15-494/694: Cognitive Robotics

Lecture 5:

Particle Filters and
Localization

Dave Touretzky
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Probabilistic Robotics

e The world is uncertain:

- Sensors are noisy and inaccurate.
- Actuators are unreliable.
— Other actors can affect the world.

« Embrace the uncertainty!

SEBASTIAN THRUN
WOLFRAM BURGARD
DIETER FOX

« How?
- Explicitly model our uncertainty about sensors and actions.

- Replace discrete states with beliefs: probability
distributions over states.

- Use Bayesian filtering to update our beliefs.
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Some Notation

state attime t

X
t

u, = control signal at time t
z, = sensor input at time t

We don't know x_with certainty; we have a priori
(before measurement) beliefs about it:

)

New sensor data z_updates our belief:

bel(x) = p(x |z, ., u

1 1:t

bel(x) =n p(z | x) - bel(x)



Parametric Representations (1)

Represent a probability distribution using an analytic
function described by a small number of parameters.

Most common example: Gaussian
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Parametric Representations (2)

* Good points:

- Compact representation: just a few numbers
* For a Gaussian: mean u and variance o’
- Fast to compute

- Nice mathematical properties
- Easy to sample from

e Drawbacks:

- May not match the data very well
- Can give bad results if the fit is poor



Nonparametric Representations

 No preconceived formula for the distribution.

* Instead, maintain a representation of the actual
distribution, via sampling.

 Example: histogram

* Good points:

-
Fud
=

- Can represent completely _
arbitrary distributions 00

e Drawbacks:

- Requires more storage

- Expensive to update
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Where Is The Robot?

 Parametric: the robot is at x=1 with ¢°* = 0.2

 Non-parametric: 100 samples indicating robot position.
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Where Is The Robot?

 Parametric: fail (or put robot at the mean: x=2.5)

 Non-parametric: 100 samples.
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Particle Filters

A particle filter is an efficient non-parametric
representation of a distribution.

Each particle represents a sample drawn from the
distribution.

As the distribution changes, we update the particles.

Three kinds of updating:

- Change the value the particle encodes (motion model).
- Change the weight assigned to the particle (sensor model).

- Resample the distribution, getting a fresh set of particles
with initially equal weights.
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Bayesian Filter, part 1

* Qur belief about the robot's position at time
t-1 is a probability distribution p(x_.), which we

represent as a set of samples.

At time t the robot moves, following some control signal
u, producing a new distribution p(x).

. A motion model defines how our new prediction bel(x)
arises from applying u..

@(Xt) — J'p(xt‘xt—l’ut).bel(xt—l) dxt—l
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Why Are We Integrating?

b—el(xt) — fp<xt‘xt—1’ut).bel(xt—1) dxt—l
.

J \ J
Y Y
Probability of Belief that we Al
arriving at X, given  \yare previously possible
that we were at location x_. previous
previously at x__ locations
and got control X1
\S|gnal u,. .
~

Integrated over all possible starting locations x_ ..
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Motion Models

Motion models express the noisiness of motion u..

Typically use a simple parametric distribution.

- Easy to sample.

We represented the distribution p(x_,) as a set of a
posteriori samples bel(x_). Motion gives us bel(x).

How do we sample bel(x) ?

Solution: for each sample in bel(x ), draw a value from

the motion model's distribution and add it to the
sample value.
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Motion Model p(x |x _,u)

(a) (b)

) sl

Figures from Thrun, Burgard, and
Fox (2005) Probabilistic Robotics
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Robot at t=0: bel(xo)
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Prediction at t=1: @(xl)
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bel(x )

Robot at t=0
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Prediction at t=1: @(xl)
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Prediction at t=2: @(xz)
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Correcting Our Prediction

To mitigate the noisiness of our motion model, we use
sensor readings z _to correct our belief distribution.

Our sensors give us a probability distribution p(x |z).

Can't our sensors just tell us where we are?

NO!
- They're noisy.

- An individual reading may not be that informative because
the world can be ambiguous (e.g., doors look alike).

- Need to combine information.
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Sensor Model

 We should try to model uncertainty in our sensor data.

* Lots of work on sonar and laser rangefinder noise
models (e.q., effects of reflections, viewing angle, etc.)

 For visual landmarks:

— Effects of camera resolution.

- Distance estimates might have variance proportional to the
mean.

- Bearing estimates might have variance inversely
proportional to distance.
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If distributions are gaussians, we can combine them using a
Kalman filter. Weighting is inversely proportional to variance.
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It's a weighted mean!

Slide modified from Burgard et al., “Introduction to Mobile
Robotics”, 2014, lecture 9: “Bayes Filter - Kalman Filter”.
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Second iteration: prior belief = prediction » measurement - correction.
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Slide modified from Burgard et al., “Introduction to Mobile
Robotics”, 2014, lecture 9: “Bayes Filter - Kalman Filter”.
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Bayesian Filter, part 2

= [ p(x|x,_,,u)-bel(x,_,) dx,_,

Sensor reading z, gives distribution p(x,|z,).

_—
_—
_—

A -

Corrected: bel(x,) = mpl(z|x,) - bel(x,)

1 is a normalization constant.
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Corrected Sampling
Representation

Distribution bel(x ) is “corrected” by weight p(z|x) to
give bel(x).

The weighted particles are a sampling representation of
the new distribution p(x)).

The robot can move around and we can move the
particles and update their weights.

But is this a good representation?

Particles whose weights become low aren't representing
useful hypotheses. Eventually the representation falls
apart because we're sampling the wrong regions.
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Resampling

Things break down when too many particles are
representing the wrong regions of bel(x ), so their

weights are low.

We can fix this by resampling bel(x ), giving a fresh set
of particles distributed correctly.

But we have no formula for beI(xt), and no direct
representation of it.

So how do we sample from it? Importance sampling.

27



Sampling y=g(x) From An
Arbitrary Distribution X
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(a)

Importance
Sampling

Want to sample from f. ® [

Can only sample from g.

Weight each sample
by f(x) / g(x).

The weighted samples
approximate f.

g is bel(x)

Weighting comes from p(z |x,)

Draw from the weighted
Sa m p I e . Figure from Thrun, Burgard, and

(c) % 5%
0.3}
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Resampling

We don't need to resample on every time step t.

We can accumulate sensor data for several time steps,
SO our weights are more accurate. We can use the
weights to estimate the robot's location (if unimodal).

x(¢) = 2 w/x

When to resample?

- If the variance on the weights is high, then many particles
are representing non-useful portions of the space.

- Resampling redistributes the particles so they are
concentrated where the probability density is highest.

30



How To Resample

« Stochastic universal sampling is a trick for drawing
samples from a weighted distribution as fairly as
possible (low variance).

3 samples 8 samples

Image from Burgard et al., “Introduction to Mobile Robotics”, 2014,
lecture 12: “Bayes Filter - Particle Filter and Monte Carlo Localization”.
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Weighting in a Corridor
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Image from Burgard et al., “Introduction to Mobile Robotics”, 2014,
lecture 12: “Bayes Filter - Particle Filter and Monte Carlo Localization”.
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Resampling and Motion
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Image from Burgard et al., “Introduction to Mobile Robotics”, 2014,

lecture 12: “Bayes Filter - Particle Filter and Monte Carlo Localization”.

33



Sensing and Weighting
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Image from Burgard et al., “Introduction to Mobile Robotics”, 2014,
lecture 12: “Bayes Filter - Particle Filter and Monte Carlo Localization”.
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Resampling and Motion
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Image from Burgard et al., “Introduction to Mobile Robotics”, 2014,
lecture 12: “Bayes Filter - Particle Filter and Monte Carlo Localization”.
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Summary

Particle filters are the preferred method for robot
localization in the real world.

Robot pose typically encoded as (x,y,0).

A map is needed to define how sensor values indicate
locations. But what if we don't have a map?

SLAM: Simultaneous Localization and Mapping.

Particles can be used to represent hypotheses about
the map as well as about the robot's location.
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