-513/15-513: Introduction to Computer Systems
17th Lecture, March 21, 2022

Instructors:

Dave Andersen (15-213)

Zack Weinberg (15-213)

Brian Railing (15-513)

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Announcements

 Reminder: Malloc checkpoint due TODAY at midnight
▪ Malloc final is due exactly one week later

 We’re collecting mid-semester feedback
▪ Help us make the course better: fill out the form at

https://forms.gle/BmdpNxRFXKYfMN8X9

https://forms.gle/BmdpNxRFXKYfMN8X9

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Virtual Addressing

 Each process has its own virtual address space

 Page tables map virtual to physical addresses

 Physical memory can be shared among processes

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1

VP k

...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Memory Accesses without VM

CPU sends physical
address to cache

Cache sends
data to CPU

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Memory Accesses with VM

CPU sends virtual
address to MMU

MMU looks up
physical address in

page table

MMU sends physical
address to cache

Cache sends
data to CPU

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Memory Accesses with VM

CPU sends virtual
address to MMU

MMU looks up
physical address in

page table

Present?
MMU triggers

page fault

OS takes control and
does stuff we’ll discuss

in next 2 classes

MMU sends physical
address to cache

Cache sends
data to CPU

No

Yes

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Memory Accesses with VM

CPU sends virtual
address to MMU

MMU looks up
physical address in

page table

Present?
MMU triggers

page fault

OS terminates
malfunctioning

process

OS takes control and
tries to recover

MMU sends physical
address to cache

Cache sends
data to CPU

No

Yes

OS cannot recover

OS recovers, tells
MMU to retry

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Multi-level page tables

 Translation lookaside buffers

 Conceptual Quiz

 Concrete examples of virtual memory systems
▪ “Simple memory system” from CSAPP 9.6.4

▪ Intel Core i7

 Nifty things virtual memory makes possible
▪ Paging/swapping (disk as extra RAM)

▪ Memory-mapped files (RAM as cache for disk)

▪ Copy-on-write sharing

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The problem (with one-level page tables)

248 byte
address
space

One 64-bit array element

for each 4096-byte page

= ൗ248
4096 ⋅ 8 bytes

= 239 bytes

= 512 gigabytes

for one page table

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Two-Level Page Table Hierarchy

Level 1

page table

Level 2

page tables

VP 1024

...

VP 2047

VP 2048

...

VP 3072

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023
null PTEs

PTE 1023

VP 1048576

Virtual

memory

1020 more
null PTEs

PTE 1

PTE 2

PTE 0 (null)

PTE 1023

2048 allocated pages
for code and data

1021 · 1024 + 1023
unallocated pages

1 allocated page
for the stack

VP 0…1023
(unmapped)

VP 3073…
1048575

(unmapped)

1024 unallocated pages

32-bit address space, 4-byte PTEs, 4096-byte pages
(one-level page table: 4MB)

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Translating with a two-level page table

CPU sends virtual
address to MMU

MMU divides VA
into VPN top, VPN
bottom, and VPO

Not present

Present

MMU looks up VPN
top half in 1st-level

page table
Page fault

MMU looks up VPN
bottom half in 2nd-

level page table

Present

MMU sends physical
address to cache

Not present

Page fault

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Translating with a k-level Page Table

Page table
base register

(PTBR)

VPN 1

0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1

PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

the Level 1

page table

a Level 2

page table

a Level k

page table

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The problem (with k-level page tables)

Page table
base register

(PTBR)

VPN 1

0p-1n-1

VPOVPN 2 ... VPN k

PP

N

PPOPPN

VIRTUAL ADDRESS

... ...

the Level 1

page table

a Level 2

page table

a Level k

page table

Cache
miss!

Cache
miss!

Cache
miss!

Cache
miss!

Cache
miss!

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Speeding up Translation with a TLB

⬛ Page table entries (PTEs) are cached
like any other memory word

▪ PTEs may be evicted by other data references

▪ PTE hit still costs cache delay

⬛ Solution: Translation Lookaside Buffer (TLB)
▪ Dedicated cache for page table entries

▪ TLB hit = page table not consulted

▪ Can be fairly small: one TLB entry covers 4k or more

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Translating with a TLB

CPU sends virtual
address to MMU

MMU divides VA
into VPN and VPO

Not presentMMU looks up VPN
in TLB

MMU looks up
VPN in page table

Present

MMU sends physical
address to cache

Not present
Page fault

Present

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Accessing the TLB

⬛ MMU uses the VPN portion of the virtual address to
access the TLB:

TLB tag (TLBT) TLB index (TLBI)

0p-1pn-1

VPO

VPN

p+t-1p+t

PTEtagv

…
PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet T-1

T = 2t sets

TLBI selects the set

TLBT matches tag
of line within set

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TLB Hit

MMU
Cache/
Memory

CPU

CPU Chip

VA

1

PA

4

Data

5

A TLB hit eliminates memory accesses to the page table

TLB

2

VPN

PTE

3

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TLB Miss

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

A TLB miss incurs additional memory accesses (PTE lookup)
Fortunately, TLB misses are rare. Why?

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Multi-level page tables

 Translation lookaside buffers

 Conceptual Quiz

 Concrete examples of virtual memory systems
▪ “Simple memory system” from CSAPP 9.6.4

▪ Intel Core i7

 Nifty things virtual memory makes possible
▪ Paging/swapping (disk as extra RAM)

▪ Memory-mapped files (RAM as cache for disk)

▪ Copy-on-write sharing

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conceptual Quiz: 1

For a simple system with a one-level page table, what sub-
steps does the MMU take when it fetches a PTE from a page
table?

The MMU has to split the virtual address into VPN and VPO.
The VPN can then be used to index directly into the page
table.

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conceptual Quiz: 2

The MMU must know the physical address of the page table
in order to read page table entries from memory. Why does
it need a physical address?

If the MMU knew only a virtual address for the page table,
then, in order to read from the page table, it would first need
to look up the physical address of the page table, in the page
table, …

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conceptual Quiz: 3

Why are one-level page tables impractical and how do multi-
level page tables fix this problem?

A single-level page table covering the entire address space of
a typical system would be much too large. For instance, with
4kB pages, a 48-bit addres space, and a 8-byte PTE, a single-
level page table would occupy 512 gigabytes, which is more
RAM than most computers have.

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conceptual Quiz: 4

Why is memory access slower with a multi-level page table
than with a single-level page table?

A k-level page table requires k memory loads in order to
determine the physical address. There is no spatial locality to
these loads.

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conceptual Quiz: 5

What is the Translation Lookaside Buffer (TLB), what
problem does it solve, and when is it used?

The TLB is a small cache dedicated to storing mappings from
virtual to physical addresses. It avoids the cost of lookups in a
multi-level page table.

The MMU consults the TLB for each address as its first action;
if there is a TLB hit, it does not need to fetch anything from
the page table.

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conceptual Quiz: 6

How does virtual memory interact with the memory
cache(s)?

The cache’s function is to speed up access to whatever data is
most frequently used. The MMU sits “in between” the CPU
and the cache; the cache works only with physical addresses.
This means data from multiple processes may coexist in the
cache (or compete for cache space).

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Multi-level page tables

 Translation lookaside buffers

 Conceptual Quiz

 Concrete examples of virtual memory systems
▪ “Simple memory system” from CSAPP 9.6.4

▪ Intel Core i7

 Nifty things virtual memory makes possible
▪ Paging/swapping (disk as extra RAM)

▪ Memory-mapped files (RAM as cache for disk)

▪ Copy-on-write sharing

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory System Example

 Addressing
▪ 14-bit virtual addresses

▪ 12-bit physical address

▪ Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

Virtual Page Number Virtual Page Offset

Physical Page Number Physical Page Offset

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Simple Memory System TLB

 16 entries

 4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0 0 0 0 1 1 0 1

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Translation Lookaside Buffer (TLB)

VPN = 0b1101 = 0x0D

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory System Page Table

 Only showing the first 16 entries (out of 256)

10D0F

1110E

12D0D

0–0C

0–0B

1090A

11709

11308

ValidPPNVPN

0–07

0–06

11605

0–04

10203

13302

0–01

12800

ValidPPNVPN

0x0D → 0x2D

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory System Cache

 16 lines, 4-byte cache line size

 Physically addressed

 Direct mapped
V[0b00001101101001] = V[0x369]
P[0b101101101001] = P[0xB69] = 0x15

1
11

0
10

1
9

1
8

0
7

1
6 5 4 3 2 1 0

PPOPPN

COCICT

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

B3B2B1B0ValidTagIdx

1 0 1 0 0 1

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

B3B2B1B0ValidTagIdx

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TLB

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

Address Translation Example

Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address
11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN
0001010 11010

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel Core i7 Memory System

L1 d-cache

32 KB, 8-way

L2 unified cache

256 KB, 8-way

L3 unified cache

8 MB, 16-way

(shared by all cores)

Main memory

Registers

L1 d-TLB

64 entries, 4-way

L1 i-TLB

128 entries, 4-way

L2 unified TLB

512 entries, 4-way

L1 i-cache

32 KB, 8-way

MMU

(addr translation)

Instruction

fetch

Core x4

DDR3 Memory controller

3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath interconnect

4 links @ 25.6 GB/s each

To other

cores

To I/O

bridge

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

End-to-end Core i7 Address Translation

CPU

VPN VPO

36 12

TLBT TLBI

432

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2

99

PTE

CR3

PPN PPO

40 12

Page tables

TLB

miss

TLB

hit

Physical

address

(PA)

Result

32/64

...

CT CO

40 6

CI

6

L2, L3, and

main memory

L1 d-cache

(64 sets, 8 lines/set)

L1

hit

L1

miss

Virtual address (VA)

VPN3 VPN4

99

PTE PTE PTE

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Level 1-3 Page Table Entries

Page table physical base address Unused G PS A CD WT U/S R/W P=1

Each entry references a 4K child page table. Significant fields:

P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.

U/S: user or supervisor (kernel) mode access permission for all reachable pages.

WT: Write-through or write-back cache policy for the child page table.

A: Reference bit (set by MMU on reads and writes, cleared by software).

PS: Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

Page table physical base address: 40 most significant bits of physical page table
address (forces page tables to be 4KB aligned)

XD: Disable or enable instruction fetches from all pages reachable from this
PTE.

51 12 11 9 8 7 6 5 4 3 2 1 0

UnusedXD

Available for OS (page table location on disk) P=0

526263

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Level 4 Page Table Entries

Page physical base address Unused G D A CD WT U/S R/W P=1

Each entry references a 4K child page. Significant fields:

P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)

D: Dirty bit (set by MMU on writes, cleared by software)

G: Global page (don’t evict from TLB on task switch)

Page physical base address: 40 most significant bits of physical page address
(forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

51 12 11 9 8 7 6 5 4 3 2 1 0

UnusedXD

Available for OS (page location on disk) P=0

526263

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Page Table Translation

CR3

Physical

address

of page

Physical

address

of L1 PT

9

VPO

9 12 Virtual

address

L4 PT

Page

table

L4 PTE

PPN PPO

40 12
Physical

address

Offset into

physical and

virtual page

VPN 3 VPN 4VPN 2VPN 1

L3 PT

Page middle

directory

L3 PTE

L2 PT

Page upper

directory

L2 PTE

L1 PT

Page global

directory

L1 PTE

99

40
/

40
/

40
/

40
/

40
/

12/

512 GB

region

per entry

1 GB

region

per entry

2 MB

region

per entry

4 KB

region

per entry

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cute Trick for Speeding Up L1 Access

 Observation
▪ Bits that determine CI identical in virtual and physical address

▪ Can index into cache while address translation taking place

▪ Generally we hit in TLB, so PPN bits (CT bits) available quickly

▪ “Virtually indexed, physically tagged”

▪ Cache carefully sized to make this possible

Physical

address

(PA)

CT CO

40 6

CI

6

Virtual

address

(VA)
VPN VPO

36 12

PPOPPN

Address

Translation

No

Change

CI

L1
Cache

CT Tag Check

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Multi-level page tables

 Translation lookaside buffers

 Conceptual Quiz

 Concrete examples of virtual memory systems
▪ “Simple memory system” from CSAPP 9.6.4

▪ Intel Core i7

 Nifty things virtual memory makes possible
▪ Paging/swapping (disk as extra RAM)

▪ Memory-mapped files (RAM as cache for disk)

▪ Copy-on-write sharing

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Paging (aka Swapping)

 Use (part of) disk as additional working memory

 Adds another layer to the memory hierarchy, but…
▪ “Main memory” is 10–1000x slower than the caches

▪ Disk is 10,000x slower than main memory

▪ Enormous miss penalty drives design

 Consequences
▪ Large page (block) size: 4KB and bigger

▪ Always write-back and fully associative

▪ Managed entirely in software

▪ Plenty of time to execute complex replacement algorithms

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality to the Rescue Again!

 Paging is terribly inefficient

 Only works because of locality

 At any point in time, programs tend to access a set of
active virtual pages called the working set
▪ Programs with good temporal locality will have small working sets

 If working set size < main memory size
▪ Good performance after compulsory misses

 If working set size > main memory size
▪ Thrashing: Performance meltdown, computer spends most of its

time copying pages in and out of RAM

▪ In the worst case, no forward progress at all (livelock)

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory-Mapped Files

 Paging = every page of a program’s physical RAM is
backed by some page of disk*

 Normally, those pages belong to swap space

 But what if some pages were backed by … files?

* This is how it used to work 20 years ago.
Nowadays, not always true.

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory-Mapped Files

Swap space

Physical

memory

Process

virtual memory

File on disk

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory-Mapped Files

Swap space

Physical

memory

Process 1

virtual memory

File on disk

Process 2

virtual memory

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Copy-on-write sharing

 fork creates a new
process by copying the
entire address space
of the parent process
▪ That sounds slow

▪ It is slow

Swap space

Physical

memory

Parent

virtual memory

File on disk

 Clever trick:
▪ Just duplicate the page tables

▪ Mark everything read only

▪ Copy only on write faults

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Copy-on-write sharing

Swap space

Physical

memory

Parent

virtual memory

File on disk

Child

virtual memory

 Clever trick:
▪ Just duplicate the page tables

▪ Mark everything read only

▪ Copy only on write faults

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Copy-on-write sharing

 Clever trick:
▪ Just duplicate the page tables

▪ Mark everything read only

▪ Copy only on write faults

Swap space

Physical

memory

Parent

virtual memory

File on disk

Child

virtual memory

Child
wrote to
this page

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

 Multi-level page tables reduce total memory
consumption of page tables

 Translation lookaside buffers reduce time cost of
translation

 Real systems have 3 to 5 levels of page table

 Virtual memory makes nifty things possible
▪ Memory protection and process isolation

▪ Paging/swapping (disk as extra RAM)

▪ Memory-mapped files (RAM as cache for disk)

▪ Copy-on-write sharing

