Carnegie Mellon

15-213 Recitation
Processes, Signals, Tshlab

March 27th, 2023
Your TAS

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Outline

B Logistics
B Process Lifecycle
B Error Handling

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Logistics

B Malloc Final due March 28th
= TOMORROW (TUESDAY)
= Can use up to 2 late days!

= Style grading mm.c (not checkheap)
= Sign up for malloc final code reviews

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Learning Objectives

B Expectations:
= Basic understanding of signals & processes
B Goals:
= Better understanding of signals & processes
= Understand what a shell does and how to interact with it
= Understand how to properly handle errors

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Post Mid-Semester Feedback Form

m Please Take 5 minutes to Fill this out:
= https://tinyurl.com/3h8y7p6e

m TA Hiring For the Next Semester hasn't been started by
the Department yet, we shall be announcing so when it

does.
= All hiring will be done through the CSD portal, not via email.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

https://tinyurl.com/3h8y7p6e

Shell Lab

B Due date: April 11th
B Simulate a Linux-like shell

B Review the writeup carefully.
= Review once before starting, and again when halfway through

= This will save you a lot of style points and a lot of grief!

B Read Chapter 8 in the textbook:
= Process lifecycle and signal handling

= How race conditions occur, and how to avoid them

= Be careful not to use code from the textbook without
understanding it first.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Shell demo ﬂ

B Process Lifecycle
= $ ps x # all processes you own
= $ ps ax # all processes on the computer
combine either with ‘1’ or ‘u’ for more information
This reports a snapshot of all the current processes. You can identify

them by PID PID TTY TIME CMD
3435 pts/18 00:00:01 vinm

4856 pts/22 00:00:00 vim

4894 pts/19 00:00:00 vim

6260 pts/17 00:00:00 vim

6737 pts/23 00:00:00 rlwrap
7075 pts/25 00:00:00 dbus-launch

$ ctrl+z sends SIGTSTP and stops the current foreground process
fg/bg to run the most recently stopped process in the
foreground/background
$./long binary with lots of io &
Appending & to the end of a command runs it in the background
m 1/0 redirection
= $./hex2raw < exploit.txt > exploit-raw.txt
« < toredirect input and > to redirect output to the specified file

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Shell Demo

Login to shark machine
wget http://www.cs.cmu.edu/~213/activities/rec10.tar

tar -xvf recl10.tar
cd recl0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

http://www.cs.cmu.edu/~213/activities/rec10.tar

Carnegie Mellon

Process “Lifecycle”

B fork()

Create a duplicate, a “child”, of the process

B execve()
Replace the running program

B ... [Complete Work]

B exit()

End the running program

B waitpid()

Wait for a child process to terminate

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Processes are separate

B How many lines are printed?
B Will the pid address be different?
B Will the pid be different?

int main(void) {
pid t pid;
pid = fork();
printf("pid addr: %p - pid: %d\n",
&pid, pid);
exit(0);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Processes are separate

B How many lines are printed?
B Will the pid address be different?
B Will the pid be different?

int main(void) {
pid t pid;
pid = fork();
printf("pid addr: %p - pid: %d\n",
&pid, pid);
eXit(@)3 pid addr: Ox7fff2bcc264c - pid: 24750
} pid addr: Ox7fff2bcc264c - pid: ©

The order and the child's PID (printed by the parent)
may vary, but the address will be the same in the
parent and child.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Processes Change
B What does this program print?

int main(void) {
char *args[3] = {
"/bin/echo", "Hi 18213!"™, NULL
}s
execve(args[0], args, environ);
printf("Hi 15213!\n");
exit(9);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Processes Change

B What does this program print?

int main(void) {
char *args[3] = {
"/bin/echo", "Hi 18213!"™, NULL
}s
execve(args[0], args, environ);
printf("Hi 15213!\n");
exit(9);

Hi 18213!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Processes Change

B What about this program? What does it print?
B Assume that /bin/blahblah does not exist.

int main(void) {
char *args[3] = {
"/bin/blahblah”, "Hi 15513!", NULL
}s
execve(args[0], args, environ);
printf("Hi 14513!\n");
exit(9);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Processes Change

B What about this program? What does it print?
B Assume that /bin/blahblah does not exist.

int main(void) {
char *args[3] = {
"/bin/blahblah”, "Hi 15513!", NULL
}s
execve(args|[@], args, environ);
printf("Hi 14513!\n");
exit(9);

Hi 14513!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Exit values can convey information

B Two values are printed. What are they?

int main(void) {

pid t pid = fork();

if (pid == 0) { exit(ox213); }

else {
int status = 0;
waitpid(pid, &status, 0);
printf("Ox%x exited with @x%x\n", pid,

WEXITSTATUS (status));

}
exit(9);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Exit values can convey information

B Two values are printed. What are they?

int main(void) {

pid t pid = fork();

if (pid == 0) { exit(ox213); }

else {
int status = 0;
waitpid(pid, &status, 0);
printf("Ox%x exited with @x%x\n", pid,

WEXITSTATUS (status));

}
exit(9);

} Ox7b54 exited with ©x13

WEXITSTATUS(status) will only return 1
byte of information

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Processes have ancestry

B What's wrong with this code? (assume that fork succeeds)

gcpid=0 exit

int main(void) {
int status = 0, ret = 0; cpid = 0

pid_t pid = 'FOPk(); j exit
if (pid == 0) { (m
pid = fork(); -
exit(getpid()); cpid = 1234

}

ret = waitpid(-1, &status, 9);
printf("Process %d exited with %d\n", ret, status);

ret = waitpid(-1, &status, 9);

printf("Process %d exited with %d\n", ret, status);
exit(09);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Processes have ancestry

B What's wrong with this code? (assume that fork succeeds)

int main(void) {

int status = 0, ret = 0; waitpid will reap only

pid t pid = fork(); :)

if (pid - 0) { children, not grandchildren,
pid = fork(); so the second waitpid call
exit(getpid()); will return an error.

}

ret = waitpid(-1, &status, 9);
printf("Process %d exited with %d\n", ret, status);

ret = waitpid(-1, &status, 9);

printf("Process %d exited with %d\n", ret, status);
exit(09);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Process Graphs

B How many different sequences can be printed?

int main(void) {
int status;
if (fork() == 0) {
pid t pid = fork();
printf("Child: %d\n", getpid());
if (pid == 0) {
exit(09);
}
// Continues execution...
}
pid t pid = wait(&status);
printf("Parent: %d\n", pid);
exit(9);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Process Graphs

B How many different sequences can be printed?

int main(void) {
int status;
if (fork() == 0) {
pid_t pid = fork();
printf("Child: %d\n", getpid());
if (pid == 0) {
exit(9);
}
// Continues execution...
}
pid_t pid = wait(&status);
printf("Parent: %d\n", pid);

exit(9);
} wait print exit
print wait print exit
print exit

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Error in UNIX - return value

B Can syscalls fail? int main() {

B How to tell the difference? int fd = Ope”(;zit-’;;;??e&txt",

// Change grades to As or Fs

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 222

Carnegie Mellon

Error in UNIX - What error?

B Can syscalls fail? int main() {
B How to tell the difference? int fd = open("213Grades.txt",
O_RDWR);
= Returned -1 if (fd < ©) {
B So, my fantastic syscalls fprintf(stderr, "Failed to
failed. open\n”);
B How can | tell what went exit(-1);
wrong? }

// Change grades to As or Fs

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 223

Carnegie Mellon

Error in UNIX - What error?

B Can syscalls fail?

B How to tell the difference?
= Returned -1

B So, my fantastic syscalls
failed.

B How can | tell what went
wrong?

= errno is a global variable
that syscalls store information
in when they fail

= strerror turns errno codes
into printable messages

= perror (print error) is a handy
shorthand

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int main(void) {

int fd = open("213Grades.txt",
O_RDWR);
if (fd < 9) {
fprintf(stderr,
"Failed to open %s: %s\n",
"213Grades.txt",
strerror(errno));
exit(1);
}
// Change grades to As or Fs

Always print strerror(errno)
and the names of filenames
involved in failing system calls

Carnegie Mellon

Process Graphs

B How many different lines are printed?

int main(void) {
char *tgt = "child";
sigset t mask, old mask;
sigemptyset(&mask);
sigaddset(&mask, SIGINT);
sigprocmask(SIG_SETMASK, &mask, &old mask); // Block
pid_t pid = fork();
if (pid == 0) {
pid = getppid(); // Get parent pid
tgt = "parent”;
}
kill(pid, SIGINT);
sigprocmask(SIG_SETMASK, &old mask, NULL); // Unblock
printf("Sent SIGINT to %s:%d\n", tgt, pid);
exit(9);
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Process Graphs

B How many different lines are printed?

int main(void) { O or 1 line. The parent and
char *tgt = "child"; child try to terminate each
sigset t mask, old mask; other.
sigemptyset(&mask);

sigaddset(&mask, SIGINT);
sigprocmask(SIG_SETMASK, &mask, &old mask); // Block
pid_t pid = fork();
if (pid == 0) {
pid = getppid(); // Get parent pid
tgt = "parent”;
}
kill(pid, SIGINT);
sigprocmask(SIG_SETMASK, &old mask, NULL); // Unblock
printf("Sent SIGINT to %s:%d\n", tgt, pid);
exit(0);
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Signals and Handling

B Signals can happen at any time

= Control when through blocking signals

B Signals also communicate that events have occurred

= What event(s) correspond to each signal?

B Write separate routines for receiving (i.e., signals)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Counting with signals

B Will this code terminate?

volatile int counter = 0;
void handler(int sig) { counter++; }

int main(void) {
signal (SIGCHLD, handler);
for (int 1 = 0; i < 10; i++) {
if (fork() == 0) { exit(@); }
}
while (counter < 10) {
mine bitcoin();
}

return 0;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Counting with signals

B Will this code terminate?

volatile int counter = 0;
void handler(int sig) { counter++; }

int main(void) {

signal (SIGCHLD, handler); - (Don't use signal, use

for (int i = 0; i < 10; i++) { Signal or sigaction
if (fork() == 0) { exit(@); } instead!)

}

while (counter < 10) {
mine bitcoin();

}
return 0; T
_ It might not, since
(Don't busy-wait, use . | |
sigsuspend instead!) SEEIDICEINEOE LSS o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

sigsuspend

1nt sigsuspend(const sigset t *mask);

- Suspend current process until a signal is received, you can
specify which one using a mask

This is an atomic version of:

sigprocmask (SIG SETMASK, &mask, é&prev)
pause () ;

sigprocmask (SIG SETMASK, é&prev, NULL);

- This still doesn’t fix the issue of signals coalescing!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Proper signal handling

B How can we fix the previous code?

= Remember that signals will be coalesced, so the number of times a
signal handler has executed is not necessarily the same as number
of times a signal was sent.

= We need some other way to count the number of children.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Proper signal handling

B How can we fix the previous code?

= Remember that signals will be coalesced, so the number of times a
signal handler has executed is not necessarily the same as number
of times a signal was sent.

= We need some other way to count the number of children.

void handler(int sig) {
pid t pid;
while ((pid = waitpid(-1, NULL, WNOHANG)) > 0) {
counter++;

}}I

(This instruction isn't atomic. Why
won't there be a race condition?)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Error and signals : Recap

B You can’t expect people to block signals around all error
handling logic

B Hence, your signal handler shouldn’t interfere with them
B Solution:

* Do not make any system call that could set errno

= Save and restore errno (store at beginning of handler and restore
after)

= Think about what would work for the case you are using, not one
rule

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 333

Carnegie Mellon

If you get stuck

B Read the writeup!
B Do manual unit testing before runtrace and sdriver!

B Read the writeup!! &
B Post private questions on Piazza!

B Think carefully about error conditions.
= Read the man pages for each syscall when in doubt.
= What errors can each syscall return?

= How should the errors be handled?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Appendix: Notes on Examples

B Full source code of all programs is available

= TAs may demo specific programs

B Inthe examples, exit() is called
= We do this to be explicit about the program’s behavior

= Exit should generally be reserved for terminating on error

B Unless otherwise noted, assume all syscalls succeed
= Error checking code is omitted.

= Be careful to check errors when writing your own shell!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Appendix: Example Question: Possible
outputs?

int main() { else {
int val = 2;
printf ("%d", 0);

fflush (stdout) ;

val—--;
printf ("%d", wval);
fflush (stdout) ;

walit (NULL) ;
if (fork() == 0) { }

val++;
printf ("%d", wval);
fflush (stdout) ;

val++;
printf ("sd", wval);
fflush (stdout) ;
exit (0) ;

}

B There is no deterministic interleaving of the parent and
child after the call to fork()

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Appendix: Blocking signals

B Surround blocks of code with calls to sigprocmask.
= Use SIG_BLOCK to block signals at the start.
= Use SIG_SETMASK to restore the previous signal mask at the end.

B Don't use SIG_UNBLOCK.

= We don't want to unblock a signal if it was already blocked.

= This allows us to nest this procedure multiple times.

sigset t mask, prev;
sigemptyset(&mask, SIGINT);
sigaddset(&mask, SIGINT);
sigprocmask(SIG_BLOCK, &mask, &prev);

/] ...
sigprocmask (SIG_SETMASK, &prev, NULL);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

AppendiX: Errno #include <errno.h>

B Global integer variable used to store an error code.

= |ts value is set when a system call fails.

= Only examine its value when the system call's return code indicates
that an error has occurred!

= Be careful not to call make other system calls before checking the
value of errno!
B Lets you know why a system call failed.
= Use functions like strerror, perror to get error messages.

B Example: assume there is no “foo.txt” in our path

int fd = open("foo.txt", O RDONLY);
if (fd < ©) perror("foo.txt");
// foo.txt: No such file or directory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Appendix: Writing signal handlers

B G1. Call only async-signal-safe functions in your handlers.

= Do notcall printf, sprintf, malloc, exit! Doing so can cause
deadlocks, since these functions may require global locks.

= We've provided you with sio_printf which you can use instead.
B G2.Save and restore errno on entry and exit.
" |f not, the signal handler can corrupt code that tries to read errno.
= The driver will print a warning if errno is corrupted.
B G3. Temporarily block signals to protect shared data.
= This will prevent race conditions when writing to shared data.
B Avoid the use of global variables in tshlab.
= They are a source of pernicious race conditions!
= You do not need to declare any global variables to complete tshlab.

= Use the functions provided by tsh_helper.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

