
14

2.2 Amortized Analysis

The basic idea of amortization is simple: you have a process where
some operations are expensive, some others are cheap. You want
to show that there is some α such that over any sequence of T op-
erations, you pay at most T · α for some value α. Then you say the
amortized (or average) cost per operation is at most α.

2.3 The Binary Counter

You have a binary counter that starts off with all zeroes. Each time
the counter increments by 1. So the first few settings are:

The cost of an increment is the number of bits that change. So the
first few increments cost

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, . . .

What is the amortized cost over T operations? There are many
ways to solve this:

2.3.1 Brute Force

First imagine that T is a power of 2, say 2t. Then observe that the
first 2t−1 costs look the same as the last 2t−1, except for the very last
operation costing one more. So if the sum of the first 2t costs is St, we
get

St = 2St−1 + 1.

And S0 = 1. Solving this gives St = 2t+1 − 1. And hence the amor-
tized cost (per operation) is

2t+1 − 1
2t ≤ 2.

Then one can argue that if T is not a power of 2, then break the pro-
cess into prefixes of length that are powers of 2, etc. But all this re-
quires some work. Let’s see other approaches.

2.3.2 Summing More Smartly

Observe that the lowest order bit changes each step. The second
lowest-order bit changes once every other step. The third one changes
once every fourth step. So the number of changes in T steps is at
most

T + ⌈T/2⌉+ ⌈T/4⌉+ . . . ≤ 2T.

And hence the amortized cost per operation is at most 2.

amortized analysis and msts 15

2.3.3 The Banker’s Method

Let’s maintain the invariant that each 1 has a dollar bill sitting next to
it, that can pay for changing it back to zero. This is vacuously satis-
fied at the start: we start with all zeros, so there are no 1s. Now each
increment consists of changing some suffix of 1s to zeros, followed by
changing a single zero to a 1. All the 1→ 0 transitions are paid for by
the dollar bills, so we only need to pay for the single 0→ 1 transition,
and to put down the dollar bill on it. Hence we pay $2 per operation.

We call this the banker’s method: we show that for each operation
we pay $α, some of which is used to pay for the current operation
and some to save for later, more expensive operations. You can think
of this as keeping a bank account, and saving the extra amount from
the cheaper operations to use for the expensive operations.

2.4 The Potential Function Method

Let us present a more general framework in which most amortized
analyses can be placed. At each time, the system is supposed to be
in some state, drawn from a collection Ω of states. We maintain a
function Φ : Ω → R called the potential function. With an operation
at time t the system moves from some state st−1 to some other state
st. This changes the potential of the state from Φ(st−1) to Φ(st).
Suppose the operation costs ct. Then the amortized cost at time t is
defined as:

At := ct +
(
Φ(st)−Φ(st1)

)
. (2.1)

If we sum this over all times, the telescoping sum gives

T

∑
t=1

At =
T

∑
t=1

ct + Φ(sT)−Φ(s0).

Now suppose we can show the following three things:

1. The potential starts at zero (i.e., Φ(s0) = 0),

2. it is non-negative, so that Φ(sT) ≥ 0, and

3. At ≤ α for all times t.

Then we get

T α ≥
T

∑
t=1

At =
T

∑
t=1

ct + (≥ 0− 0).

In other words, the total cost is at most Tα, and hence the amortized
cost is at most α.

This all sounds very abstract: I like to think of Φ(s) as being the
bank account when you get to state s. The expression on the right

16

of (2.1) is the actual cost of the operation, plus the change in the bank
account. That is what we have to pay per operation. So sometimes
the operations are cheap but the bank account goes up, and we need
to pay for this increase. At other times, the operations are expensive,
and then the bank account goes down, with this decrease helping to
pay this larger cost (and us paying only the difference).

For example: if the current number in the binary counter is s, then
define

Φ(s) = number of 1s in the binary representation of s.

Now if we changing from s to s + 1 requires us to flip f bits, f − 1 of
these flips must be 1→ 0, and the last one is 0→ 1. So the number of
1s decreases by f − 2. This means the amortized cost at each timestep
is

As→s+1 = f − (f − 2) = 2.

Observe that the potential here matches the total money in the bank
from the previous analysis.

2.4.1 Why and How

You may ask: why even talk about potential functions, why not just
use the banker’s method all the time? The answer is that potentials
are a more general idea, and sometimes they will be more useful. We
will see some later in the course.

And the next natural question: how do you come up with a poten-
tail function? This is more difficult, there is no silver bullet. The only
suggestion is to look closely what the algorithm

2.5 The List-Based Union-Find Data Structure

Recall that the operations are:

1. Makeset(e): create a singleton set {e}, costs 1.

2. Find(e): return the name of the set containing e, costs 1.

3. Union(e, f): merges the sets A, B containing e, f , costs min(|A|, |B|).

With n elements in total, observe that the worst-case cost of an
operation could now be Ω(n). Indeed, if we union two lists of length
n/2, we pay n/2. Of course, building up these long lists from scratch
requires many operations, so we may hope the amortized cost is low.
This is precisely what we show next.

amortized analysis and msts 17

2.5.1 The Amortized Cost

Theorem 2.5. If we perform n Makesets, m Finds and u Unions using
the list-based union-find data structure, the total cost is at most

m + O(n log n).

Here are two proofs of this theorem:

1. Using the banker’s method: each Makeset(e) brings log2 n dollars
with it, which is stored with the element e. Each time e belongs to
the smaller set involved in a Union, it pays for this operation. But
the size of the set containing e at least doubles, so e has to pay at
most log2 n times.

2. Using potentials: if the sets at the current state s have size n1, . . . , nk,
let

Φ(s) = ∑
i

ni log2(n/ni).

Each makeset costs log2n, the finds cost 1. And when we replace
sets of size ni ≤ nj by a new set of size ni + nj, the amortized cost
for each union is

ni + (ni + nj) log2
n

ni + nj
− ni log2

n
ni
− nj log2

n
nj

= ni − ni log2
ni + nj

ni︸ ︷︷ ︸
≥1

−nj log2
ni + nj

nj︸ ︷︷ ︸
≥0

≤ 0.

Hence, the total cost is O(m + n log n).

One can improve both the analyses a bit and show a total cost of

m + n + O(u log n).

Indeed, each makeset only costs a dollar now, but inctead each union
operation brings in log2 n dollars, with the first union involving
element e giving its log2 n dollars to e. Since the number of unions
is at most n (Be sure you see why?), m + n + O(u log n) is a better
bound than m + O(n log n).

