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15-750:Algorithms in the Real World

Continue with Data Compression
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(Recap) Relationship to Entropy
Theorem (lower bound): For any probability distribution p(S) 

with associated uniquely decodable code C,

Theorem (upper bound): For any probability distribution p(S) 
with associated optimal prefix code C,

H S l Ca( ) ( )£

l C H Sa ( ) ( )£ +1



15-750 Page 47

(Recap) Kraft McMillan Inequality
Theorem (Kraft-McMillan): For any uniquely decodable code C,

Conversely, for any set of lengths L such that

there is a prefix code C such that 

Used Kraft McMillan for proving the upper bound theorem.
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Another property of optimal codes
Theorem: If C is an optimal prefix code for the probabilities 
{p1, …, pn}, then pi > pj implies $ %$ ≤ 	$(%%)

Proof: (by contradiction: switching technique)
Assume $ %$ > $(%%) (for the sake of contradiction). 

Consider switching codes ci and cj.  
If $! is the average length of the original code, the length of the 

new code is

This is a contradiction since $! is not optimal
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Huffman Codes
Invented by Huffman as a class assignment in 1950.
Used in many, if not most, compression algorithms

Properties:
– Generates optimal prefix codes
– Cheap to generate codes
– Cheap to encode and decode 
– la = H  if probabilities are powers of 2
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Huffman Codes
Huffman Algorithm:
Start with a forest of trees each consisting of a single vertex 

corresponding to a message s and with weight p(s)

Repeat until one tree left:
– Select two trees with minimum weight roots p1 and p2

– Join into single tree by adding root with weight p1 + p2
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Example
p(a) = .1,  p(b) = .2,  p(c ) = .2,  p(d) = .5

a(.1) b(.2) d(.5)c(.2)

a(.1) b(.2)

0 1
(.3)

c(.2)

0 1
(.5)

d(.5)

(1.0)

0 1
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Encoding and Decoding
Encoding: Start at leaf of Huffman tree and follow path to the 

root.  Reverse order of bits and send.

Decoding: Start at root of Huffman tree and take branch for 
each bit received.  When at leaf can output message and 
return to root.

a(.1) b(.2)

(.3) c(.2)

(.5) d(.5)
(1.0)

0

0

0

1

1

1
a=000,  b=001,  c=01, d=1
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Huffman codes are “optimal”
Theorem: The Huffman algorithm generates an optimal *prefix* 

code.
Proof outline:
Induction on the number of messages n.
Consider a message set + with , + 1 messages
1. Can make it so that least probable messages of + are 

neighbors in the Huffman tree 
2. Replace the two messages with one message with 

probability /(01) 	+ 	/(02)	making +′
3. Show that if +’ is optimal, then + is optimal
4. +’ is optimal by induction
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Problem with Huffman Coding
Consider a message with probability .999.  The self information 

of this message is 

If we were to send a 1000 such messages we might hope to 
use 1000*.0014 = 1.44 bits.

Using Huffman codes we require at least one bit per message, 
so we would require 1000 bits.

Need to “blend” bits among message symbols!

00144.)999log(. =-
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Discrete or Blended

Discrete: each message is a fixed set of bits 
– E.g., Huffman coding, Shannon-Fano coding

Blended: bits can be “shared” among messages
– E.g., Arithmetic coding

01001 11 0110001

message:     1       2      3      4

010010111010

message:     1,2,3, and 4
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Arithmetic Coding: Introduction
Allows “blending” of bits in a message sequence.

Only requires 3 bits for the example
Can bound total bits required based on sum of  self information:

Used in many compression algorithms as building block
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Arithmetic Coding: message intervals
Assign each message to an interval range from 0 (inclusive) 

to 1 (exclusive) based on the probabilities.

a = .2

c = .3

b = .5

0.0
0.2

0.7

1.0

The interval for a particular message will be called
the message interval (e.g for b the interval is [.2,.7))
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Arithmetic Coding: Sequence intervals
Code a message sequence by composing intervals.
For example: bac

The final interval is [.27,.3)

a = .2

c = .3

b = .5

0.0

0.2

0.7

1.0

a = .2

c = .3

b = .5

0.2

0.3

0.55

0.7

a = .2

c = .3

b = .5

0.2

0.22

0.27

0.3
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Uniquely defining an interval
Important property: The sequence intervals for distinct 

message sequences of  length n will never overlap

Therefore: specifying any number in the final interval uniquely 
determines the sequence.

Decoding is similar to encoding, but on each step need to 
determine what the message value is and then go backwards
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Decoding for Arithmetic Codes

Decoding is similar to encoding 

On each step need to determine what the message value is and 
then go backwards
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Arithmetic Coding: Decoding Example

Decoding the number .49, knowing the message is of length 3:

The message is bbc.

a = .2

c = .3

b = .5

0.0

0.2

0.7

1.0

a = .2

c = .3

b = .5

0.2

0.3

0.55

0.7

a = .2

c = .3

b = .5

0.3

0.35

0.475

0.55

0.49 0.49

0.49



Arithmetic codes: takeaways
• Blending messages into a sequence helps achieve better 

compression
• Takes closer to the information theoretic lower bound

• Arithmetic codes are more expensive than Huffman coding
• Due to fractions involved
• Integer implementations exist and are not too bad 

(converting all fractions to equivalent integer 
representations)
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Transformation Techniques 
for Compression

1. Run length coding

2. Move-to-front coding

3. Residual coding 

4. Burrows-Wheeler transform

5. Linear transform coding
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Why transform?
• Help skew the probabilities

• Why? 
• Recall higher the skew easier it is to compress

• In many algorithms message sequences are transformed into 
integers with a skew towards small integers

• We will take a detour to study codes for integers ...
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Integer codes
• There are several “fixed” codes for encoding natural numbers
• With non-decreasing codeword lengths
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Integer codes: binary

“Minimal” binary representation: Drop leading zeros
Q: What is the problem with minimal binary representation?
Not a prefix code!

n Binary Unary Gamma 
1 ..001 0 0| 
2 ..010 10 10|0 
3 ..011 110 10|1 
4 ..100 1110 110|00 
5 ..101 11110 110|01 
6 ..110 111110 110|10 
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Integer codes: Unary

,	represented as (, − 1) 1’s and one 0 
 (0’s and 1’s can be interchanged)

Q: For what probability distribution unary codes are optimal 
prefix codes?

      

n Binary Unary Gamma 
1 ..001 0 0| 
2 ..010 10 10|0 
3 ..011 110 10|1 
4 ..100 1110 110|00 
5 ..101 11110 110|01 
6 ..110 111110 110|10 
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Integer codes: Gamma
n Binary Unary Gamma 
1 ..001 0 0| 
2 ..010 10 10|0 
3 ..011 110 10|1 
4 ..100 1110 110|00 
5 ..101 11110 110|01 
6 ..110 111110 110|10 

 

 

Many other fixed prefix codes: 
   Golomb, phased-binary, subexponential, ...

Back to transforming data for encoding…



Transformation Techniques
1. Run length coding

2. Move-to-front coding

3. Residual coding 

4. Burrows-Wheeler transform

5. Linear transform coding
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1. Run Length Coding
Code by specifying message value followed by the number of 

repeated values:
e.g. abbbaacccca => (a,1),(b,3),(a,2),(c,4),(a,1)

The characters and counts can be coded based on frequency 
(i.e., probability coding).

 Typically low counts such as 1 and 2 are more common => 
use small number of bits overhead for these. 

Used as a sub-step in many compression algorithms.
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2. Move to Front (MTF) Coding
• Transforms message sequence into sequence of integers
• Then probability code

Start with values in a total order: e.g.: [a,b,c,d,…]
For each message 

– output the position in the order 
– move to the front of the order.
e.g.: c a
     c => output: 3, new order: [c,a,b,d,e,…]

     a => output: 2, new order: [a,c,b,d,e,…]

Probability code the output.
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2. Move to Front (MTF) Coding
The hope is that there is a bias for small numbers.

Q: Why?
Temporal locality

Takes advantage of temporal locality

Used as a sub-step in many compression algorithms.
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3. Residual Coding
Typically used for message values that represent some sort of 

amplitude: 
e.g. gray-level in an image, or amplitude in audio.

Basic Idea: 
• Guess next value based on current context.  
• Output difference between guess and actual value.   
• Use probability code on the output.

E.g.: Consider compressing a stock value over time.

Residual coding is used in JPEG Lossless
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Use of residual coding in JPEG-LS

JPEG Lossless
Codes in Raster Order.  
Uses 4 pixels as context:

Tries to guess value of * based on W, NW, N and NE.

The residual between guessed and actual value is found and 
then coded using a Golomb-like code. 

 (Golomb codes are similar to Gamma codes)

NW

W

N NE

*
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4. Burrows –Wheeler Transform
Breaks file into fixed-size blocks and encodes each block 

separately.

For each block:

– Create full context for each character 
– Context wraps around
– Reverse lexical sort each character by its full context.  

This is called the “block sorting transform”.
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Burrows Wheeler: Example
To encode: d1e2c3o4d5e6
(Numbered the characters to distinguish them.)
Context “wraps” around.  Last char is most significant.

Context Char 
ecode6 d1 
coded1 e2 
odede2 c3 
dedec3 o4 
edeco4 d5 
decod5 e6 

 

 

Context Output 
dedec3 o4 
coded1 e2 
decod5 e6 
odede2 c3 
ecode6 d1 Ü 
edeco4 d5 

 

 

Sort based
on
context

(reverse
lexical)

Q: Why is the output more easier to compress?
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Burrows Wheeler: Example
Context Char 
ecode6 d1 
coded1 e2 
odede2 c3 
dedec3 o4 
edeco4 d5 
decod5 e6 

 

 

Context Output 
dedec3 o4 
coded1 e2 
decod5 e6 
odede2 c3 
ecode6 d1 Ü 
edeco4 d5 

 

 

Sort
Context

Gets similar characters together 
(because we are ordering by context)

Why not just sort the original block of characters?



Can we invert BW Transform?
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Context Output 
dedec3 o4 
coded1 e2 
decod5 e6 
odede2 c3 
ecode6 d1 ⇐ 
edeco4 d5 

 

 



Can we invert BW Transform?
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Context Output 
dedec3 o4 
coded1 e2 
decod5 e6 
odede2 c3 
ecode6 d1 ⇐ 
edeco4 d5 

 

 

How can we get the last column of the context column 
from the output column?

Sort!

Any problem? Equal valued chars

Suppose we 
are given the 
context… 
then?
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Burrows-Wheeler (Continued)

Theorem: After sorting, equal valued characters appear 
in the same order in the output column as in the last 
column of the sorted context. 

Proof sketch: 

The chars with equal value in the most-
significant-position (i.e., last column) of the 
context will be ordered by the rest of the 
context, i.e. the previous chars.  

This is also the order of the output since it 
is sorted by the previous characters.

Context Output 
dedec3 o4 
coded1 e2 
decod5 e6 
odede2 c3 
ecode6 d1 
edeco 4 d5 
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Burrows-Wheeler: Decoding

– What follows the underlined a ?
– What follows the underlined b?
– What is the whole string?

Context Output
a c
a b
a b
b a
b a
c aAnswer:  b, a, abacab

Ü 
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BZIP
Transform 1: (Burrows Wheeler) 

– input : character string (block)
– output : reordered character string

Transform 2: (move to front)
– input : character string
– output : MTF numbering

Transform 3: (run length)
– input : MTF numbering
– output : sequence of run lengths

Probabilities: (on run lengths)
Dynamic based on counts for each block.
Coding:  Originally arithmetic, but changed to Huffman 

in bzip2 due to patent concerns


