
15-750 Page 45

15-750:Algorithms in the Real World

Continue with Data Compression

15-750 Page 46

(Recap) Relationship to Entropy
Theorem (lower bound): For any probability distribution p(S)

with associated uniquely decodable code C,

Theorem (upper bound): For any probability distribution p(S)
with associated optimal prefix code C,

H S l Ca() ()£

l C H Sa () ()£ +1

15-750 Page 47

(Recap) Kraft McMillan Inequality
Theorem (Kraft-McMillan): For any uniquely decodable code C,

Conversely, for any set of lengths L such that

there is a prefix code C such that

Used Kraft McMillan for proving the upper bound theorem.

12)(£å
Î

-

Cc

cl

12 £å
Î

-

Ll

l

|)|,...,1()(Lilcl ii ==

15-750 Page 48

Another property of optimal codes
Theorem: If C is an optimal prefix code for the probabilities
{p1, …, pn}, then pi > pj implies $ %$ ≤ 	$(%%)

Proof: (by contradiction: switching technique)
Assume $ %$ > $(%%) (for the sake of contradiction).

Consider switching codes ci and cj.
If $! is the average length of the original code, the length of the

new code is

This is a contradiction since $! is not optimal

l l p l c l c p l c l c
l p p l c l c
l

a a j i j i j i

a j i i j

a

' (() ()) (() ())
()(() ())

= + - + -
= + - -
<

15-750 Page 49

Huffman Codes
Invented by Huffman as a class assignment in 1950.
Used in many, if not most, compression algorithms

Properties:
– Generates optimal prefix codes
– Cheap to generate codes
– Cheap to encode and decode
– la = H if probabilities are powers of 2

15-750 Page 51

Huffman Codes
Huffman Algorithm:
Start with a forest of trees each consisting of a single vertex

corresponding to a message s and with weight p(s)

Repeat until one tree left:
– Select two trees with minimum weight roots p1 and p2

– Join into single tree by adding root with weight p1 + p2

15-750 Page 52

Example
p(a) = .1, p(b) = .2, p(c) = .2, p(d) = .5

a(.1) b(.2) d(.5)c(.2)

a(.1) b(.2)

0 1
(.3)

c(.2)

0 1
(.5)

d(.5)

(1.0)

0 1

15-750 Page 55

Encoding and Decoding
Encoding: Start at leaf of Huffman tree and follow path to the

root. Reverse order of bits and send.

Decoding: Start at root of Huffman tree and take branch for
each bit received. When at leaf can output message and
return to root.

a(.1) b(.2)

(.3) c(.2)

(.5) d(.5)
(1.0)

0

0

0

1

1

1
a=000, b=001, c=01, d=1

15-750 Page 57

Huffman codes are “optimal”
Theorem: The Huffman algorithm generates an optimal *prefix*

code.
Proof outline:
Induction on the number of messages n.
Consider a message set + with , + 1 messages
1. Can make it so that least probable messages of + are

neighbors in the Huffman tree
2. Replace the two messages with one message with

probability /(01) 	+ 	/(02)	making +′
3. Show that if +’ is optimal, then + is optimal
4. +’ is optimal by induction

15-750 Page 58

Problem with Huffman Coding
Consider a message with probability .999. The self information

of this message is

If we were to send a 1000 such messages we might hope to
use 1000*.0014 = 1.44 bits.

Using Huffman codes we require at least one bit per message,
so we would require 1000 bits.

Need to “blend” bits among message symbols!

00144.)999log(. =-

15-750 Page 59

Discrete or Blended

Discrete: each message is a fixed set of bits
– E.g., Huffman coding, Shannon-Fano coding

Blended: bits can be “shared” among messages
– E.g., Arithmetic coding

01001 11 0110001

message: 1 2 3 4

010010111010

message: 1,2,3, and 4

15-750 Page 60

Arithmetic Coding: Introduction
Allows “blending” of bits in a message sequence.

Only requires 3 bits for the example
Can bound total bits required based on sum of self information:

Used in many compression algorithms as building block

å
=

+<
n

i
isl

1
2

15-750 Page 61

Arithmetic Coding: message intervals
Assign each message to an interval range from 0 (inclusive)

to 1 (exclusive) based on the probabilities.

a = .2

c = .3

b = .5

0.0
0.2

0.7

1.0

The interval for a particular message will be called
the message interval (e.g for b the interval is [.2,.7))

15-750 Page 62

Arithmetic Coding: Sequence intervals
Code a message sequence by composing intervals.
For example: bac

The final interval is [.27,.3)

a = .2

c = .3

b = .5

0.0

0.2

0.7

1.0

a = .2

c = .3

b = .5

0.2

0.3

0.55

0.7

a = .2

c = .3

b = .5

0.2

0.22

0.27

0.3

15-750 Page 64

Uniquely defining an interval
Important property: The sequence intervals for distinct

message sequences of length n will never overlap

Therefore: specifying any number in the final interval uniquely
determines the sequence.

Decoding is similar to encoding, but on each step need to
determine what the message value is and then go backwards

15-750 Page 65

Decoding for Arithmetic Codes

Decoding is similar to encoding

On each step need to determine what the message value is and
then go backwards

15-750 Page 66

Arithmetic Coding: Decoding Example

Decoding the number .49, knowing the message is of length 3:

The message is bbc.

a = .2

c = .3

b = .5

0.0

0.2

0.7

1.0

a = .2

c = .3

b = .5

0.2

0.3

0.55

0.7

a = .2

c = .3

b = .5

0.3

0.35

0.475

0.55

0.49 0.49

0.49

Arithmetic codes: takeaways
• Blending messages into a sequence helps achieve better

compression
• Takes closer to the information theoretic lower bound

• Arithmetic codes are more expensive than Huffman coding
• Due to fractions involved
• Integer implementations exist and are not too bad

(converting all fractions to equivalent integer
representations)

15-750 Page 67

å
=

+<
n

i
isl

1
2

Transformation Techniques
for Compression

1. Run length coding

2. Move-to-front coding

3. Residual coding

4. Burrows-Wheeler transform

5. Linear transform coding

15-750 Page 68

Why transform?
• Help skew the probabilities

• Why?
• Recall higher the skew easier it is to compress

• In many algorithms message sequences are transformed into
integers with a skew towards small integers

• We will take a detour to study codes for integers ...

15-750 Page 69

Integer codes
• There are several “fixed” codes for encoding natural numbers
• With non-decreasing codeword lengths

15-750 Page 70

15-750 Page 71

Integer codes: binary

“Minimal” binary representation: Drop leading zeros
Q: What is the problem with minimal binary representation?
Not a prefix code!

n Binary Unary Gamma
1 ..001 0 0|
2 ..010 10 10|0
3 ..011 110 10|1
4 ..100 1110 110|00
5 ..101 11110 110|01
6 ..110 111110 110|10

15-750 Page 72

Integer codes: Unary

,	represented as (, − 1) 1’s and one 0
 (0’s and 1’s can be interchanged)

Q: For what probability distribution unary codes are optimal
prefix codes?

n Binary Unary Gamma
1 ..001 0 0|
2 ..010 10 10|0
3 ..011 110 10|1
4 ..100 1110 110|00
5 ..101 11110 110|01
6 ..110 111110 110|10

15-750 Page 73

Integer codes: Gamma
n Binary Unary Gamma
1 ..001 0 0|
2 ..010 10 10|0
3 ..011 110 10|1
4 ..100 1110 110|00
5 ..101 11110 110|01
6 ..110 111110 110|10

Many other fixed prefix codes:
 Golomb, phased-binary, subexponential, ...

Back to transforming data for encoding…

Transformation Techniques
1. Run length coding

2. Move-to-front coding

3. Residual coding

4. Burrows-Wheeler transform

5. Linear transform coding

15-750 Page 74

15-750 Page 75

1. Run Length Coding
Code by specifying message value followed by the number of

repeated values:
e.g. abbbaacccca => (a,1),(b,3),(a,2),(c,4),(a,1)

The characters and counts can be coded based on frequency
(i.e., probability coding).

 Typically low counts such as 1 and 2 are more common =>
use small number of bits overhead for these.

Used as a sub-step in many compression algorithms.

15-750 Page 76

2. Move to Front (MTF) Coding
• Transforms message sequence into sequence of integers
• Then probability code

Start with values in a total order: e.g.: [a,b,c,d,…]
For each message

– output the position in the order
– move to the front of the order.
e.g.: c a
 c => output: 3, new order: [c,a,b,d,e,…]

 a => output: 2, new order: [a,c,b,d,e,…]

Probability code the output.

15-750 Page 77

2. Move to Front (MTF) Coding
The hope is that there is a bias for small numbers.

Q: Why?
Temporal locality

Takes advantage of temporal locality

Used as a sub-step in many compression algorithms.

15-750 Page 78

3. Residual Coding
Typically used for message values that represent some sort of

amplitude:
e.g. gray-level in an image, or amplitude in audio.

Basic Idea:
• Guess next value based on current context.
• Output difference between guess and actual value.
• Use probability code on the output.

E.g.: Consider compressing a stock value over time.

Residual coding is used in JPEG Lossless

15-750 Page 79

Use of residual coding in JPEG-LS

JPEG Lossless
Codes in Raster Order.
Uses 4 pixels as context:

Tries to guess value of * based on W, NW, N and NE.

The residual between guessed and actual value is found and
then coded using a Golomb-like code.

 (Golomb codes are similar to Gamma codes)

NW

W

N NE

*

15-750 Page 80

4. Burrows –Wheeler Transform
Breaks file into fixed-size blocks and encodes each block

separately.

For each block:

– Create full context for each character
– Context wraps around
– Reverse lexical sort each character by its full context.

This is called the “block sorting transform”.

15-750 Page 81

Burrows Wheeler: Example
To encode: d1e2c3o4d5e6
(Numbered the characters to distinguish them.)
Context “wraps” around. Last char is most significant.

Context Char
ecode6 d1
coded1 e2
odede2 c3
dedec3 o4
edeco4 d5
decod5 e6

Context Output
dedec3 o4
coded1 e2
decod5 e6
odede2 c3
ecode6 d1 Ü
edeco4 d5

Sort based
on
context

(reverse
lexical)

Q: Why is the output more easier to compress?

15-750 Page 82

Burrows Wheeler: Example
Context Char
ecode6 d1
coded1 e2
odede2 c3
dedec3 o4
edeco4 d5
decod5 e6

Context Output
dedec3 o4
coded1 e2
decod5 e6
odede2 c3
ecode6 d1 Ü
edeco4 d5

Sort
Context

Gets similar characters together
(because we are ordering by context)

Why not just sort the original block of characters?

Can we invert BW Transform?

15-750 Page 83

Context Output
dedec3 o4
coded1 e2
decod5 e6
odede2 c3
ecode6 d1 ⇐
edeco4 d5

Can we invert BW Transform?

15-750 Page 84

Context Output
dedec3 o4
coded1 e2
decod5 e6
odede2 c3
ecode6 d1 ⇐
edeco4 d5

How can we get the last column of the context column
from the output column?

Sort!

Any problem? Equal valued chars

Suppose we
are given the
context…
then?

15-750 Page 85

Burrows-Wheeler (Continued)

Theorem: After sorting, equal valued characters appear
in the same order in the output column as in the last
column of the sorted context.

Proof sketch:

The chars with equal value in the most-
significant-position (i.e., last column) of the
context will be ordered by the rest of the
context, i.e. the previous chars.

This is also the order of the output since it
is sorted by the previous characters.

Context Output
dedec3 o4
coded1 e2
decod5 e6
odede2 c3
ecode6 d1
edeco 4 d5

15-750 Page 86

Burrows-Wheeler: Decoding

– What follows the underlined a ?
– What follows the underlined b?
– What is the whole string?

Context Output
a c
a b
a b
b a
b a
c aAnswer: b, a, abacab

Ü

15-750 Page 87

BZIP
Transform 1: (Burrows Wheeler)

– input : character string (block)
– output : reordered character string

Transform 2: (move to front)
– input : character string
– output : MTF numbering

Transform 3: (run length)
– input : MTF numbering
– output : sequence of run lengths

Probabilities: (on run lengths)
Dynamic based on counts for each block.
Coding: Originally arithmetic, but changed to Huffman

in bzip2 due to patent concerns

